
Object-Oriented Modelling and
Heterogeneous Networks

Joakim Bjørk Einar Broch Johnsen Marcel Kyas Olaf Owe

Department of Informatics, University of Oslo, Norway

Formal Methods for Components and Objects
October 23, 2008, Sophia Antipolis, France

http://www.ifi.uio.no
http://www.uio.no


Creol at a glance
an executable OO modelling language

targets open distributed systems

allows to abstracts from the particular properties of the (object)
scheduling and of the (network) environment

operational semantics formally defined in rewriting logic

the language design supports formal verification

Talk Overview

Biomedical sensor networks

Interfaces, classes, and types

Concurrency, interaction

Network awareness

Modelling biomedical sensor networks

Marcel Kyas (UiO) Heterogeneous Networks 2008-10-23 FMCO 2 / 22



No pictures

But the pictures are not the subject matter of geometry and we
are not permitted to reason from them. It is true that most people
including mathematicians, lean upon these pictures as a crutch
and find themselves unable to walk when the crutch is removed.

Morris Kline in the chapter “A Discourse on Method” from
“Mathematics in Western Culture”,

Oxford University Press, 1953

Pictorial representation of software and structure is only adequate for
tiny systems

Pictures tend to abstract too many aspects of a model ; many pictures
representing different views

People usually cannot combine all views and pictures into a consistent
model

Marcel Kyas (UiO) Heterogeneous Networks 2008-10-23 FMCO 3 / 22



No pictures

But the pictures are not the subject matter of geometry and we
are not permitted to reason from them. It is true that most people
including mathematicians, lean upon these pictures as a crutch
and find themselves unable to walk when the crutch is removed.

Morris Kline in the chapter “A Discourse on Method” from
“Mathematics in Western Culture”,

Oxford University Press, 1953

Pictorial representation of software and structure is only adequate for
tiny systems

Pictures tend to abstract too many aspects of a model ; many pictures
representing different views

People usually cannot combine all views and pictures into a consistent
model

Marcel Kyas (UiO) Heterogeneous Networks 2008-10-23 FMCO 3 / 22



Important features
Encourages non-determinism and concurrency

At all times at most one activity

Intra-object communication is by shared attributes and cooperative
scheduling

Inter-object communication is by asynchronous method calls only

Expressions have never side effects

Statements are the only means to change the state

Marcel Kyas (UiO) Heterogeneous Networks 2008-10-23 FMCO 4 / 22



Biomedical sensor networks

Biomedical sensors measure
body values, e.g. body
temperature, heart frequency
(EKG), oxygen saturation
(SPO2)

Systems aggregate and
visualise these

Values out of bounds should be
reported

Data transmission and energy
supply by cables

Cables are obstructive and
shall be replaced by wireless
transmission

Multi-hop communication to
conserve energy

Marcel Kyas (UiO) Heterogeneous Networks 2008-10-23 FMCO 5 / 22



Context of biomedical sensor networks

At home

Emergency/
Paramedics
Hospital

I Diagnosis
I Operation
I post-operative

case

Marcel Kyas (UiO) Heterogeneous Networks 2008-10-23 FMCO 6 / 22



Test platform

8MHz TI MSP430
microcontroller (10k RAM, 48k
Flash)

IEEE 802.15.4 Chipcon Wireless
Transceiver
Four modes

I Sendinf (Tx)
I Receiving (Rx)
I Idle
I Shutdown Figure: Tmote Sky

Marcel Kyas (UiO) Heterogeneous Networks 2008-10-23 FMCO 7 / 22



Anatomy of a sensors

n1: Node

s: Sensor c: Controller r : Radio e: Environment

n2: Node

n3: Node

s: Sink

Figure: Structure of the object-oriented model

The “Controller”
collects data

processes data

sends it on the radio

receives messages on the
radio

decides whether to route

manages energy

“Sensor” reads values from
patient when commanded by
controller

“Radio” sends and receives
data

Marcel Kyas (UiO) Heterogeneous Networks 2008-10-23 FMCO 8 / 22



Properties of communication

n1: Node

s: Sensor c: Controller r : Radio e: Environment

n2: Node

n3: Node

s: Sink

Figure: Structure of the object-oriented model

Internal communication realised
with a bus:

Reliable

Queued

External communication realised by
wireless channels:

Higher probability of collisions

Requires rendezvous of sender
and receiver

Marcel Kyas (UiO) Heterogeneous Networks 2008-10-23 FMCO 9 / 22



Properties of communication

n1: Node

s: Sensor c: Controller r : Radio e: Environment

n2: Node

n3: Node

s: Sink

Figure: Structure of the object-oriented model

Internal communication realised
with a bus:

Reliable

Queued

External communication realised by
wireless channels:

Higher probability of collisions

Requires rendezvous of sender
and receiver

Properties like “throughput” depend on the exact channel used, therefore we
need a model of heterogeneous networks.

Marcel Kyas (UiO) Heterogeneous Networks 2008-10-23 FMCO 9 / 22



Properties of communication

n1: Node

s: Sensor c: Controller r : Radio e: Environment

n2: Node

n3: Node

s: Sink

Figure: Structure of the object-oriented model

Internal communication realised
with a bus:

Reliable

Queued

External communication realised by
wireless channels:

Higher probability of collisions

Requires rendezvous of sender
and receiver

Nodes will turn off their Radios to save energy: Communication is disrupted
during these times.

Marcel Kyas (UiO) Heterogeneous Networks 2008-10-23 FMCO 9 / 22



Properties of communication

n1: Node

s: Sensor c: Controller r : Radio e: Environment

n2: Node

n3: Node

s: Sink

Figure: Structure of the object-oriented model

Internal communication realised
with a bus:

Reliable

Queued

External communication realised by
wireless channels:

Higher probability of collisions

Requires rendezvous of sender
and receiver

Successful communication between nodes requires that all radio
components of participating nodes are on.

Marcel Kyas (UiO) Heterogeneous Networks 2008-10-23 FMCO 9 / 22



Creol
An object-oriented modelling language with:

Classes, interfaces

Multiple inheritance, typing and inheritance are disjoint

Asynchronous method calls with future variables

Functional expression language

Library of common data types

Simple semantics and simple proof system

Creol differs from a programming language in:

Unspecified scheduling,

Non-deterministic choice,

Allowing logical expressions (similar to Hilbert’s ε)

Marcel Kyas (UiO) Heterogeneous Networks 2008-10-23 FMCO 10 / 22



Creol language constructs
Syntactic
categories

C, I,m ∈ Names

n ∈ Network

t ∈ Label

g ∈ Guard

p ∈MtdCall

s ∈ Stmt

x ∈ Var

e ∈ Expr

o ∈ ObjExpr

b ∈ BoolExpr

Definitions

IF ::= interface I [inherits {I}]
begin {with I {Sg}} end

CL ::= class C [{x : I}] [inherits {C}] [implements {I}]
begin [var {{x} : I [:= e]}] {[with I] {M}} end

M ::= Sg == [var {{x} : I [:= e]}; ] s

Sg ::= op m ([in {x : I}][out {x : I}])
g ::= b | t? | g∧g | g∨g

s ::= begin s end | s;s | s 2 s | x := e | release

| x := new [component] C[({e})] | skip

| if b then s [else s] end | [t]![o.]m({e}) | t?(x)

| await g | [await][o.]m({e};{x})

Marcel Kyas (UiO) Heterogeneous Networks 2008-10-23 FMCO 11 / 22



Creol language constructs
Syntactic
categories

C, I,m ∈ Names

n ∈ Network

t ∈ Label

g ∈ Guard

p ∈MtdCall

s ∈ Stmt

x ∈ Var

e ∈ Expr

o ∈ ObjExpr

b ∈ BoolExpr

Definitions

IF ::= interface I [inherits {I}]
begin {with I {Sg}} end

CL ::= class C [{x : I}] [inherits {C}] [implements {I}]
begin [var {{x} : I [:= e]}] {[with I] {M}} end

M ::= Sg == [var {{x} : I [:= e]}; ] s

Sg ::= op m ([in {x : I}][out {x : I}])
g ::= b | t? | g∧g | g∨g

s ::= begin s end | s;s | s 2 s | x := e | release

| x := new [component] C[({e})] | skip

| if b then s [else s] end | [t]![o.]m({e}) | t?(x)

| await g | [await][o.]m({e};{x})

Marcel Kyas (UiO) Heterogeneous Networks 2008-10-23 FMCO 11 / 22



Creol language constructs
Syntactic
categories

C, I,m ∈ Names

n ∈ Network

t ∈ Label

g ∈ Guard

p ∈MtdCall

s ∈ Stmt

x ∈ Var

e ∈ Expr

o ∈ ObjExpr

b ∈ BoolExpr

Definitions

IF ::= interface I [inherits {I}]
begin {with I {Sg}} end

CL ::= class C [{x : I}] [inherits {C}] [implements {I}]
begin [var {{x} : I [:= e]}] {[with I] {M}} end

M ::= Sg == [var {{x} : I [:= e]}; ] s

Sg ::= op m ([in {x : I}][out {x : I}])
g ::= b | t? | g∧g | g∨g

s ::= begin s end | s;s | s 2 s | x := e | release

| x := new [component] C[({e})] | skip

| if b then s [else s] end | [t]![o.]m({e}) | t?(x)

| await g | [await][o.]m({e};{x})

Marcel Kyas (UiO) Heterogeneous Networks 2008-10-23 FMCO 11 / 22



Creol language constructs
Syntactic
categories

C, I,m ∈ Names

n ∈ Network

t ∈ Label

g ∈ Guard

p ∈MtdCall

s ∈ Stmt

x ∈ Var

e ∈ Expr

o ∈ ObjExpr

b ∈ BoolExpr

Definitions

IF ::= interface I [inherits {I}]
begin {with I {Sg}} end

CL ::= class C [{x : I}] [inherits {C}] [implements {I}]
begin [var {{x} : I [:= e]}] {[with I] {M}} end

M ::= Sg == [var {{x} : I [:= e]}; ] s

Sg ::= op m ([in {x : I}][out {x : I}])
g ::= b | t? | g∧g | g∨g

s ::= begin s end | s;s | s 2 s | x := e | release

| x := new [component] C[({e})] | skip

| if b then s [else s] end | [t]![o.]m({e}) | t?(x)

| await g | [await][o.]m({e};{x})

Marcel Kyas (UiO) Heterogeneous Networks 2008-10-23 FMCO 11 / 22



Creol language constructs
Syntactic
categories

C, I,m ∈ Names

n ∈ Network

t ∈ Label

g ∈ Guard

p ∈MtdCall

s ∈ Stmt

x ∈ Var

e ∈ Expr

o ∈ ObjExpr

b ∈ BoolExpr

Definitions

IF ::= interface I [inherits {I}]
begin {with I {Sg}} end

CL ::= class C [{x : I}] [inherits {C}] [implements {I}]
begin [var {{x} : I [:= e]}] {[with I] {M}} end

M ::= Sg == [var {{x} : I [:= e]}; ] s

Sg ::= op m ([in {x : I}][out {x : I}])
g ::= b | t? | g∧g | g∨g

s ::= begin s end | s;s | s 2 s | x := e | release

| x := new [component] C[({e})] | skip

| if b then s [else s] end | [t]![o.]m({e}) | t?(x)

| await g | [await][o.]m({e};{x})

Marcel Kyas (UiO) Heterogeneous Networks 2008-10-23 FMCO 11 / 22



Creol language constructs
Syntactic
categories

C, I,m ∈ Names

n ∈ Network

t ∈ Label

g ∈ Guard

p ∈MtdCall

s ∈ Stmt

x ∈ Var

e ∈ Expr

o ∈ ObjExpr

b ∈ BoolExpr

Definitions

IF ::= interface I [inherits {I}]
begin {with I {Sg}} end

CL ::= class C [{x : I}] [inherits {C}] [implements {I}]
begin [var {{x} : I [:= e]}] {[with I] {M}} end

M ::= Sg == [var {{x} : I [:= e]}; ] s

Sg ::= op m ([in {x : I}][out {x : I}])
g ::= b | t? | g∧g | g∨g

s ::= begin s end | s;s | s 2 s | x := e | release

| x := new [component] C[({e})] | skip

| if b then s [else s] end | [t]![o.]m({e}) | t?(x)

| await g | [await][o.]m({e};{x})

Marcel Kyas (UiO) Heterogeneous Networks 2008-10-23 FMCO 11 / 22



Creol language constructs
Syntactic
categories

C, I,m ∈ Names

n ∈ Network

t ∈ Label

g ∈ Guard

p ∈MtdCall

s ∈ Stmt

x ∈ Var

e ∈ Expr

o ∈ ObjExpr

b ∈ BoolExpr

Definitions

IF ::= interface I [inherits {I}]
begin {with I {Sg}} end

CL ::= class C [{x : I}] [inherits {C}] [implements {I}]
begin [var {{x} : I [:= e]}] {[with I] {M}} end

M ::= Sg == [var {{x} : I [:= e]}; ] s

Sg ::= op m ([in {x : I}][out {x : I}])
g ::= b | t? | g∧g | g∨g

s ::= begin s end | s;s | s 2 s | x := e | release

| x := new [component] C[({e})] | skip

| if b then s [else s] end | [t]![o.]m({e}) | t?(x)

| await g | [await][o.]m({e};{x})

Marcel Kyas (UiO) Heterogeneous Networks 2008-10-23 FMCO 11 / 22



Creol language constructs
Syntactic
categories

C, I,m ∈ Names

n ∈ Network

t ∈ Label

g ∈ Guard

p ∈MtdCall

s ∈ Stmt

x ∈ Var

e ∈ Expr

o ∈ ObjExpr

b ∈ BoolExpr

Definitions

IF ::= interface I [inherits {I}]
begin {with I {Sg}} end

CL ::= class C [{x : I}] [inherits {C}] [implements {I}]
begin [var {{x} : I [:= e]}] {[with I] {M}} end

M ::= Sg == [var {{x} : I [:= e]}; ] s

Sg ::= op m ([in {x : I}][out {x : I}])
g ::= b | t? | g∧g | g∨g

s ::= begin s end | s;s | s 2 s | x := e | release

| x := new [component] C[({e})] | skip

| if b then s [else s] end | [t]![o.]m({e}) | t?(x)

| await g | [await][o.]m({e};{x})

Marcel Kyas (UiO) Heterogeneous Networks 2008-10-23 FMCO 11 / 22



Object orientation: Remote Method Calls

reply

call

o1 o2

evaluate

RMI/RPC method call model
Control threads follow call stack

Derived from sequential setting

Hides / ignores distribution!

Tightly synchronized!

Marcel Kyas (UiO) Heterogeneous Networks 2008-10-23 FMCO 12 / 22



Object orientation: Remote Method Calls

reply

call

o1 o2

evaluate

ODS setting:
Distributed, unstable

Delays waste processor time

Message overtaking / loss

Callee not available?

Lack of reply: block / deadlock!

Highly non-deterministic!

Marcel Kyas (UiO) Heterogeneous Networks 2008-10-23 FMCO 12 / 22



Object orientation: Remote Method Calls

reply

call

o1 o2

evaluate

Creol:
Show / exploit distribution!
Asynchronous method calls

I more efficient in distributed environments
I triggers of concurrent activity

Special cases:
I Synchronized communication:

the caller decides to wait for the reply
I Sequential computation:

only synchronized computation

Marcel Kyas (UiO) Heterogeneous Networks 2008-10-23 FMCO 12 / 22



Execution model
Concurrent objects encapsulate a (virtual) processor

No assumptions about the (network) environment

Execution in objects should adapt to the environment

Cooperative scheduling between internal processes inside an object

Incoming

call

Object

STATE

Marcel Kyas (UiO) Heterogeneous Networks 2008-10-23 FMCO 13 / 22



Execution model
Concurrent objects encapsulate a (virtual) processor

No assumptions about the (network) environment

Execution in objects should adapt to the environment

Cooperative scheduling between internal processes inside an object

Object

STATE

Marcel Kyas (UiO) Heterogeneous Networks 2008-10-23 FMCO 13 / 22



Execution model
Concurrent objects encapsulate a (virtual) processor

No assumptions about the (network) environment

Execution in objects should adapt to the environment

Cooperative scheduling between internal processes inside an object

Object

STATE

Marcel Kyas (UiO) Heterogeneous Networks 2008-10-23 FMCO 13 / 22



Execution model
Concurrent objects encapsulate a (virtual) processor

No assumptions about the (network) environment

Execution in objects should adapt to the environment

Cooperative scheduling between internal processes inside an object

Object

STATE

Marcel Kyas (UiO) Heterogeneous Networks 2008-10-23 FMCO 13 / 22



Execution model
Concurrent objects encapsulate a (virtual) processor

No assumptions about the (network) environment

Execution in objects should adapt to the environment

Cooperative scheduling between internal processes inside an object

Object

STATE

Marcel Kyas (UiO) Heterogeneous Networks 2008-10-23 FMCO 13 / 22



Execution model
Concurrent objects encapsulate a (virtual) processor

No assumptions about the (network) environment

Execution in objects should adapt to the environment

Cooperative scheduling between internal processes inside an object

Outgoing

reply

Object

STATE

Marcel Kyas (UiO) Heterogeneous Networks 2008-10-23 FMCO 13 / 22



Active objects

class Radio(sendtime:Int, sleeptime:Int , cycle: Int , sync:Int )
implements Controllable

begin var on:Bool := true, timer: Int := 0
op run == while on do

await (clock − sync) % cycle = 0; timer := clock;
while clock <timer + sleeptime do

if clock = timer + sendtime then send else receive end end end
with Any

op turnoff == on := false
op turnon == on := true
op reset (in time: Int ) == sync := time
op setSend (in time: Int ) ==

if time <sleeptime then sendtime := time end
op setSleep (in time: Int ) ==

if sendtime <time ∧ time <cycle then sleeptime := time end
end

Marcel Kyas (UiO) Heterogeneous Networks 2008-10-23 FMCO 14 / 22



Communication model
Originally, all communication is asynchronous (sending and receiving
need not be simultaneous)

This fails to capture properties of biomedical sensor networks

Requirements could neither be expressed nor validated

From a programmer’s point of view, the details of the communication link
are irrelevant

The properties become relevant when analysing the model

Modelling networks of objects:

Objects in a distributed system may communicate by links with different
properties

Communication may be asynchronous or synchronous

Communication may be reliable or lossy

Marcel Kyas (UiO) Heterogeneous Networks 2008-10-23 FMCO 15 / 22



Communication model
Originally, all communication is asynchronous (sending and receiving
need not be simultaneous)

This fails to capture properties of biomedical sensor networks

Requirements could neither be expressed nor validated

From a programmer’s point of view, the details of the communication link
are irrelevant

The properties become relevant when analysing the model

Modelling networks of objects:

Objects in a distributed system may communicate by links with different
properties

Communication may be asynchronous or synchronous

Communication may be reliable or lossy

Marcel Kyas (UiO) Heterogeneous Networks 2008-10-23 FMCO 15 / 22



Communication model
Originally, all communication is asynchronous (sending and receiving
need not be simultaneous)

This fails to capture properties of biomedical sensor networks

Requirements could neither be expressed nor validated

From a programmer’s point of view, the details of the communication link
are irrelevant

The properties become relevant when analysing the model

Modelling networks of objects:

Objects in a distributed system may communicate by links with different
properties

Communication may be asynchronous or synchronous

Communication may be reliable or lossy

Marcel Kyas (UiO) Heterogeneous Networks 2008-10-23 FMCO 15 / 22



Objects, links, and networks
Refinement of the model:

Objects have references to other objects, i.e., names on which they can
invoke methods

Objects also have links to other objects, i.e., channels on which those
calls and their replies are transported

A reference to one object does not imply a link to that object

Objects may need to route calls to other objects

Sometimes modellers need to control the routing mechanism.

Provide
ways to program routing (cross-layer design)

Marcel Kyas (UiO) Heterogeneous Networks 2008-10-23 FMCO 16 / 22



Objects, links, and networks
Refinement of the model:

Objects have references to other objects, i.e., names on which they can
invoke methods

Objects also have links to other objects, i.e., channels on which those
calls and their replies are transported

A reference to one object does not imply a link to that object

Objects may need to route calls to other objects

Sometimes modellers need to control the routing mechanism. Provide
ways to program routing (cross-layer design)

Marcel Kyas (UiO) Heterogeneous Networks 2008-10-23 FMCO 16 / 22



Link types
Asynchronous link The link provides for buffering. Sending always

succeeds. Messages are received when the receiver wants to.
Trying to read a message from such a link will usually block the
receiver, if no message is available.

Rendezvous link The link does not provide buffering. Sending succeeds only
when the receiver is receiving (rendezvous). Trying to read a
message from such a link will usually block the receiver, if no
message is available.

Wireless link The link does not provide buffering. Sending and receiving
always “succeed”. Data is transmitted when sending and
receiving is simultaneous. Sending a message while no object
is receiving will lose the message. Receiving without sending
will result in a default message.

For the operational model, we need a formalisation of “simultaneous”.

Marcel Kyas (UiO) Heterogeneous Networks 2008-10-23 FMCO 17 / 22



Link types
Asynchronous link The link provides for buffering. Sending always

succeeds. Messages are received when the receiver wants to.
Trying to read a message from such a link will usually block the
receiver, if no message is available.

Rendezvous link The link does not provide buffering. Sending succeeds only
when the receiver is receiving (rendezvous). Trying to read a
message from such a link will usually block the receiver, if no
message is available.

Wireless link The link does not provide buffering. Sending and receiving
always “succeed”. Data is transmitted when sending and
receiving is simultaneous. Sending a message while no object
is receiving will lose the message. Receiving without sending
will result in a default message.

For the operational model, we need a formalisation of “simultaneous”.

Marcel Kyas (UiO) Heterogeneous Networks 2008-10-23 FMCO 17 / 22



Link types
Asynchronous link The link provides for buffering. Sending always

succeeds. Messages are received when the receiver wants to.
Trying to read a message from such a link will usually block the
receiver, if no message is available.

Rendezvous link The link does not provide buffering. Sending succeeds only
when the receiver is receiving (rendezvous). Trying to read a
message from such a link will usually block the receiver, if no
message is available.

Wireless link The link does not provide buffering. Sending and receiving
always “succeed”. Data is transmitted when sending and
receiving is simultaneous. Sending a message while no object
is receiving will lose the message. Receiving without sending
will result in a default message.

For the operational model, we need a formalisation of “simultaneous”.

Marcel Kyas (UiO) Heterogeneous Networks 2008-10-23 FMCO 17 / 22



Link types
Asynchronous link The link provides for buffering. Sending always

succeeds. Messages are received when the receiver wants to.
Trying to read a message from such a link will usually block the
receiver, if no message is available.

Rendezvous link The link does not provide buffering. Sending succeeds only
when the receiver is receiving (rendezvous). Trying to read a
message from such a link will usually block the receiver, if no
message is available.

Wireless link The link does not provide buffering. Sending and receiving
always “succeed”. Data is transmitted when sending and
receiving is simultaneous. Sending a message while no object
is receiving will lose the message. Receiving without sending
will result in a default message.

For the operational model, we need a formalisation of “simultaneous”.

Marcel Kyas (UiO) Heterogeneous Networks 2008-10-23 FMCO 17 / 22



Refining the network

n1: Node

s: Sensor c: Controller r : Radio

n2: Node

n3: Node

s: Sink

Figure: Structure of the object-oriented model

Red links represent wireless links
Black links represent asynchronous
links

The environment object, which
controlled the possibility of collisions
in the network, has been removed.
This function is now performed by
the run-time environment.

Marcel Kyas (UiO) Heterogeneous Networks 2008-10-23 FMCO 18 / 22



Refining the network

n1: Node

s: Sensor c: Controller r : Radio

n2: Node

n3: Node

s: Sink

Figure: Structure of the object-oriented model

Red links represent wireless links
Black links represent asynchronous
links

The environment object, which
controlled the possibility of collisions
in the network, has been removed.
This function is now performed by
the run-time environment.

Marcel Kyas (UiO) Heterogeneous Networks 2008-10-23 FMCO 18 / 22



What is in a step?
How do we model simultaneous actions in Creol?

Today, we use a fictitious time model

Time is abstracted to natural numbers

Events with the same time stamp occur simultaneously

We assume that all locally executed statements are instantaneous. Only
communication with external entities takes time.
This is sufficient to model wireless links:

Two sends at the same time: collision

One send and many reads at the same time: communication

No send: reads return “no message”

We do not consider topology and signal strength here, which can be added
to the model.

Marcel Kyas (UiO) Heterogeneous Networks 2008-10-23 FMCO 19 / 22



What is in a step?
How do we model simultaneous actions in Creol?

Today, we use a fictitious time model

Time is abstracted to natural numbers

Events with the same time stamp occur simultaneously

We assume that all locally executed statements are instantaneous. Only
communication with external entities takes time.

This is sufficient to model wireless links:

Two sends at the same time: collision

One send and many reads at the same time: communication

No send: reads return “no message”

We do not consider topology and signal strength here, which can be added
to the model.

Marcel Kyas (UiO) Heterogeneous Networks 2008-10-23 FMCO 19 / 22



What is in a step?
How do we model simultaneous actions in Creol?

Today, we use a fictitious time model

Time is abstracted to natural numbers

Events with the same time stamp occur simultaneously

We assume that all locally executed statements are instantaneous. Only
communication with external entities takes time.
This is sufficient to model wireless links:

Two sends at the same time: collision

One send and many reads at the same time: communication

No send: reads return “no message”

We do not consider topology and signal strength here, which can be added
to the model.

Marcel Kyas (UiO) Heterogeneous Networks 2008-10-23 FMCO 19 / 22



What is in a step?
How do we model simultaneous actions in Creol?

Today, we use a fictitious time model

Time is abstracted to natural numbers

Events with the same time stamp occur simultaneously

We assume that all locally executed statements are instantaneous. Only
communication with external entities takes time.
This is sufficient to model wireless links:

Two sends at the same time: collision

One send and many reads at the same time: communication

No send: reads return “no message”

We do not consider topology and signal strength here, which can be added
to the model.

Marcel Kyas (UiO) Heterogeneous Networks 2008-10-23 FMCO 19 / 22



Network components

n1: Node

s: Sensor c: Controller r : Radio

Figure: A network component

The statement new component C creates an instance of C as a new
component
Components are groups of active objects
They share one input and one output queue
The group leader (here the Radio), which is the first object of a
component, controls the queue

I Special statements allow to send a message on a wireless link or to
receive from a wireless link

I This control is needed for controlling possible collisions.
This way, Creol enables cross-layer design for network components
Objects within one component usually use asynchronous links
Inter-component communication may use user-defined links

Marcel Kyas (UiO) Heterogeneous Networks 2008-10-23 FMCO 20 / 22



What is a component?
Syntax: component N provides {I} requires {I} begin N {C} end

A component aggregates classes

All used interfaces are either internally satisfied or required from the
environment.

A subset of interface provided by component classes are provided to the
environment.

There is (usually) one instance of N, which is the group leader

Only the group leader may use statements send and receive to send or
receive messages on wireless links

Marcel Kyas (UiO) Heterogeneous Networks 2008-10-23 FMCO 21 / 22



Conclusion and future work
The desire to reason about “throughput” in networks with heterogeneous
communication links forces us to reveal certain implementation details

We avoid ad hoc modelling of links by defining the nature of our links
precisely in terms of their characteristics

A light-weight component model aids in describing the system’s
behaviour

Cross-layer design and removing abstractions seem to be the only
means to meet deployment criteria

Minimising “middle-ware” (possibly removing it) is a necessity, too.

We want to go from the abstract model to real implementations

The case study is a hard real-time system, which changes the rules: We
need a refined model of time, resource awareness, scheduling, . . .

Marcel Kyas (UiO) Heterogeneous Networks 2008-10-23 FMCO 22 / 22


	Introduction
	Creol
	Network awareness
	Time model
	Component model
	Conclusion

