
Parallel Functional Programming Languages: a
guided tour

Françoise Baude, INRIA-I3S OASIS team

MCF Univ. Nice Sophia-Antipolis

Master STIC, RSD & PMLT

Slide 1

1 Motivation

A common point of view for studying and comparing various parallel

programming languages is to consider that

a good parallel programming languages (in whatever style of

programming) succeeds in

filling the gap between

• the level at which the programmer would like to reason about its

program

• and the level at which one must program the target machine in

order to yield efficient performances

Remark: this fact is also true regarding sequential programming

languages !

Slide 2

1

There have been several tentatives in many different programming

language styles (imperative, functional, logic, object-oriented, . . .).

They are more or less satisfactory:

• either they provide a too much abstract view of the computation

→ not efficient enough at runtime

• or they provide a too much concrete view of the computation →

too close to the target machine and as such, not portable.

→ Everybody is seeking for a compromise in between !

Target machines are MIMD architectures: widespread use (i.e.

parallel and distributed computing) & the most scalable.

Points to consider are:

• How to break the work into tasks among the processors

• Mapping and load balancing of data and tasks

Slide 3

• How to manage comms. & synchros. between tasks

People of the functional programming community claim that the

functional programming style gives much more opportunity than

other styles in finding a good compromise

→ The following sections will present their arguments

Slide 4

2

Plan of the course

1. Why a functional programming style is a good candidate for

parallel programming

2. How to automatically extract and exploit parallelism (at compile

and run time)

3. Why and how the programmer may help in the exploitation of

parallelism

(a) Using new syntaxic constructs explicitely

(b) Using only availablea program skeletons

4. What about distributed functional computing

athe ones that yield an efficient implementation !

Slide 5

2 Why a functional programming style is

a good candidate for parallel

programming

Properties of Functional langages

• They are naturally parallel = implicit parallelism

• Unnecessary dependencies (i.e. as in imperative languages) are

eliminated: only required dependencies from (1) function

composition, (2) the fact that arguments required by a function

must be evaluated before the function itself.

• Amount of effective parallelism depends on the implicit control

governing the evaluation process (strict or non-strict : demand or

data driven)

Slide 6

3

Slides 9–26 from Guy Tremblay, UQAM

Slide 7

As a conclusion of this section

• it is embarassingly easy to partition a functional program into

(many) fine-grained parallel tasks

• one can foresee to be very difficult to exploit parallelism

efficiently, as it is required to minimize the overhead of

fine-grained parallelism.

Slide 8

4

3 How to automatically extract and

exploit parallelism (at compile and run

time) i.e., somehow without any

language or program restrictions

3.1 Principles

After the compilation process, the underlying computation is

considered to be a reduction graph.

Each step of the reduction is to evaluate a node of this graph: a redex

(a step of the reduction process).

As evaluating this graph in any possible way yields the same result

(the computation is deterministic) there is opportunity to execute all

(or a subset of all) redexes in parallel.

Slide 9

3.2 The problems

• In a non-strict language, not all redexes are worth executing.

Which ones must be executed ? The ones that are effectively

needed → this can only be known at compile time by a strictness

analysis (difficult because higher-order functions,

polymorphism,...).

• A redex might be a (very !) fine-grained operation.

→ it may be inefficient to create and schedule a parallel task.

1. This depends of the expected granularity of the redex.

→ a – complex – granularity/cost analysis would be required

at compile time. This analysis may be coupled at runtime

with a dynamic decision depending on the overall runtime

load (e.g. see below)

2. create a potential task and execute it in a lenient or in a lazy

Slide 10

5

way (”lazy future”).

Slide 11

3.3 Example of Implementation of Graph

Reduction in Parallel

For instance in GRIP (Graph Reduction In Parallel: compiling

Haskell for the MIMD local & shared-memory machine called GRIP)

Parallel task creation Create a spark containing the redex to

evaluate, and add it to the local spark pool, even if the spark might

be latter exported to the global spark pool (-> potential dynamic

mapping of spark evaluation onto an idle remote CPU).

Slide 12

6

Parallel task synchronisation Assuming the sparked node is

needed by the parent thread, one of the 3 situations may arise when

its value is demanded :

• It has been evaluated by another thread. In this case the parent

thread demands the value of the node and continues execution.

• It has not yet been evaluated. In this case, the parent thread

simply evaluates the node without creating and scheduling a new

thread. It is discarded later by the spark scheduler.

• It is currently being evaluated by another thread. In this case,

the parent thread must block until the child thread has finished

evaluation.

Slide 13

Early experiments (e.g. the Alice machine) of purely implicit

approaches for reducing in parallel a graph representing a functional

program proved to be disapointing.

For this reason, in the GRIP experiment,

• the Haskell language had to be (just slightly !) modified with 2

new keywords: par, seq (GpH, i.e. Glasgow Parallel Haskell [9])

so as to indicate potential parallelism.

E.g.:

parmap :: (a -> b) -> [a] -> [b]

parmap f [] = []

parmap f (x:xs) = ‘par‘ fx (‘seq‘ fxs (fx : fxs))

where fx = f x

fxs = parmap f xs

or, in order to spark nodes in parallel (assuming that traversing the

Slide 14

7

list sequentially is a time consuming operation):

parmap f l = parmap’ l

where parmap’ [] = []

parmap’ (x:xs) = fx ‘par‘ fxs ‘par‘ (fx : fxs)

where fx = f x

fxs = parmap’ xs

• GpH is a semi-implicit parallel extension of Haskell realising a

thread-based approach to parallelism: it allows threads to be

created, but do not provide mechanisms to control those threads.

They are thus managed entirely under runtime-system control.

• (Gp)Haskell programs compile, by transformation, into code for

the abstract G-machine (plus the GUM [11] runtime system calls

regarding par/seq constructs). The abstract G-machine model

[S.Peyton Jones 1992] is a stack based machine. G-machine code

Slide 15

is then compiled for the GRIP machine or into C.

• GUM (Graph reduction for a Unified Machine model) also

targets NOWs [11]: using C+PVM (or C+MPI), each

workstation runs a PVM process hosting several GUM threads

and a local spark pool. Threads increase their granularity by

executing subsequent spark nodes if available. Only when all

threads are blocked, some local spark node may be turned into a

new thread. If they are no local sparks, then a spark node is seek

by fishing through the other processes which yields to the

communication of the node plus some neighbour nodes in the

reduction graph and the update of the spark node location (for

subsequent comm & synchro.): work stealing load-balancing.

Performances are quite good, even on irregular parallel problems:

18 on a 32 CPU Beowulf cluster [10]

• and more recently, on Grids: Grid-GUM [14]: a slight

Slide 16

8

improvement on the way to fish, trying to take into account

heterogeneity of the grid machines: use stamps on each message,

indicating the current number of sparks on this node, the static

information regarding CPU power and communication latency

towards each node in the Grid. Each node thus maitain tables,

and uses them to fish: fish towards the “best” nodes

Slide 17

4 Why and how the programmer may

help in the exploitation of parallelism

Motivation, i.e. ”why” Obvious, given the disapointing early

experiments of parallel graph reduction ! But, as mentioned in slide

14, delimiting where are the parallel tasks (delimiting task) is just

the answer of the question What to execute in parallel.

It remains to know Where to map those tasks onto the parallel and

distributed architecture, and also When to execute those tasks.

In fact, research around runtime systems for solving the where and

when questions are still done. Remark: comm. & synchro. between

tasks should still be transparent to the programmer.

In the meanwhile, people have investigated other ways to efficiently

exploit parallism in functional languages.

Slide 18

9

Good surveys: [4, 12, 1]

4.1 Using new syntaxic constructs explicitely

4.1.1 Lighter implication of the programmer:

semi-explicit approaches

Annotate the program such as the compiler and runtime system

know where lies a good potential of parallelism.

• Refer to GpH (slide 14)

• MultiLisp (concurrent and strict functional programming using

Future [6]).

Example of the sorted insertion of an element in a binary tree written

in Multilisp:

def insert (elt, tree)

Slide 19

if (empty-tree? tree) elt

(if (leaf? tree)

(if (< tree elt)

(make-node tree tree elt)

(make-node elt elt tree))

(if (< (discriminant tree) elt) // discr.: max value left

(make-node (left-child tree) (discriminant tree)

(future (insert elt (right-child tree))))

(make-node (future (insert elt (left-child tree)))

(discriminant tree) (right-child tree))))

Given a tree T storing elements 3, 5, 17, 19, run the function

(insert 29 (insert 4 T)) and see that the effective insertion of

the element 29 can start as soon as the insertion of the element 4 has

started and may not be yet finished. Indeed, 4 and 29 will not be

stored in the same sub-tree.

Slide 20

10

→ One side-effect of those approaches is that it may not yield

massive parallelism as the programmer may not indicate sufficient

amount of parallelism. Historically not well adapted to massively

parallel machines.

Slide 21

4.1.2 Tentative solutions to solve the where and when

questions explicitely

• Para-functional programming [2]

1. Tasks are delimited using { }

2. mapping is introduced using the $on operator

3. Lazy evaluation by default, and immediate evaluation of an

expression if preceded by #

4. the evaluation order within a task is close to the one of

concurrent Prolog (i.e. declarative rules)

{f1 (x1, x2, ...xk) == exp1 $on proc ;

x == exp2 ;

result exp;

fn (x1,... xn) == expj; }

Slide 22

11

Computing the factorial function in parallel onto a binary tree of

virtual processes (or CPUs)

{result pfac (1,k) $on root ;

pfac (lo,hi) == if lo=hi then lo

else if lo=(hi-1) then lo*hi

else

{ result (pfac (lo,mid) $on left($self))

*

(pfac (mid+1,hi) $on right($self));

mid == (lo+hi)/2; } ;

left(pe) == if 2*pe > n then pe else 2*pe;

right(pe) == if 2*pe > n then pe else 2*pe+1 ;

root == 1;

}

Slide 23

• Actors (refer also to section 5)

An actor is an entity with a mailbox; its behaviour is to accept a

message, execute something, send some new messages and so on. It

has been the basis of multi-agent distributed systems (no shared

memory assumption) and also, but more seldom, the basis of parallel

computations (i.e. as a low-level, implementation language for MIMD

architectures).

Definition of the factorial function that may be triggered by sending

the n value (and as continuation: user) to an actor running fact

(define behavior

(serialized fact()

(accept (n cont)

(if (= n 0)

(send cont 1)

(create ((intermed intermfunc (n cont)))

Slide 24

12

(send self (- n 1) intermed))))))

(define behavior

(serialized intermfunc (m cont)

(accept (result)

(send cont (* m result)))))

Slide 25

(3 user)

(2 intermed1)

(1 intermed2)

(0 intermed3)

intermed3

user
intermed1

intermed2

fact−actor

(1)
(1)

(2)
(6)

Slide 26

13

Criticism of explicit approaches Based on

• Explicit task creation by the programmer not by the compiler or

runtime system

• Sometimes, explicit mapping of tasks yielding the topology of the

inter-task communications.

in other words, a high-level description of a network of tasks, which

then requires at runtime, to:

• effectively embedd the topology onto the effective distributed

architecture

→ static graph embedding were popular at the time parallel

machines were built around an interconnexion network such as

mesh, torus, hypercube, etc.

• or use arbitrary mapping strategies for tasks such as round-robin,

random, etc.

Slide 27

4.2 Automatic but restricted extraction of

parallelism

4.2.1 Main idea

Limitation to some specific language constructs or program

constructs. Only syntaxic constructs or functions that may yield

efficient parallelism are considered for parallel task creations.

Targetting parallelism needs massive amount of work to be executed

in parallel !, so the focus on large data structures, i.e. parallel

evaluation of every element in a collection also called

data-parallelism:

• Collections of interest are arrays, lists, and sometimes also

graphs, trees, sets, vectors, etc

• all possible kind of traversals of those collections: loops or ones

Slide 28

14

that require coordination/synchronisation e.g. reductions

Exploiting data-parallelism has not been restricted to functional

languages: Fortran-90, C*, Nesl (nested data-parallelism).

Most important categories in the functional programming style:

• Implicitly parallel higher-order functions

• Data-flow approaches (Id, Sisal, etc) that introduce arrays and

streams (pipeline parallelism)

Slide 29

4.2.2 Implicitly parallel higher-order functions

Every computation can be expressed as the functional composition of

higher-order functions such as Map, Reduce. Those functions may be

expressed using the Bird-Merteens Formalism (BMF)

Cost measures can be added and effectively executed at each step of

the refinement of those higher-order functions.

Programs are very concise. (But) clustering of data and operation on

those data is usually not exposed (it is hidden in libraries targetted

for each different platforms) and thus is outside the programmer’s

control [3].

Those functions implement basic computations in a parallel way, such

as follows.

Slide 30

15

How to unfold a prefix-sum into a set of parallel and

communicating tasks (given here in the PRAM model, i.e. a

shared-memory parallel computation model): We are given n

numbers, x0, x1, ..., xn−1 assuming n is a power of 2. It is required to

compute the following sums, called prefix sums :

s0 = x0, s1 = x0 +x1, s2 = x0 +x1 +x2, ..., sn−1 = x0 +x1 + ...+xn−1

A sequential algorithm :

s0 = x0

for i=1 to n-1 do

si = si−1 + xi

endfor

A PRAM parallel algorithm consists of log n steps. Initially on every

Pi, si = xi, for i = 0, 1, ..., n− 1. During the jth step

(j ∈ [0.. log n − 1]), the operation si = si−2j + si is performed

simultaneously by the processors numbered 2j to n − 1. During each

Slide 31

step, two numbers are added whose distances are twice apart the

distance in the previous step.
p3p2p1p0 p4 p5 p6 p7

1 2 3 4 5 6 7

Step1

Distance 1

0+1 1+2 2+3 3+4 4+5 5+6 6+7

0 1 2 3 4 5 6

3 5 7 9 11 13

Step2

Distance 2

1 3 5 7 9

0+3 1+5 3+7 5+9 7+11 9+13

10 14 18 22

Step3

Distance 4

0

0

1 3 6

0+10 1+14 3+18 6+22

28211510

63

1

0

Slide 32

16

The number of used processors is n. The cost of this algorithm:

parallel time (log n) multiplied by number of processors n is

O(n log n) which is not optimal w.r.t. to the sequential cost (O(n)).

A cost-optimal solution is to use only i.e. p = n/ logn processors, and

map n/p = log n = k numbers to each. In the first phase, a sequential

sum of all the k values is executed on all processors in parallel (in

O(n/p) time); in the second phase, the parallel prefix-sum algorithm

is executed on those values with a time cost of O(log p); in the final

phase, each processor i in parallel compute the sequential prefix sum

given its initial numbers and the prefix sum calculated on its

predecessor.

Slide 33

p0

1 2 3 4 5 6 7

p3p2p1

0

Phase 1 0+1 2+3 4+5 6+7

5 9 13

Phase 2

1 5 9

1+5 5+9 9+13

14 22

Step1

Distance 1

Step2

Distance 2 1 6

1+14 6+22

15 28

6

1

Phase 3

10,15 21.280,1 3,6

1+2,1+5 15+6,15+136+4,6+9

Slide 34

17

The cost is optimal: parallel time is 2 ∗ log n + log(n/ log n) =

O(log n) with n/ log n processors, i.e. cost is O(n).

Distributed-memory machines How to execute the parallel

prefix sum on an architecture without shared-memory and with only

communications between neighbours processors ? Two phases, where

each one is a reduction. For instance, if the underlying network has

an embedded binary tree:

Slide 35

p3p2p1p0 p4 p5 p6 p7

1 2 3 4 5 6 7

Step1

Distance 1

0+1 4+5

2 4 6

5 13

Step2

Distance 2

1+5 9+13

22

Step3

Distance 4

6+22

28

6

1

0

2+3

9

6+7

6+9

15

Distance 2

Step1

Step2

Distance 1

1+2 6+4 15+6

21103

0

6

6

6+91 6

1 9

Slide 36

18

Examples in BMF [8] Higher-Order functions (operators):

• Building collections (e.g. lists): (1) Empty element: [] (2) Unity

element (singleton) : [.] (3) Concatenation of two sub-collections:

∦ (associative)

• Composition of functions: •

• Map (“for all”): f∗

• Reduction: g/

• Accumulate (Prefix Sum) (can be defined using * and /): h//

Example: inits = ∦ // • ([·])∗

/* Compute inits[a,b,c] = [[], [a], [a,b], [a,b,c]] */

1) singleton [a,b,c] * = [[a],[b],[c]]

2.1) data transfer yields: [[],[[],[a]],[[],[a],[b]],[[],[a],[b],[c]]]

2.2) Apply the sum-prefix operator ∦ to each list member

Slide 37

[[],[a],[a,b],[a,b,c]]

Slide 38

19

Maximum Segment Sum Example Given a list of ints, return

the sub-list’s sum which is maximum (obvious if only positive ints)

1. First solution:

mss =↑max / • +/ ∗ • segs

segs =∦ / • tails ∗ • inits

where tails [a,b,c] = [[a,b,c],[b,c],[c]]

mss[a,b,c,...,n]

inits => [[], [a], [a,b], [a,b,c], ..., [a,b,c,...,n]]

tails* =>[[[]], [[a]], [[a,b],[b]], [[a,b,c],[b,c],[c]],

..., [[a,b,c,...,n], [b,c,...,n], [c,...,n], ..., [n]]]

∦ / =>[[], [a], [a,b], [b], [a,b,c], [b,c], [c],

..., [a,b,c,...,n],[b,c,...,n],[c,...,n],...,[n]]

+/* => [0, a, a+b, b, a+b+c, b+c, c, ...,

a+b+c+...+n, b+c+...+n, c+...+n,..., n]

Slide 39

↑max/ => the greatest value

2. Second solution:

mss =↑max / • ⊗//

a ⊗ b = (a + b) ↑max 0

⊗//e[a, b, ..., x] = [e, e ⊗ a, (e ⊗ a) ⊗ b, ..., ((e ⊗ a) ⊗ ...) ⊗ x]

mss[6,4,-3,0,-7,5]

⊗//0[6, 4,−3, 0,−7, 5] =>

[0, 0⊗6, (0⊗6)⊗4, ((0⊗6)⊗4)⊗−3, (((0⊗6)⊗4)⊗−3)⊗0, ((((0⊗

6) ⊗ 4) ⊗−3) ⊗ 0) ⊗−7, (((((0 ⊗ 6) ⊗ 4) ⊗−3)⊗ 0) ⊗−7)⊗ 5] =

[0, 6, 10, 7, 7, 0, 5]

↑max / = 10

Slide 40

20

Some concrete languages based on the BMF formalism: PMLS [4],

SCL, P3L, ...; usually strict semantics.

Implementation details Thread creation and coordination is

transparent to the programmer. Selected higher-order functions serve

as skeletons of parallel algorithms. With the help of a cost model

(complexity + cost to create a thread holding p tasks, communication

cost: L+β · n with n the data size and underlying topology), each

skeleton is translated into a behaviour that is hacked for the specific

architecture, yielding to an abstract parallel process topology, with

parameters specifying details of the tasks that are to be performed.

How to efficiently chain the various topologies ? Compiler and

runtime systems try to do their best and may be helped by the

programmer [3]!

Slide 41

For instance how map f may be compiled for a distributed

architecture, e.g. a Network of Workstations:

• construct a task farm skeleton with pre-loaded f on each PE

• records all workers as free

• repeatedly:

– sends an unprocessed list element to a free worker and records

it as busy;

– receives a processed list element from a busy worker and

records it as free;

• until all list elements have been processed;

• assembles the processed list in the appropriate order.

Alternatively, a pipe line of workers may be created and list elements

may flow on it.

Slide 42

21

4.2.3 Data flow approaches

Belong to applicative programming.

A popular language: SISAL (Streams and Iterations in a Single

Assignement Language)

The parallelism is extracted from the fact that data flow on the

functions that need to be applied to it.

Example:

for // it is a ‘‘forall’’ construct in essence !

i := 1 // Generator

x := Y[1] // of the for loop

while i < n repeat // this will

i := old i + 1 // compile into

x := old x + Y[i] // parallel loops

returns x

Slide 43

As the language is a strict single-assignement language (and only

from Sisal v2.0 are higher-order functions allowed), it is quite easy to

extract the dataflow graph at compile time and to exploit parallelism

at runtime. In fact parallelism is exploited from loops on

(mono/multi dimensional) arrays and from streams.

Slide 44

22

+

+

Y
[]

x

x

x

x

Y[1]

Y[2]

Y[3]

[]

[]

Y

Y

=1
++

1

2

++
2

3

1

+

Slide 45

5 What about distributed functional

computing ?

5.1 Principles

The idea is to exploit the parallelism “de situation” as opposed to

the parallelism “de resolution”.

Of course, this yields to explicit task creation, and in some sense, also

explicit task comm and synchronisation.

build a distributed language based on location-aware creation and

execution of remote (mobile) threads executing remote functions on

shared or copied data.

A few examples in conventional functional languages are as

Distributed Haskell [12], or ConcurrentClean

Slide 46

23

(http://www.cs.kun.nl/~clean) [7].

Slide 47

A toy clientS/server example written in GdH (inheriting from

Concurrent Haskell and GpH) [5]:

main do =

ch <- newChannel pes <- allPEId

q <- readQuadTree "geoMap" ‘usingIO‘ rnf //reduction to normal form

mapM (rforkIO (runGUI (window ch))) pes //remote fork with IO

let server = do

respond ch (b -> return (visible q b) ‘usingIO‘ rnf)

server

forkIO server

window ch gui = do

init gui ...

showit b = do

m <- request ch b

Slide 48

24

draw gui m ‘demanding‘ rnf m

Slide 49

5.2 Process Networks

• The program is a network build with process (coarse grained

computations) connected by ports (input and output) onto which

data flow.

→ pipeline of data and parallel execution on those data by

processes.

• Automatic synchronisation on ports in a producer/consumer way.

• No deadlock in the computation if the network is a DAG

• Such model may be well adapted to grid-computing as it

emphasizes on the overlap of communications by computations

(e.g. the PAGIS system and an implementation using ProActive,

[13]).

Slide 50

25

l1 = f(a,b)

l2 = g(a,b)

l3 = h(l1, l2) // The function h is non strict in l1 & l2

b

a

g

f elements of list l1

elements of list l2

elements of list l3
h

public class ProcessWriter extends thread{

 // constructor
 void run() {
 Packet p;
 while ((p=s.server_consume())!=null)

 OutputStream w; Server s;

process_write(w,p);
w.close();
}
}

Example of a node in a PNetwork

Slide 51

6 Concluding remarks

To my point of view the field of distributed functional programming

should be considered only if distribution of the various computations

is a hard constraint (e.g. client/server interaction), not just for

sharing load on many CPUs. In this last case, parallel compiler

technologies should eventually succeed to really exploit distributed

parallelism implicitly.

Some important problems that distributed functional programming

should work on:

• take advantage of portable platforms like Virtual machines

• may be able to target NOWs and Grids

• may do at least as good or better than distributed

object-oriented languages w.r.t. management of concurrency and

Slide 52

26

distribution (remote calls, exception handling). Still have many

advantages over OO: equational reasoning, non strict evaluation

modes, referential transparency, high-level notation, etc, ...

Slide 53

References

[1] K. Hammond. Paralell functional programming: An

introduction. In 1st International Symposium on parallel

Symbolic Computation, 1994.

[2] Paul Hudak. Exploring parafunctional programming: Separating

the what from the how. IEEE Software, 5(1):54–61.

[3] Gabrielle Keller and Manuel M.T. Chakravarty. On the

distributed implementation of aggregate data structures by

program transformation. In IPDPS workshop on High-level

parallel programming models and supportive environments

HIPS’99, number 1586 in LNCS.

[4] H.W. Loidl, F. Rubio, N. Scaife, K. Hammond, S. Horiguchi,

U. Klusik, R. Loogen, G.J. Michaelson, R. Pena, S. Priebe,

Slide 54

27

A.J. Rebon Portillo, and P.W. Trinder. Comparing parallel

functional languages: Programming and performance.

Higher-Order and Symbolic Computation, 16(3), 2003.

[5] R.F. Pointon, S. Priebe, H.W. Loidl, R. Loogen, and P.W.

Trinder. Functional vs object-oriented distributed languages. In

EUROCAST, number 2178 in LNCS, 2001.

[6] Jr R.H. Halstead. Multilisp: A language for concurrent symbolic

computation. ACM Transactions on Programming Languages

and Systems, 7(4):501–538, 1985.

[7] Pascal R. Serrarens and Marinus J. Plasmeijer. Explicit message

passing for concurrent clean. In Implementation of Functional

Languages, pages 229–245, 1998.

[8] D. Skillicorn. Architecutre-independant parallel computation.

IEEE Computer, 1990.

Slide 55

[9] P. W. Trinder, E. Barry, Jr., M. K. Davis, K. Hammond, S. B.

Junaidu, U. Klusik, H-W. Loidl, and S. L. Peyton Jones. GPH:

An Architecture-Independent Functional Language. IEEE

Transactions on Software Engineering, 1999.

[10] Philip W. Trinder, Hans-Wolfgang Loidl, Ed. Barry Jr., M. Kei

Davis, Kevin Hammond, Ulrike Klusik, Simon L. Peyton Jones,

and Álvaro J. Rebón Portillo. The multi-architecture

performance of the parallel functional language GpH (research

note). Lecture Notes in Computer Science, 1900:739–743, 2001.

[11] P.W. Trinder, K. Hammond, J.S. Mattson Jr., A.S. Partridge,

and S.L. Peyton Jones. GUM: a portable implementation of

Haskell. In Proceedings of Programming Language Design and

Implementation, 1996.

[12] P.W. Trinder, H.W. Loidl, and R.F. Pointon. Parallel and

Slide 56

28

Distributed Haskells. Journal of Functional Programming, 2002.

[13] Darren Webb, Andrew Wendelborn, , and Kevin Maciunas.

Process Networks as a High-Level Notation for Metacomputing.

In Proc. of the Int. Parallel Programming Symposium (IPPS’99),

workshop on Java for Distributed Computing, Puerto Rico, 1999.

[14] A. Al Zain, P.W. Trinder, H-W. Loidl, and G.J. Micaelson.

Managing Heterogeneity in a Grid Parallel Haskell. In ICCS

2005, Workshop on Practical Aspects of High-Level Parallel

Programming (PAPP), number 3515 in LNCS.

Slide 57

29

