
Abstract Interpretation of Symbolic Execution for
Information Flow Analysis

Reiner Hähnle

joint work with: Richard Bubel & Benjamin Weiß

Chalmers University of Technology, Gothenburg, Sweden

23 October 2008

http://mobius.inria.fr

Reiner Hähnle FMCO-8 081023 1 / 19

http://www.cordis.lu/fp6/home.html
http://www.cordis.lu/ist/home.html
http://mobius.inria.fr
http://mobius.inria.fr


Work in Progress Warning

Reiner Hähnle FMCO-8 081023 2 / 19



Overview

Mobius: Mobility, Ubiquity and Security

Proof-carrying code for Java on mobile devices

FP6 Integrated Project developing novel technologies for trustworthy global

computing, using proof-carrying code to give users independent guarantees of the

safety and security of Java applications for mobile phones and PDAs

Innovative trust management, digital evidence of program behavior

Static enforcement, checking code before it starts

Modularity, building trusted applications from trusted components

This talk

Integration of the two Mobius approaches for PCC basis

Type Systems, type checking

Program Logics, theorem proving

Reiner Hähnle FMCO-8 081023 3 / 19



Overview

Mobius: Mobility, Ubiquity and Security

Proof-carrying code for Java on mobile devices

FP6 Integrated Project developing novel technologies for trustworthy global

computing, using proof-carrying code to give users independent guarantees of the

safety and security of Java applications for mobile phones and PDAs

Innovative trust management, digital evidence of program behavior

Static enforcement, checking code before it starts

Modularity, building trusted applications from trusted components

This talk

Integration of the two Mobius approaches for PCC basis

Type Systems, type checking

Program Logics, theorem proving

Reiner Hähnle FMCO-8 081023 3 / 19



Type Systems vs. Program Logics

Type Systems

Automatic, decidable

Low precision

Fixed precision

Scaling to Java?

Program Logics

Interactive systems

High precision

Formal specification

Java Card+ (byte/source)

Integration?
Synergies?

Reiner Hähnle FMCO-8 081023 4 / 19



Type Systems vs. Program Logics

Type Systems

Automatic, decidable

Low precision

Fixed precision

Scaling to Java?

Program Logics

Interactive systems

High precision

Formal specification

Java Card+ (byte/source)

Integration?
Synergies?

Reiner Hähnle FMCO-8 081023 4 / 19



Integration of a Type System into a Program Logic

Security properties often guaranteed by dedicated type systems

Non-Interference Low (public) variables depend not on High (secret) ones

Declassification Non-interference relativized to common knowledge

Hähnle et al., Integration of a Security Type System into a Program Logic,
TCS 402(2/3), pp172–189, 2008

Translate Hunt-Sands flow-sensitive type system into program logic

Type derivation = sequent calculus proof = symbolic execution

Common semantics and calculus for type/deductive analysis

Achieved integration, but at price of some drawbacks

Adaptation to other type systems remains non-trivial effort

Toy language, incompatible to KeY’s Java Card program logic

Reiner Hähnle FMCO-8 081023 5 / 19



Integration of a Type System into a Program Logic

Security properties often guaranteed by dedicated type systems

Non-Interference Low (public) variables depend not on High (secret) ones

Declassification Non-interference relativized to common knowledge

Hähnle et al., Integration of a Security Type System into a Program Logic,
TCS 402(2/3), pp172–189, 2008

Translate Hunt-Sands flow-sensitive type system into program logic

Type derivation = sequent calculus proof = symbolic execution

Common semantics and calculus for type/deductive analysis

Achieved integration, but at price of some drawbacks

Adaptation to other type systems remains non-trivial effort

Toy language, incompatible to KeY’s Java Card program logic

Reiner Hähnle FMCO-8 081023 5 / 19



Integration of a Type System into a Program Logic

Security properties often guaranteed by dedicated type systems

Non-Interference Low (public) variables depend not on High (secret) ones

Declassification Non-interference relativized to common knowledge

Hähnle et al., Integration of a Security Type System into a Program Logic,
TCS 402(2/3), pp172–189, 2008

Translate Hunt-Sands flow-sensitive type system into program logic

Type derivation = sequent calculus proof = symbolic execution

Common semantics and calculus for type/deductive analysis

Achieved integration, but at price of some drawbacks

Adaptation to other type systems remains non-trivial effort

Toy language, incompatible to KeY’s Java Card program logic

Reiner Hähnle FMCO-8 081023 5 / 19



Basis for Reasoning about Java Card Programs

KeY System: Java Program Logic & Verifier

Sequent calculus for Java program logic

Sequent calculus proof = symbolic execution + invariant rule

Interactive prover with high degree of automation, e.g.:

Correctness of Mondex reference implementation (1 interaction)
Correctness of Java Card API reference implementation

Java Card

Java KeY

Java

Reiner Hähnle FMCO-8 081023 6 / 19



Symbolic Execution in a Program Logic

Symbolic execution of conditional

if
Γ, b

.
= true =⇒ [p; rest]φ,∆ Γ, b

.
= false =⇒ [q; rest]φ,∆

Γ =⇒ [ if (b) { p } else { q }; rest]φ,∆

May require case split into different symbolic execution branches

Symbolic execution of loops:

unwindLoop
Γ =⇒ [ if (b) { p; while (b) p}; r]φ,∆

Γ =⇒ [while (b) {p}; r]φ,∆

No termination if no fixed loop bound can be determined

Reiner Hähnle FMCO-8 081023 7 / 19



Symbolic Execution in a Program Logic

Symbolic execution of conditional

if
Γ, b

.
= true =⇒ [p; rest]φ,∆ Γ, b

.
= false =⇒ [q; rest]φ,∆

Γ =⇒ [ if (b) { p } else { q }; rest]φ,∆

May require case split into different symbolic execution branches

Symbolic execution of loops:

unwindLoop
Γ =⇒ [ if (b) { p; while (b) p}; r]φ,∆

Γ =⇒ [while (b) {p}; r]φ,∆

No termination if no fixed loop bound can be determined

Reiner Hähnle FMCO-8 081023 7 / 19



The Challenge

Modular integration of (security) type system with (Java) program logic

Program logic:
precise symbolic execution

x = (x % 2 * y)* z - 327;

Hunt-Sands type system viewed as
bookkeeping of variable dependencies

x = (x, y, z);

Abstraction

Reiner Hähnle FMCO-8 081023 8 / 19



The Challenge

Modular integration of (security) type system with (Java) program logic

Program logic:
precise symbolic execution

x = (x % 2 * y)* z - 327;

Hunt-Sands type system viewed as
bookkeeping of variable dependencies

x = (x, y, z);

Abstraction

Reiner Hähnle FMCO-8 081023 8 / 19



The Challenge

Modular integration of (security) type system with (Java) program logic

Program logic:
precise symbolic execution

x = (x % 2 * y)* z - 327;

Hunt-Sands type system viewed as
bookkeeping of variable dependencies

x = (x, y, z);

Abstraction

Reiner Hähnle FMCO-8 081023 8 / 19



The Challenge

Modular integration of (security) type system with (Java) program logic

Program logic:
precise symbolic execution

x = (x % 2 * y)* z - 327;

Hunt-Sands type system viewed as
bookkeeping of variable dependencies

x = (x, y, z);

Abstraction

Reiner Hähnle FMCO-8 081023 8 / 19



The Challenge

Modular integration of (security) type system with (Java) program logic

Program logic:
precise symbolic execution

x = (x % 2 * y)* z - 327;

Hunt-Sands type system viewed as
bookkeeping of variable dependencies

x = (x, y, z);

Abstraction

Our Idea

View type derivation as abstract interpretation of symbolic computation

Reiner Hähnle FMCO-8 081023 8 / 19



Abstraction from Symbolic Execution

Concrete
Domain

Sets of Java states
{s : Loc → D}

(set lattice)

Abstract
Domain

Set of typings
t : Loc → 2Loc

(set lattice)

Abstraction α

Concretization γ

S α(S)

γ(α(S))

Symbolic execution as concrete domain in abstract interpretation

Reiner Hähnle FMCO-8 081023 9 / 19



Abstraction from Symbolic Execution

Concrete
Domain

Sets of Java states
{s : Loc → D}

(set lattice)

Abstract
Domain

Set of typings
t : Loc → 2Loc

(set lattice)

Abstraction α

Concretization γ

S α(S)

γ(α(S))

Symbolic execution as concrete domain in abstract interpretation

Reiner Hähnle FMCO-8 081023 9 / 19



Program Logic vs. Abstract Interpretation

Symbolic execution as concrete domain in abstract interpretation

Program Logic Abstract Interpretation

Program representation abstract syntax tree control flow graph

Merging execution paths unusual, but possible yes

Computation states implicit explicit

Value Computation symbolic concrete

Node semantics single path collecting

Loop treatment invariant from user fixed point

Termination in general, no if no ∞ chains

Reiner Hähnle FMCO-8 081023 10 / 19



Program Logic vs. Abstract Interpretation

Symbolic execution as concrete domain in abstract interpretation

Program Logic Abstract Interpretation

Program representation abstract syntax tree control flow graph

Merging execution paths unusual, but possible yes

Computation states implicit explicit

Value Computation symbolic concrete

Node semantics single path collecting

Loop treatment invariant from user fixed point

Termination in general, no if no ∞ chains

Unwind control flow graph or permit sequent proof dag
(Leino InfProL’05, Schmitt & Weiß VERIFY’07)

Reiner Hähnle FMCO-8 081023 10 / 19



Program Logic vs. Abstract Interpretation

Symbolic execution as concrete domain in abstract interpretation

Program Logic Abstract Interpretation

Program representation abstract syntax tree control flow graph

Merging execution paths unusual, but possible yes

Computation states implicit explicit

Value Computation symbolic concrete

Node semantics single path collecting

Loop treatment invariant from user fixed point

Termination in general, no if no ∞ chains

Identify symbolic expression (formula) with set of its models
Symbolic execution converges against collecting semantics

Reiner Hähnle FMCO-8 081023 10 / 19



Program Logic vs. Abstract Interpretation

Symbolic execution as concrete domain in abstract interpretation

Program Logic Abstract Interpretation

Program representation abstract syntax tree control flow graph

Merging execution paths unusual, but possible yes

Computation states implicit explicit

Value Computation symbolic concrete

Node semantics single path collecting

Loop treatment invariant from user fixed point

Termination in general, no if no ∞ chains

Remaining issues: state representation and loop treatment

Reiner Hähnle FMCO-8 081023 10 / 19



Explicit Computation States

Abstract Interpretation of Java is problematic

Computation on abstract domain using approximations of concrete ops:

α(x * y) = α(x) α(*) α(y) = α(x) ∪ α(y)

Java has dozens of operators (reducable to very few in program logic)

Inter-procedurality

Complex datatypes

Complex operational semantics (dynamic dispatch, exceptions, . . . )

Separate symbolic execution machinery from state representation

Needed: syntactic representation of symbolic computation states

Describe symbolic state change in concise way

Simple semantics, small set of operators

Our solution: KeY updates (other options: Why, B gen. subst.,. . . )

Reiner Hähnle FMCO-8 081023 11 / 19



Explicit Computation States

Abstract Interpretation of Java is problematic

Computation on abstract domain using approximations of concrete ops:

α(x * y) = α(x) α(*) α(y) = α(x) ∪ α(y)

Java has dozens of operators (reducable to very few in program logic)

Inter-procedurality

Complex datatypes

Complex operational semantics (dynamic dispatch, exceptions, . . . )

Separate symbolic execution machinery from state representation

Needed: syntactic representation of symbolic computation states

Describe symbolic state change in concise way

Simple semantics, small set of operators

Our solution: KeY updates (other options: Why, B gen. subst.,. . . )

Reiner Hähnle FMCO-8 081023 11 / 19



Explicit Computation States

Abstract Interpretation of Java is problematic

Computation on abstract domain using approximations of concrete ops:

α(x * y) = α(x) α(*) α(y) = α(x) ∪ α(y)

Java has dozens of operators (reducable to very few in program logic)

Inter-procedurality

Complex datatypes

Complex operational semantics (dynamic dispatch, exceptions, . . . )

Separate symbolic execution machinery from state representation

Needed: syntactic representation of symbolic computation states

Describe symbolic state change in concise way

Simple semantics, small set of operators

Our solution: KeY updates (other options: Why, B gen. subst.,. . . )

Reiner Hähnle FMCO-8 081023 11 / 19



KeY Updates

Definition (Update)

Let l, li be Java program locations and v, vi first-order terms

{l := v} is an atomic update

{l1 := v1}{l2 := v2} is a sequential update

{l1 := v1| · · · |ln := vn} is a (bounded) parallel update (last-win)

For T well-ordered type: quantified (parallel) update (minimal-win)

{\for T x; \if P; l := v}

Usage of updates

KeY symbolic execution engine renders state change embodied by
loop-free Java program in terms of updates

Updates have normal form, are aggressively simplified

Reiner Hähnle FMCO-8 081023 12 / 19



KeY Updates

Definition (Update)

Let l, li be Java program locations and v, vi first-order terms

{l := v} is an atomic update

{l1 := v1}{l2 := v2} is a sequential update

{l1 := v1| · · · |ln := vn} is a (bounded) parallel update (last-win)

For T well-ordered type: quantified (parallel) update (minimal-win)

{\for T x; \if P; l := v}

Usage of updates

KeY symbolic execution engine renders state change embodied by
loop-free Java program in terms of updates

Updates have normal form, are aggressively simplified

Reiner Hähnle FMCO-8 081023 12 / 19



Update Abstraction

Update abstraction for non-interference analysis

Low (public, insecure) values can’t depend on High (secret, secure) ones

α({l := v}) = {lα := Locations(v)}}
Need to approximate semantics of update combinators (usually ∪)

Semantics of abstract update {lα := {l1, . . . ln}}:
Update of l with first-order term that depends at most on l1, . . . , ln

int h1 , h2, t;
t=h1; h1=h2; h2=t;
t=t-h2;

{h1 := h2 | h2 := h1 | t := 0}

Symbolic Execution

Simplification before
abstraction!

{h1α := {h2} | h2α := {h1} | tα := {}}Abstraction

Reiner Hähnle FMCO-8 081023 13 / 19



Update Abstraction

Update abstraction for non-interference analysis

Low (public, insecure) values can’t depend on High (secret, secure) ones

α({l := v}) = {lα := Locations(v)}}
Need to approximate semantics of update combinators (usually ∪)

Semantics of abstract update {lα := {l1, . . . ln}}:
Update of l with first-order term that depends at most on l1, . . . , ln

int h1 , h2, t;
t=h1; h1=h2; h2=t;
t=t-h2;

{h1 := h2 | h2 := h1 | t := 0}

Symbolic Execution

Simplification before
abstraction!

{h1α := {h2} | h2α := {h1} | tα := {}}Abstraction

Reiner Hähnle FMCO-8 081023 13 / 19



Update Abstraction

Update abstraction for non-interference analysis

Low (public, insecure) values can’t depend on High (secret, secure) ones

α({l := v}) = {lα := Locations(v)}}
Need to approximate semantics of update combinators (usually ∪)

Semantics of abstract update {lα := {l1, . . . ln}}:
Update of l with first-order term that depends at most on l1, . . . , ln

int h1 , h2, t;
t=h1; h1=h2; h2=t;
t=t-h2;

{h1 := h2 | h2 := h1 | t := 0}

Symbolic Execution

Simplification before
abstraction!

{h1α := {h2} | h2α := {h1} | tα := {}}Abstraction

Reiner Hähnle FMCO-8 081023 13 / 19



Update Abstraction

Update abstraction for non-interference analysis

Low (public, insecure) values can’t depend on High (secret, secure) ones

α({l := v}) = {lα := Locations(v)}}
Need to approximate semantics of update combinators (usually ∪)

Semantics of abstract update {lα := {l1, . . . ln}}:
Update of l with first-order term that depends at most on l1, . . . , ln

int h1 , h2, t;
t=h1; h1=h2; h2=t;
t=t-h2;

{h1 := h2 | h2 := h1 | t := 0}

Symbolic Execution

Simplification before
abstraction!

{h1α := {h2} | h2α := {h1} | tα := {}}Abstraction

Reiner Hähnle FMCO-8 081023 13 / 19



Update Abstraction

Update abstraction for non-interference analysis

Low (public, insecure) values can’t depend on High (secret, secure) ones

α({l := v}) = {lα := Locations(v)}}
Need to approximate semantics of update combinators (usually ∪)

Semantics of abstract update {lα := {l1, . . . ln}}:
Update of l with first-order term that depends at most on l1, . . . , ln

int h1 , h2, t;
t=h1; h1=h2; h2=t;
t=t-h2;

{h1 := h2 | h2 := h1 | t := 0}

Symbolic Execution

Simplification before
abstraction!

{h1α := {h2} | h2α := {h1} | tα := {}}Abstraction

Reiner Hähnle FMCO-8 081023 13 / 19



Schema of Symbolic Execution with Update Abstraction

Statement
Block i

Incremental
update i

Abstraction

Abstract
state i

A
b

st
ra

ct
P

re
ci

se
ex

ec
u

ti
on

Statement
Block i + 1

Incremental
update i + 1

Abstract
state i + 1

Composition

Symbolically execute Java statement in program logic — precise

Reiner Hähnle FMCO-8 081023 14 / 19



Schema of Symbolic Execution with Update Abstraction

Statement
Block i

Incremental
update i

Abstraction

Abstract
state i

A
b

st
ra

ct
P

re
ci

se
ex

ec
u

ti
on

Statement
Block i + 1

Incremental
update i + 1

Abstract
state i + 1

Composition

Compute resulting state change in terms of updates

Reiner Hähnle FMCO-8 081023 14 / 19



Schema of Symbolic Execution with Update Abstraction

Statement
Block i

Incremental
update i

Abstraction

Abstract
state i

A
b

st
ra

ct
P

re
ci

se
ex

ec
u

ti
on

Statement
Block i + 1

Incremental
update i + 1

Abstract
state i + 1

Composition

Abstraction of state update

Reiner Hähnle FMCO-8 081023 14 / 19



Schema of Symbolic Execution with Update Abstraction

Statement
Block i

Incremental
update i

Abstraction

Abstract
state i

A
b

st
ra

ct
P

re
ci

se
ex

ec
u

ti
on

Statement
Block i + 1

Incremental
update i + 1

Abstract
state i + 1

Composition

Continue symbolic execution of Java in program logic

Reiner Hähnle FMCO-8 081023 14 / 19



Schema of Symbolic Execution with Update Abstraction

Statement
Block i

Incremental
update i

Abstraction

Abstract
state i

A
b

st
ra

ct
P

re
ci

se
ex

ec
u

ti
on

Statement
Block i + 1

Incremental
update i + 1

Abstract
state i + 1

Composition

Compute incremental state change since Block i as an update

Reiner Hähnle FMCO-8 081023 14 / 19



Schema of Symbolic Execution with Update Abstraction

Statement
Block i

Incremental
update i

Abstraction

Abstract
state i

A
b

st
ra

ct
P

re
ci

se
ex

ec
u

ti
on

Statement
Block i + 1

Incremental
update i + 1

Abstract
state i + 1

Composition

Abstract state update and compose with previous — abstract interpretation

Reiner Hähnle FMCO-8 081023 14 / 19



Lazy Abstraction

Abstracting all locations is wasteful!

Precise values of static fields, initial values, system constants,. . .
Specify non-null assumptions, array bounds, . . .
Essential for termination-sensitive analyses, alias resolution

Start execution in concrete domain for all locations
Make program locations abstract one at a time by need

When encountering loops, user input, etc.

When a location becomes abstract so do the locations depending on it

Example (Aliasing)

c la s s C { public int a; public s ta t i c N=2; }
C o = new C();
o.a=1; u.a=C.N; o.a=C.N; i f (o.a!=u.a) l=h e l se h=l;

At first l is abstract. Symbolic execution: {o.a := 2 | u.a := 2 | h := l}
Then abstraction only of h: {o.a := 2 | u.a := 2 | hα := {l}}

Reiner Hähnle FMCO-8 081023 15 / 19



Lazy Abstraction

Abstracting all locations is wasteful!

Precise values of static fields, initial values, system constants,. . .
Specify non-null assumptions, array bounds, . . .
Essential for termination-sensitive analyses, alias resolution

Start execution in concrete domain for all locations
Make program locations abstract one at a time by need

When encountering loops, user input, etc.

When a location becomes abstract so do the locations depending on it

Example (Aliasing)

c la s s C { public int a; public s ta t i c N=2; }
C o = new C();
o.a=1; u.a=C.N; o.a=C.N; i f (o.a!=u.a) l=h e l se h=l;

At first l is abstract. Symbolic execution: {o.a := 2 | u.a := 2 | h := l}
Then abstraction only of h: {o.a := 2 | u.a := 2 | hα := {l}}

Reiner Hähnle FMCO-8 081023 15 / 19



Lazy Abstraction

Abstracting all locations is wasteful!

Precise values of static fields, initial values, system constants,. . .
Specify non-null assumptions, array bounds, . . .
Essential for termination-sensitive analyses, alias resolution

Start execution in concrete domain for all locations
Make program locations abstract one at a time by need

When encountering loops, user input, etc.

When a location becomes abstract so do the locations depending on it

Example (Aliasing)

c la s s C { public int a; public s ta t i c N=2; }
C o = new C();
o.a=1; u.a=C.N; o.a=C.N; i f (o.a!=u.a) l=h e l se h=l;

At first l is abstract. Symbolic execution: {o.a := 2 | u.a := 2 | h := l}
Then abstraction only of h: {o.a := 2 | u.a := 2 | hα := {l}}

Reiner Hähnle FMCO-8 081023 15 / 19



Lazy Abstraction

Abstracting all locations is wasteful!

Precise values of static fields, initial values, system constants,. . .
Specify non-null assumptions, array bounds, . . .
Essential for termination-sensitive analyses, alias resolution

Start execution in concrete domain for all locations
Make program locations abstract one at a time by need

When encountering loops, user input, etc.

When a location becomes abstract so do the locations depending on it

Example (Aliasing)

c la s s C { public int a; public s ta t i c N=2; }
C o = new C();
o.a=1; u.a=C.N; o.a=C.N; i f (o.a!=u.a) l=h e l se h=l;

At first l is abstract.

Symbolic execution: {o.a := 2 | u.a := 2 | h := l}
Then abstraction only of h: {o.a := 2 | u.a := 2 | hα := {l}}

Reiner Hähnle FMCO-8 081023 15 / 19



Lazy Abstraction

Abstracting all locations is wasteful!

Precise values of static fields, initial values, system constants,. . .
Specify non-null assumptions, array bounds, . . .
Essential for termination-sensitive analyses, alias resolution

Start execution in concrete domain for all locations
Make program locations abstract one at a time by need

When encountering loops, user input, etc.

When a location becomes abstract so do the locations depending on it

Example (Aliasing)

c la s s C { public int a; public s ta t i c N=2; }
C o = new C();
o.a=1; u.a=C.N; o.a=C.N; i f (o.a!=u.a) l=h e l se h=l;

At first l is abstract. Symbolic execution: {o.a := 2 | u.a := 2 | h := l}
Then abstraction only of h: {o.a := 2 | u.a := 2 | hα := {l}}

Reiner Hähnle FMCO-8 081023 15 / 19



Schema of Lazy Abstraction

Abstract
state i

Abstract
state i + 1

. . . Abstract
state j

Incremental
update i

Incremental
update i + 1

Incremental
update j

Statement
Block i

Statement
Block i + 1

. . . Statement
Block j

Abstraction
Lazy
Abstraction

A
b

st
ra

ct
P

re
ci

se
ex

ec
u

ti
on

Reiner Hähnle FMCO-8 081023 16 / 19



Search for Invariants Drives Abstraction

When encountering a loop . . .

while (guard) { body }

1 Save current abstract state in sold

2 Unwind loop once, execute guard, body, and obtain s
3 Compute point-wise t on locations in sold , s:

1 Different concrete values of lold , l: abstract both
2 One of lold , l concrete: make it abstract
3 Both sold , s abstract: t = ∪

4 Repeat until sold equal to s

5 Conjoin s with !guard

Terminates: finite number of locations, finite abstract domain

Abstraction is driven by search for invariant

Reiner Hähnle FMCO-8 081023 17 / 19



Proving Non-Interference

Low variables depend not on High variables

Formulating Non-Interference in Program Logic (Darvas et al. 2003)

Location l depends at most on locations h1, . . . , hn in program p
Let l1, . . . , lm be remaining locations in p that l may depend on

Validity of: ∀l1, . . . , lm. ∃r .∀h1, . . . , hn wp(p, l
.

= r)

Can be expressed in KeY’s program logic (but also Coq, Isabelle, etc.)

Soundness

1 Soundness of underlying symbolic execution of Java

2 Soundness of abstraction (from first-order terms to dependency sets)

3 Soundness of composition of abstract updates

Reiner Hähnle FMCO-8 081023 18 / 19



Proving Non-Interference

Low variables depend not on High variables

Formulating Non-Interference in Program Logic (Darvas et al. 2003)

Location l depends at most on locations h1, . . . , hn in program p
Let l1, . . . , lm be remaining locations in p that l may depend on

Validity of: ∀l1, . . . , lm. ∃r .∀h1, . . . , hn wp(p, l
.

= r)

Can be expressed in KeY’s program logic (but also Coq, Isabelle, etc.)

Soundness

1 Soundness of underlying symbolic execution of Java

2 Soundness of abstraction (from first-order terms to dependency sets)

3 Soundness of composition of abstract updates

Reiner Hähnle FMCO-8 081023 18 / 19



Proving Non-Interference

Low variables depend not on High variables

Formulating Non-Interference in Program Logic (Darvas et al. 2003)

Location l depends at most on locations h1, . . . , hn in program p
Let l1, . . . , lm be remaining locations in p that l may depend on

Validity of: ∀l1, . . . , lm. ∃r .∀h1, . . . , hn wp(p, l
.

= r)

Can be expressed in KeY’s program logic (but also Coq, Isabelle, etc.)

Soundness

1 Soundness of underlying symbolic execution of Java

2 Soundness of abstraction (from first-order terms to dependency sets)

3 Soundness of composition of abstract updates

Reiner Hähnle FMCO-8 081023 18 / 19



Summary of Important Points

Symbolic execution viewed as syntactic rendering of
collecting semantics of concrete domain within AI

Incremental computation of syntactic Java state representation
(updates)

Precise symbolic execution/first-order simplification before abstraction

No need to handle complex language concepts at level of type system

Aliasing analysis
Exception handling

Dynamic and lazy change of degree of abstraction during execution

Direction of search for abstraction: precise ⇒ abstract

Exploit information gained from precise symbolic execution

Reiner Hähnle FMCO-8 081023 19 / 19


	Title
	Overview
	Type Systems and Program Logics
	KeY
	Symbolic Execution as AI
	Updates
	Update Abstraction
	Schema I
	Lazy Abstraction
	Schema II
	Invariants
	Non-Interference
	Summary

