Communicating Mobile Active Objects in Java

Frangoise Baude, Denis Caromel, Fabrice Huet, and Julien Vayssiere

OASIS Team, INRIA - CNRS - I3S
Univ. Nice Sophia-Antipolis
First.Last@inria.fr

Abstract. This paper investigates the design and implementation of
mobile computations in Java. We discuss various issues encountered while
building a Java library that allows active objects to migrate transparently
from site to site, while still being able to communicate with each other.
Several optimizations are introduced, and a set of benchmarks provides
valuable figures about the cost of migration in Java: basic cost of mi-
gration with and without remote classloading, migration vs. standard
remote method invocation in a typical information retrieval application.
Our conclusion is that mobile computations are a viable alternative to
remote method invocation for a large domain of Java applications that
includes Web-based application.

1 Introduction

This paper is concerned with mobile computations [Eard]: the ability to start
a computation on a site, suspend the execution of the computation at some
point, migrate the computation to a remote site and resume its execution there.
Sometimes called mobile agents, it is a far more complex problem than simply
moving objects around as done in RMI or CORBA, or moving code alone as
with Java applets.

A distinction is usually made between strong migration and weak migration.
Strong migration means migrating a process by sending its memory image to
a remote site: the current state of the stack, the value of the program counter,
and of course all the objects reachable from the process. Moreover, the migration
may occur preemptively; the process does not even need to know it has migrated.
On the other hand, weak migration usually only involves the objects reachable
from the process, and requires that the process has agreed to migrate (it is non
preemptive). To the best of our knowledge, there exists no implementation of
strong migration in Java that does not break the Java model or require user
instrumentation of the code.

In this paper, we have taken the weak migration approach, and are trying to
provide a flexible, extensible, yet efficient Java library for migration. As a result,
we introduce a Java library for mobile computations allowing active objects to
migrate transparently from site to site, while still being able to communicate with
each other. It is built as an extension to the ProActive PDC library [=kazis].

Section 2 presents some related work in mobile agents technology and in-
troduces the main features of the ProActive PDC library. Section 3 discusses

M. Bubak et al. (Eds.): HPCN 2000, LNCS 1823, pp. 633- 2000.
© Springer-Verlag Berlin Heidelberg 2000



634 Francoise Baude et al.

and details the library for mobile computations, and presents some possible op-
timization techniques for mobile agents. Results from several benchmarks are
presented in section 4, section 5 concludes.

2 Background on Mobility and Active Objects

2.1 Related Work

The best-known Java libraries for mobile agents are Aglets [Mentd] and Voyager
[UDb199]. Both implement a form of weak migration, in the sense that an object
must explicitly invoke a primitive in order to migrate, and this can only take
place at points in the execution where a checkpointed state (either implicit or
explicit) is reached. A checkpoint is a place in the code where the current state
of the computation can be safely saved and restored.

For example, the MoveTo primitive of Voyager waits until all threads have
completed. On the other hand, in Ajents [EESY], any object can be migrated while
executing by interrupting its execution, moving the most recently checkpointed
state of the object to a remote site and re-executing the method call using the
checkpointed object state. Apart from the fact that whether checkpointing occurs
lies in the hands of the user program, general and well-known issues related to
checkpoint inconsistency due to rollback are kept unresolved.

Systems also differ in the way mobile objects interact: either by remote
method call (Ajents, Voyager), or using a message-centric approach (Aglets).
The default interaction mode is usually synchronous, even if some form of asyn-
chronous communication is sometimes provided (in Aglets or Ajents for in-
stance). Interacting synchronously simplifies the overall management of migra-
tion: while a remote method or message is handled, nothing else can happen
to the two partners (and especially no migration), but this of course incurs a
performance penalty.

Remote interaction is achieved transparently by a proxy which hides the
effective location of the destination object to the caller. The proxy also often
acts as a forwarder for locating the mobile object (see section B&) and is a
convenient place for performing security-related actions.

Protocols for managing the migration of an object introduce several events,
typically events such as departure or arrival, which can be customized by the
user, like for example with Aglets. It is also possible to provide the mobile agent
with an itinerary, i.e. a list of hosts to visit.

2.2 Asynchronous Active Objects

The results presented in this paper capitalize on research done over the last few
years around the ProActive PDC library [LiXM8X]. ProActive PDC is a Java
library for concurrent and distributed computing whose main features are trans-
parent remote active objects, asynchronous two-way communications with trans-
parent futures and high-level synchronization mechanisms. ProActive PDC is



Communicating Mobile Active Objects in Java 635

built on top of standard Java APIs (Java RMI [RundxH]|, the Reflection API
[FunSXd]). It does not require any modification to the standard Java execution
environment, nor does it make use of a special compiler, preprocessor or modified
virtual machine.

A distributed or concurrent application built using ProActive PDC' is com-
posed of a number of medium-grained entities called active objects which can
informally be thought of as “active components”. Each active object has its own
thread of control and has the ability to decide in which order to serve incom-
ing method calls. There are no shared passive objects (normal objects) between
active objects, which is a very desirable property for implementing migration.

Method calls between active objects are always asynchronous with trans-
parent future objects and synchronization is handled by a mechanism called
wait-by-necessity.

As both active objects and future objects are type-compatible with the equiv-
alent 'normal’ objects, the programmer does not need to modify any code when
reusing old code with ProActive. The only code that needs to be changed is the
code that instanciates the objects we now want to be active. Here is a sample of
code for creating an active object of type A:

class pA extends A implements Active{}
Object[] params={"foo", 7};
A a = (A) ProActive.newActive ("pA", params, node);

A full description of the library is outside the scope of this paper and can be
found in [ERIZGX].

3 Communicating and Asynchronous Mobile Objects

Enhancing active objects with mobility is a nice feature to have but it is not
enough: mobile active objects also need to be able to communicate with each
other, regardless of where they are.

In this section we present the mechanism we have built into ProActive PDC.

3.1 Programmer Interface

The principle is to have a very simple and efficient (optimized) primitive to
perform migration, and then to build various abstractions on top of it.

Primitives. Any active object has the ability to migrate and if it references
some passive objects, they will also migrate to the new location. That is, we
not only migrate an active object but also its complete subsystem. Since we
rely on the serialization to send the object on the network, the active object
must implement the Serializable interface. Many different migration primitives
are available, all with the same general form :

public static void migrateTo(...) throws ...



636 Francoise Baude et al.

Notice that we are only able to perform weak migration since we do not
have access to the execution stack of the JVM. Hence, a migration call must
be encapsulated into a method of the mobile object so that in the end the call
comes from the object itself. This call never returns because, strictly speaking,
the object is not present anymore and so the execution must stop.

There are two different ways to move an active object in ProActive PDC. The
first one consists in migrating to a remote host. In order to do so, the remote host
must have a running Java object called a Node, a kind of daemon in charge of
receiving, restarting active objects and keeping trace of locally accessible active
objects.

The other way to migrate is to join another active object on a remote host, even
if the address of this host is unknown. Indeed, only a reference to the remote
object is needed. However it can not be guaranteed that after the migration
the two objects will be on the same host, the referenced object having possibly
migrated. An example of a very simple mobile object can be found in example
E=1 For the sake of clarity, this code has been simplified and exception handling
is not shown.

Exemple 3.1 SimpleAgent

public class SimpleAgent implements Active, Serializable {

public void moveToHost(String t)

{

ProActive.migrateTo(t);

}

public void joinFriend(Object friend)

{

ProActive.migrateTo(friend) ;

}

public ReturnType foo(CallType p)

{

.
}

Higher Level Abstractions. With this primitive for migrating active objects
from host to host, we can build an API on top of it in order to implement
autonomous active objects, also known as mobile agents in the distributed com-
puting literature.



Communicating Mobile Active Objects in Java 637

Ttinerary. We want an autonomous object to be able to successively visit all
the sites on a list and perform a possibly different action on each of them (see
[257]). Such a list does not need to be known at compile-time and can be
dynamically modified at runtime in order to react to changing environmental
conditions.

Any active mobile object in ProActive PDC' can have an itinerary, which is
a list of <destination, action> pairs, where destination is the host to migrate
to and action is the name of the method to execute on arrival. Therefore, the
method to execute on arrival at a host differs from host to host and can be
modified dynamically.

Automatic Execution. In some Java libraries for mobile agents, such as Aglets
[FZ555], only one predefined hard-wired method to be called on arrival is allowed.
This is an annoying limitation, since no decision on which method to call on
arrival can be made at runtime.

The approach we have chosen makes use of reflection techniques in order to
bring more flexibility in choosing the method to execute on arrival. Setting the
method to execute on arrival is done through this call:

ProActive.onArrival(String)

There are two limitations on the signature of the method to be executed on
arrival. First, the method cannot return any value since it is called by an internal
mechanism and there is nobody to return the result to. Second, the method
cannot have any parameter. Remember that this method will be executed when
the mobile object arrives on a new site, so there might be a delay between
the moment the method is set and the moment it is called. The value of the
parameters cannot be known for sure, and so, proving properties on the system
can be difficult. Therefore, the signature of the method to execute on arrival
must be:

void myMethodToEzecuteOnArrival()

This is not in any case a limitation. The method can call other methods and
access attributes of the object as would do any other method.
There is also the event corresponding to the start of a migration:

ProActive.onDeparture(String)

The method specified with onDeparture() could be used to do some clean-up
once the mobile object has left the local host.

3.2 Rationale and Discussion on Implementation Techniques

Implementing mobility features into ProActive PDC' raised a number of inter-
esting issues. One of them is how do we make sure that a mobile active object
always remains reachable, even if it never stops jumping from one host to the
next 7



638 Francoise Baude et al.

In this section we survey two of the most popular solutions to the location
problem. The first solution is based on a location server, chain of forwarders.
Other solutions exist as the one described in [Rntf] that uses a distributed
two-phase transaction and a sophisticated reference-tracking mechanism.

Location Server. The location server responsability is track the location of
each mobile active object: Every time an active object migrates, it sends its new
location to the location server it belongs to. As a result of the active object leav-
ing a host, all the references pointing to its previous location become invalid.
There exists different strategies for updating those dangling references with the
new location, one of them being lazy: when an object tries to send a message
to a mobile active object using a reference that is no longer valid, the call fails
and a mechanism transparently queries the location server for the new location
of the active object, updates the reference accordingly and re-issues the call (see

figures M and H).

Home Site

Migr, ation

A

- Reql’est
2 Rep/y

o™
o 00“\‘13‘\\\“@

;‘
@

3 - Further communications

Site C

Site A

Fig. 1. Localisation - the caller side

Being a centralized solution, it is very sensitive to network or hardware fail-
ures. Standard techniques for fault-tolerance in distributed systems could be put
to use here, such as using a hierarchy of possibly replicated location servers in-
stead of a single server. Nevertheless, this solution is costly, difficult to administer

and would certainly not scale well.



Communicating Mobile Active Objects in Java 639

Home Site
G\
1
%
%,
Z
%
2 - Migration
Site A Site C

Fig. 2. Localisation - the mobile object side

Forwarders.

An alternative solution is to use forwarders [Eawxd]: knowing the actual location
of a mobile object is not needed in order to communicate with it; rather, what
really matters is to make sure that the mobile object will receive the message
we send to it.

To do so, a chain of references is built, each element of the chain being a forwarder
object left by the mobile object when it leaves a host and that points to the next
location of the mobile object [Ob199]. When a message is sent, it follows the
chain until it reaches the actual mobile object. This appears to be the solution
of choice for several systems [KZ37].

In ProActive PDC, for efficiency purpose, it is the active object that is turned
into a forwarder object at the moment it leaves a host. This mechanism is fully
transparent to the caller because the forwarder has exactly the same type as the
mobile object. Moreover, the same mechanism is used for sending asynchronous
replies to active objects, which means that an active object can migrate with
some of the future objects in its subsystem still in the awaited state.

Forwarders can be considered as a distributed solution to the location prob-
lem, as opposed to the previous centralized solution. Moreover, contrary to the
location server, in the absence of network or host failure, a message will finally
reach any mobile object even if it never stops migrating. However, this solution
also suffers from a number of drawbacks.

First, some elements of the chain may become temporarily or permanently un-
reachable because of a network partition isolating some elements from the rest
of the chain or just because a single machine in the chain goes down; it would
destroy all the forwarder located on itl. The chain is then broken, and it be-

! Except if the forwarders are persistent objects.



640 Francoise Baude et al.

comes impossible to communicate with the mobile object at the end of the chain,
although it is still well and alive.

Shortcutting the Chain of Forwarders. We present here a technique to keep
the length of a forwarding chain to the minimum to limit the consequence of a
break, as done in [JD19Y]. It is based on the simple remark that the shorter the
chain, the better. We take advantage of two-ways communication, i.e invocation
of methods that return a result. When the object that executes the remote call
receives a request, it immediately sends its new location to the caller if and only
if it does not know it yet. Messages that are forwarded are marked so that an
object receiving them knows if the sender has its current location or an older
one. Thus we can avoid sending unnecessary update messages.

4 Benchmarks

Cost of one Migration. The first benchmark has been conducted to evaluate the
cost of the migration between different computers.

Without Optimisation
1000 | 1

600 1

time (ms)

400 1

200 1

0 L L L L
15 20

10
number of turns on thering

Fig. 3. Cost of one migration

Our test network was made of 2 Sparc-10, one Pentium-Pro, and a Bi-
PentiumlI. The program consisted in a mobile object moving from one host to
another, always in the same order and always ending on the one it first started.
It is equivalent to having the mobile object make one or more turns on a virtual
ring of computers. The object is initially out of the ring, and so has to migrate
first before actually starting its journey. We have measured the time taken to go
through the whole itinerary, including the initial migration. The start-up time



Communicating Mobile Active Objects in Java 641

(first creation of all objects) has not been taken into account. Figure B shows
the average time of one migration against the number of turns on the ring.

As time goes, the average cost of a migration decreases. This can easily be
explained by the fact that on the first round on the ring, all the JVMs must
load the class corresponding to the mobile object: when benchmarking mobile
objects system, one should not forget that there is always a start-up time if the
host is visited for the first time, even if all the class files are available locally or
through NF'S.

We can infer that the average migration time should be around 200ms on a LAN
for some given network conditions. Keep in mind that these results are heavily
dependent on the computating power.

Information Retrieval. The second benchmark has been designed to test a com-
mon application of mobile code: information retrieval. A text file representing
the directory listing of a F'TP server [l is available on a remote host and we want
to perform a search on this file to find all lines containing a certain keyword (i.e
we are looking for a file). Without code mobility, we must first download the
file (using a remote call on the active object that manages the file) and then
perform the search; a mobile object would simply migrate to the remote host,
perform the search and only bring the resulting lines.

Local Analysis
Local Analysis with Compression -------
2500 Mobile Object analysis --------

2000 - 1

1500 | S B

time (ms)

1000

500

0 I I I I I I I I
0 100 200 300 400 500 600 700 800 900

filesize (KB)

Fig. 4. Execution time of a file search

The purpose of this benchmark is to find the threshold above which migra-
tion becomes a better solution than local analysis of the downloaded file. Two

2
LLD.11D0, 11


ftp.lip6.fr

642 Francoise Baude et al.

versions have been designed, both using the same methods for reading the file
from disk and analysing it. In order to experiment with potential optimisation in
the remote method call version, we have implemented “on the fly” compression
of the downloaded file with the Java compression facilities (ZipInputStream).
The test has been conducted on a 100 Mbits LAN with a Bi-PentiumII and a
Bi-PentiumIII.

Figure [l shows the result of 3 experiments, one with a mobile object, and
two using local analysis. In the latter case, the file has been downloaded with
and without compression to measure the possible gain.

Contrary to what was expected, compression of the file didn’t decrease the time
taken to perform the search. Even worse, the difference increases as the file
size grows. Because the computers are on a high bandwidth LAN, the cost of
compressing data on the fly is greater than the time saved on transmission. Also,
we can notice that at file sizes 180, 350 and 650 KB, the time suddenly increases.
We believe this is due to the algorithms used to compress the data and to related
memory managment operations.

The mobile object program shows a remarquable scability since its execution
time increases only slightly with the size of the file. Most of the time is spent
performing migration (one to the remote host, and one back to the home host)
as we can see from the time taken with a small file. Even on a high bandwidth
and low latency LAN, mobile objects can be useful in many ways. First they
reduce the load on the network and the hosts, and second their execution time
can be much lower than conventional search, even for common sized files.

5 Conclusion

In this paper we have shown that mobile computation in Java can be efficiently
implemented without breaking the standard Java execution environment in any
way. The cost of one migration in our system is around 200 ms which is of the
same order of magnitude as a remote call across the Web today. This means
that using mobile computations instead of remote method invocations for client-
server computing can quickly deliver benefits in application domains such as
e-commerce or information retrieval.

Moreover, our implementation enables mobile active objects to communicate
using two-way asynchronous message-passing, which further improves perfor-
mances over other libraries for mobile computations.

Our future work will be aimed at studying mechanisms for fault-tolerance and
security in mobile computation systems. The ProActive PDC library, its exten-
sion for mobile computations discussed here and the code for all the examples
are freely available for download at 1ttp://www.1inria.tr/o0asis/proactive.


http://www.inria.fr/oasis/proactive

Communicating Mobile Active Objects in Java 643

References

Bru99.

Car99.

CKV98.

Eck98.

Fow85.

HP99.

1C99.

KZ97.
Obj99.
Sun98a.
Sun98b.

Ven97.

E Bruneton. Indirection-Free Referencing for Mobile Components. In Proc.
of the 1999 International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA’99), Madeira Island, Portugal, April
1999.

Luca Cardelli. Abstractions for mobile computation. Secure Internet Pro-
gramming: Security Issues for Mobile and Distributed Objects, LNCS 1603:51—
94, 1999.

D. Caromel, W. Klauser, and J. Vayssiere. Towards Seamless Computing
and Metacomputing in Java. Concurrency Practice and Ezxperience, 10(11-
13):1043-1061, November 1998.

Bruce Eckel. Thinking in Java. Prentice Hall, 1998.

Robert Joseph Fowler. Decentralized Object Finding Using Forwarding Ad-
dresses. PhD thesis, University of Washington, 1985.

B. Haumacher and M. Philippsen. More efficient object serialization. In Par-
allel and Distributed Processing, International Workshop on Java for Parallel
and Distributed Computing, pages 718-732, San Juan, Puerto Rico, April
1999. Springer-Verlag. LNCS 1586.

M. Izatt and P. Chan. Ajents: Towards an Environment for Parallel, Dis-
tributed and Mobile Java Applications. In Proc. of the 1999 Java Grande
Conference . ACM, 1999.

K. Kiniry and D. Zimmerman. A hands-on look at java mobile agents. IEEE
Internet Computing, 1(4):21-30, July/August 1997.

ObjectSpace, Inc. ObjectSpace Voyager

1TTD://WWW.OD1eCTSpace. com/developers/vovager/inaex. ntml, 1999.

Sun Microsystems. Java core reflection, 1998.

Sun Microsystems. Java remote method invocation specification, October
1998. [Tp://ITp.71avasoIT.Ccom/docs/ 1aKL.2/Im1-Spec—JUKL.Z.DAj.

Bill Venners. Under the hood: The architecture of aglets. JavaWorld: IDG’s
magazine for the Java community, 2(4), April 1997.


http://www.objectspace.com/developers/voyager/index.html
http://java.sun.com/products/jdk/1.2/docs/guide/reflection/index.html
ftp://ftp.javasoft.com/docs/jdk1.2/rmi-spec-JDK1.2.pdf

	Introduction
	Background on Mobility and Active Objects
	Related Work
	Asynchronous Active Objects

	Communicating and Asynchronous Mobile Objects
	Programmer Interface
	Rationale and Discussion on Implementation Techniques

	Benchmarks
	Conclusion

