

The Rodin Platform for Incremental Modelling in Event-B

Stefan Hallerstede University of Southampton FMCO 2008, 22/10/2008

www.deploy-project.eu

Outline

- Complex Systems Modelling in Event-B
- Interplay of proof and modelling
- Worked example: Access to secure building
- Tool Animation
- Conclusion

Design of complex systems

- Need for rigorous modelling
- The main purpose of modelling is reasoning
 - to improve our understanding of the system
 - to clarify assumptions about the system
 - to increase quality of system model
- Need for refinement
 - Too many details to address final system directly

Reasoning about complex systems

- Requires rigorous reasoning
 - Formal notation
 - Formal reasoning
- This is offered by formal proof
 - Why prove?
 - To incrementally improve a model
 - To take advantage of failing proofs
 - What to prove?
 - Proof obligations associated with each model

List of core Event-B proof obligations

- Feasibility of events
- Invariant preservation by events
- Refinement of events
- Introduction of new events
- Convergence of events
- Enabledness of events

Outline

- Complex Systems Modelling in Event-B
- Interplay of proof and modelling
- Worked example: Access to secure building
- Tool Animation
- Conclusion

Example of an Event-B machine

invariants

 $inv1: auth \in User \leftrightarrow Room$

 $inv2: in \in User \rightarrow Room$

 $inv3: in \subseteq auth$

Invariant properties:

- *inv1*: A user is authorised to be in certain rooms
- *inv2*: A user can be at most in one room
- *inv3*: A user can only be in rooms where he is authorised to be

Preservation of $in \subseteq auth$ by event enter

• Proof obligation:

```
in \subseteq auth invariant u \notin \mathrm{dom}(in) u \mapsto r \in auth \mathsf{modified\ invariant} \mathsf{in} \cup \{u \mapsto r\} \subseteq auth
```


Use of proof obligations for modelling

Modelling is an incremental activity

Proof obligations are automatically generated

Creating a model incrementally

- What does this mean?
- We do not demonstrate the actual tool "Rodin"
 - But focus on essential features
 - Removed everything that could distract
- Aim:
 - To illustrate method and tool
 - Not to get distracted by features of the Rodin tool
- By way of an example
 - Access to a secure building

Outline

- Complex Systems Modelling in Event-B
- Interplay of proof and modelling
- Worked example: Access to secure building
- Tool Animation
- Conclusion

Description of the secure access model

- Abstract model
 - Users, Rooms
 - Entering/leaving rooms; adding/removing authorisations
- Refined model
 - Tokens
 - Data-refinement of abstract model
- The model itself is not of importance
 - But the way we create it is important

Focus on three modelling scenarios

- Adding events
 - 1. Reasoning about guards and invariants
- Refining an event
 - 2. Reasoning about parameters
 - 3. Reasoning about guards and invariants

Layout of the modelling canvas

Colouring conventions for formulas

Creation of the abstract model

Model Proof

Summary:

- Variables: in, auth
- Events:
 - enter enter building
 - leave leave building
 - addAuth add authorisation
 - remAuth remove authorisation

Location and authorisation of users

Model Proof

invariants

```
inv1: auth \in User \leftrightarrow Room
```

 $inv2: in \in \mathit{User} \to \mathit{Room}$

 $inv3: in \subseteq auth$

Location and authorisation of users

Model Proof

invariants

 $inv1: auth \in User \leftrightarrow Room$

 $inv2: in \in \mathit{User} \to \mathit{Room}$

 $inv3: in \subseteq auth$

initialisation

 $act1: in := \emptyset$

 $act2: auth := \emptyset$

Location and authorisation of users

Model	Proof
-------	-------

invariants

 $inv1: auth \in User \leftrightarrow Room$

 $inv2: in \in \mathit{User} \to \mathit{Room}$

 $inv3: in \subseteq auth$

initialisation

 $act1: in := \emptyset$

 $act2: auth := \emptyset$

 $\overline{\mathbf{V}}$

 $\overline{\mathbf{V}}$

Location and authorisation of users

Model Proof

invariants

 $inv1: auth \in User \leftrightarrow Room$

 $inv2: in \in \mathit{User} \to \mathit{Room}$

 $inv3: in \subseteq auth$

initialisation

 $act1: in := \emptyset$

 $act2: auth := \emptyset$


```
Proof
Model
                                                                                                      event enter
                                                                                                      V
        any
                                                                                                      \overline{\mathbf{V}}
           u, r
        when
           grd1: \mathbf{u} \not\in \text{dom}(\mathbf{in})
           grd2: \mathbf{u} \mapsto \mathbf{r} \in auth
        then
           act1: in := in \cup \{u \mapsto r\}
        end
```



```
Proof
Model
                                                                                              event enter
                                                                                              V
       any
                                                                                              \sqrt{}
          u, r
       when
          grd1: \mathbf{u} \not\in \text{dom}(\mathbf{in})
          grd2: \mathbf{u} \mapsto \mathbf{r} \in auth
       then
                                                                  Proof obligation:
          act1: in := in \cup \{u \mapsto r\}
                                                                   Preservation of
       end
                                                                    invariant inv3
```



```
Proof
Model
                                                                                                       \overline{\mathbf{V}}
    event enter
                                                                                                       V
        any
                                                                                                       V
           u, r
        when
           grd1: \mathbf{u} \not\in \text{dom}(\mathbf{in})
           grd2: \mathbf{u} \mapsto \mathbf{r} \in auth
        then
           act1: in := in \cup \{u \mapsto r\}
        end
```



```
Proof
Model
                                                                                                     event enter
                                                                                                     V
        any
                                                                                                     V
           u, r
                                                                                                     V
        when
                                                                                                     \overline{\mathbf{V}}
           grd1: \mathbf{u} \not\in \text{dom}(\mathbf{in})
           grd2: \mathbf{u} \mapsto \mathbf{r} \in auth
        then
           act1: in := in \cup \{u \mapsto r\}
        end
```


Leaving a room

```
\begin{array}{c|c} \textbf{Model} & \textbf{Proof} \\ \\ \textbf{event} & leave \\ \\ \textbf{any} \\ \\ \textbf{u} \\ \\ \textbf{when} \\ \\ grd1: \textbf{u} \in \text{dom}(in) \\ \\ \textbf{then} \\ \\ act1: in := \{\textbf{u}\} \lhd in \\ \\ \textbf{end} \\ \end{array}
```


Leaving a room

Model Proof	
event leave	
any	
u	
$ \mathbf{when} $	
$grd1: \mathbf{u} \in \text{dom}(\mathbf{in})$	
then	
$act1: in := \{ \frac{u}{l} \} \triangleleft in$	
$\mathbf{e}\mathbf{n}\mathbf{d}$	

Leaving a room

```
Proof
Model
                                                                                                                                                                   \overline{\mathbf{V}}
       event leave
                                                                                                                                                                   V
             any
                                                                                                                                                                   \overline{\mathbf{V}}
                   u
                                                                                                                                                                   \overline{\mathbf{V}}
             when
                                                                                                                                                                   \overline{\mathbf{V}}
                  grd1: \mathbf{u} \in \text{dom}(\mathbf{i}n)
                                                                                                                                                                   \overline{\mathbf{V}}
                                                                                                                                                                   \overline{\mathbf{V}}
             then
                  act1 : in := \{ \mathbf{u} \} \triangleleft in
            end
```


Adding an authorisation

```
Proof
Model
                                                                                            event addAuth
                                                                                            V
       any
                                                                                            V
          u, r
                                                                                            V
       when
                                                                                            \overline{\mathbf{V}}
          grd1: \mathbf{u} \in User
                                                                                            V
                                                                                            \overline{\mathbf{V}}
          grd2: \mathbf{r} \in Room
       then
          act1: auth := auth \cup \{u \mapsto r\}
       end
```


Adding an authorisation

Proof Model event addAuth V any $\sqrt{}$ u, r $\overline{\mathbf{V}}$ when $\overline{\mathbf{V}}$ $grd1: \mathbf{u} \in User$ V $grd2: \mathbf{r} \in Room$ then $act1: auth := auth \cup \{u \mapsto r\}$ end

Adding an authorisation

```
Proof
Model
                                                                                                    event addAuth
                                                                                                    V
        any
                                                                                                    V
           u, r
                                                                                                    \overline{\mathbf{V}}
        when
                                                                                                    \overline{\mathbf{V}}
           grd1: \mathbf{u} \in User
                                                                                                    V
                                                                                                    V
           grd2: \mathbf{r} \in Room
                                                                                                    V
        then
                                                                                                    \overline{\mathbf{V}}
           act1: auth := auth \cup \{u \mapsto r\}
        end
```



```
Proof
Model
                                                                                                                                     event remAuth
                                                                                                                                     \overline{\mathbf{V}}
          any
                                                                                                                                     \sqrt{}
               u, r
                                                                                                                                     \overline{\mathbf{V}}
          when
                                                                                                                                     \overline{\mathbf{V}}
               grd1: \mathbf{u} \in User
                                                                                                                                     \overline{\mathbf{V}}
                                                                                                                                     \overline{\mathbf{V}}
               grd2: \mathbf{r} \in Room
                                                                                                                                     V
          then
                                                                                                                                     \overline{\mathbf{V}}
               act1: auth := auth \setminus \{u \mapsto r\}
          end
```


Proof Model event remAuth $\overline{\mathbf{V}}$ any $\sqrt{}$ u, r $\overline{\mathbf{V}}$ when $\overline{\mathbf{V}}$ $grd1: \mathbf{u} \in User$ $\overline{\mathbf{V}}$ $\overline{\mathbf{V}}$ $grd2: \mathbf{r} \in Room$ V then V $act1: auth := auth \setminus \{u \mapsto r\}$ end

Proof Model $\overline{\mathbf{V}}$ event remAuth $\overline{\mathbf{V}}$ any V u, rV when $\overline{\mathbf{V}}$ Proof obligation: $grd1: \mathbf{u} \in User$ $\overline{\mathbf{V}}$ $\overline{\mathbf{V}}$ $grd2: \mathbf{r} \in Room$ Preservation of $\overline{\mathbf{V}}$ then invariant inv3 $\sqrt{}$ $act1: auth := auth \setminus \{u \mapsto r\}$ $\sqrt{}$ end ×

Proof Model

Preservation of invariant *inv3*

 $in \subseteq auth$

 $u \in User$

 $r \in Room$

$$in \subseteq auth \setminus \{u \mapsto r\}$$

Possible remedies:

- •Modify action:
- \rightarrow Remove user u from building
- •Modify guard:
- \rightarrow Require user u not in building
- •Modify guard:
- \rightarrow Require user u not in room r

$$u \mapsto r \not\in in$$

×


```
Proof
Model
                                                                                                                         event remAuth
                                                                                                                         \overline{\mathbf{V}}
         any
                                                                                                                         \sqrt{}
              u, r
                                                                                                                         \overline{\mathbf{V}}
         when
                                                                                                                         grd1: \mathbf{u} \in User
                                                                                                                         \overline{\mathbf{V}}
                                                                                                                         \overline{\mathbf{V}}
             grd2: \mathbf{r} \in Room
                                                                                                                         V
         then
                                                                                                                         V
             act1: auth := auth \setminus \{u \mapsto r\}
                                                                                                                         \overline{\mathbf{V}}
         end
                                                                                                                         ×
```



```
Proof
Model
                                                                                                                                          event remAuth
                                                                                                                                          \overline{\mathbf{V}}
          any
                                                                                                                                          \sqrt{}
                u, r
                                                                                                                                          \overline{\mathbf{V}}
           when
                                                                                                                                          grd1: \mathbf{u} \in User
                                                                                                                                          \overline{\mathbf{V}}
                                                                                                                                          \overline{\mathbf{V}}
               grd2: \mathbf{u} \mapsto \mathbf{r} \notin in
                                                                                                                                          V
           then
                                                                                                                                          \overline{\mathbf{V}}
               act1: auth := auth \setminus \{u \mapsto r\}
                                                                                                                                          \overline{\mathbf{V}}
           end
                                                                                                                                          ×
```


Creation of the **refined model**

Model Proof

Summary:

- Variables: *tok*, *auth*
- Events:
 - enter enter building
 - other events not shown

Model Proof

axioms

 $axm1: utok \in Token \rightarrow User$

 $axm2: rtok \in Token \rightarrow Room$

Abstract model of a record type with two fields utok and rtok

Model Proof

invariants

```
inv4: \forall u, r \cdot \\ u \mapsto r \in in \\ \Leftrightarrow \\ \exists t \cdot t \in tok \land u = utok(t) \land r = rtok(t)
```

Using some set-theoretic notation of Event-B *inv4* can be stated more concisely:

$$in = utok^{-1}$$
; $(tok \triangleleft rtok)$

Model Proof

invariants

```
inv4: in = utok^{-1}; (tok \triangleleft rtok)
```


Model Proof

invariants

```
inv4: in = utok^{-1}; (tok \triangleleft rtok)
```

initialisation

```
act1: tok := \emptyset
```

 $act2: auth := \emptyset$

Model Proof

invariants

```
inv4: in = utok^{-1}; (tok \triangleleft rtok)
```

initialisation

 $act1: tok := \emptyset$

 $act2: auth := \emptyset$

Replacing Users and Rooms by Tokens

Model Proof

invariants

 $inv4: in = utok^{-1}; (tok \triangleleft rtok)$

initialisation

 $act1: tok := \emptyset$

 $act2: auth := \emptyset$


```
Model
         Proof
                                                             abstract event enter
    event enter
                                                               any
       any
                                                                 u, r
                                                               when
                                                                 grd1: \mathbf{u} \not\in \text{dom}(\mathbf{in})
       when
                                                                 grd2: \mathbf{u} \mapsto \mathbf{r} \in auth
           grd1: t \not\in tok
                                                               then
                                                                 act1: in := in \cup \{u \mapsto r\}
           grd2: utok(t) \mapsto rtok(t) \in auth
                                                               end
       then
          act1 : tok := tok \cup \{t\}
       end
```



```
Model
         Proof
                                                                abstract event enter
                                                                                                      \overline{\mathbf{V}}
    event enter
                                                                   any
        any
                                                                     u, r
                                                                   when
                                                                     grd1: \mathbf{u} \not\in \text{dom}(\mathbf{in})
        when
                                                                     grd2: \mathbf{u} \mapsto \mathbf{r} \in auth
           grd1: t \not\in tok
                                                                   then
                                                                     act1: in := in \cup \{u \mapsto r\}
           grd2: utok(t) \mapsto rtok(t) \in auth
                                                                   end
        then
           act1 : tok := tok \cup \{t\}
        end
```



```
Model
        Proof
                                                     abstract event enter
                                                                                     event enter
                                                        any
                                                                                     ×
      any
                                                          u, r
                                                       when
                                                          grd1: \mathbf{u} \not\in \text{dom}(\mathbf{in})
      when
         grd1: t \notin tok
                                                            Proof obligation:
         grd2: utok(t) \mapsto rtok(t) \in auth
      then
                                                            Strengthening of
                                                              guard grd2
         act1 : tok := tok \cup \{t\}
      end
```


Model Proof

Strengthening of guard grd2

 $t \not\in tok$

$$utok(t) \mapsto rtok(t) \in auth$$

 \vdash

$$u \mapsto r \in auth$$

Must relate t to u and r

Choose witnesses for *u* and *r*:

$$u = utok(t)$$

$$r = rtok(t)$$

X

×

X

```
Model
         Proof
                                                             abstract event enter
    event enter
                                                               any
       any
                                                                 u, r
                                                               when
                                                                 grd1: \mathbf{u} \not\in \text{dom}(\mathbf{in})
       when
                                                                 grd2: \mathbf{u} \mapsto \mathbf{r} \in auth
           grd1: t \not\in tok
                                                               then
                                                                 act1: in := in \cup \{u \mapsto r\}
           grd2: utok(t) \mapsto rtok(t) \in auth
                                                               end
       then
          act1 : tok := tok \cup \{t\}
       end
```


×

X

```
Proof
Model
                                                            abstract event enter
    event enter
                                                               any
       any
                                                                 u, r
                                                              when
                                                                 grd1: \mathbf{u} \not\in \text{dom}(\mathbf{in})
       when
                                                                 grd2: \mathbf{u} \mapsto \mathbf{r} \in auth
           grd1: t \not\in tok
                                                              then
                                                                 act1: in := in \cup \{u \mapsto r\}
           grd2: utok(t) \mapsto rtok(t) \in auth
                                                               end
       with
       then
          act1 : tok := tok \cup \{t\}
       end
```


Mod	el Proof	Strengthening of guard grd2	
t	$t \not\in tok$		V
T.	utok(t)	$\rightarrow rtok(t) \in auth$	×
·			×
			
T	utok(t)	$ ightarrow rtok(t) \in auth$	


```
Proof
Model
                                                          abstract event enter
                                                                                           event enter
                                                            any
                                                                                           any
                                                              u, r
                                                            when
                                                                                           grd1: \mathbf{u} \not\in dom(\mathbf{in})
       when
                                                              grd2: \mathbf{u} \mapsto \mathbf{r} \in a\mathbf{v}^{\star}
          grd1: t \not\in tok
                                                            thep
          grd2: utok(t) \mapsto rtok(t) \in auth
                                                            en
                                                                   Proof obligation:
       with
          u \mid u = utok(t)
                                                                   Strengthening of
                                                                      guard grd1
          r \mid r = rtok(t)
       then
          act1 : tok := tok \cup \{t\}
       end
```


Мо	del Proof	Strengthening of guard grd1	
	in = utc	ok^{-1} ; $(tok \triangleleft rtok)$	
	$t \not\in tok$		×
	utok(t)	$\rightarrow rtok(t) \in auth$	$\overline{\mathbf{V}}$
\vdash			
	utok(t)	$\not\equiv \operatorname{dom}(utok^{-1}; (tok \lhd rtok))$	

Мо	del	Proof	Strengthening of guard grd1	
	in	= utc	k^{-1} ; $(tok \triangleleft rtok)$	✓
				×
	$t \not\in$	tok		$\overline{\mathbf{V}}$
	uto	ok(t) +	$\rightarrow rtok(t) \in auth$	
\vdash				
•	,	1 (1)	<i>+</i> 1	
	uto	OK(t)	$\not\equiv \operatorname{dom}(utok^{-1} \rhd tok)$	

Strengthening of guard grd1

Guard

 $t \not\in tok$

is too weak.

 $utok(t) \notin utok[tok]$

is a better choice for guard *grd1*

 $\overline{\mathbf{V}}$

V

×

```
Proof
Model
                                                           abstract event enter
    event enter
                                                             any
       any
                                                               u, r
                                                             when
                                                               grd1: \mathbf{u} \not\in \text{dom}(\mathbf{in})
       when
                                                               grd2: \mathbf{u} \mapsto \mathbf{r} \in auth
          grd1: t \not\in tok
                                                             then
                                                               act1: in := in \cup \{u \mapsto r\}
          grd2: utok(t) \mapsto rtok(t) \in auth
                                                             end
       with
          u \mid u = utok(t)
          r \mid r = rtok(t)
       then
          act1 : tok := tok \cup \{t\}
       end
```


X

```
Proof
Model
                                                           abstract event enter
    event enter
                                                             any
       any
                                                               u, r
                                                             when
                                                               grd1: \mathbf{u} \not\in \text{dom}(\mathbf{in})
       when
                                                               grd2: \mathbf{u} \mapsto \mathbf{r} \in auth
          grd1: \boxed{utok(t) \not\in utok[tok]}
                                                             then
                                                               act1: in := in \cup \{u \mapsto r\}
          qrd2: utok(t) \mapsto rtok(t) \in auth
                                                             end
       with
          u \mid u = utok(t)
          r \mid r = rtok(t)
       then
          act1 : tok := tok \cup \{t\}
       end
```



```
Proof
Model
                                                           abstract event enter
    event enter
                                                             any
       any
                                                               u, r
                                                             when
                                                               grd1: \mathbf{u} \not\in \text{dom}(\mathbf{in})
       when
                                                               grd2: \mathbf{u} \mapsto \mathbf{r} \in auth
          grd1: \boxed{utok(t) \not\in utok[tok]}
                                                             then
                                                               act1: in := in \cup \{u \mapsto r\}
          qrd2: utok(t) \mapsto rtok(t) \in auth
                                                             end
       with
          u \mid u = utok(t)
          r \mid r = rtok(t)
       then
          act1 : tok := tok \cup \{t\}
       end
```


Outline

- Complex Systems Modelling in Event-B
- Interplay of proof and modelling
- Worked example: Access to secure building
- Tool Animation
- Conclusion

Conclusion

- Close relationship between modelling and proving
- Proof can give hints for improvements of model
- Incremental modelling based on heuristics
 - As opposed to refinement based on proof
- There was no time to show
 - finding invariants by inspection of proofs
 - modifying an abstract model to improve a refinement

Community

- Web:
 - www.event-b.org
 - wiki.event-b.org

Credits

Jean-Raymond Abrial, Jens Bendisposto, Michael Butler, Dominique Cansell, Mathieu Clabaut, Kriangsak Damchoom, Fabian Fritz, Thai Son Hoang, Sonja Holl, Cliff Jones, Thierry Lecomte, Michael Leuschel, Farhad Mehta, Christophe Métayer, Renato Silva, Colin Snook, François Terrier, Laurent Voisin, . . .