
Eric MADELAINE -- GridComp -- OASIS 1

E. Madelaine

GridComp project
Oasis team

INRIA -- CNRS - I3S -- Univ. of Nice Sophia-Antipolis
FMCO ’08 Sophia-Antipolis – oct. 21-23, 2008

Specification and Verification for Grid
Component-based Applications

Eric MADELAINE -- GridComp -- OASIS 2

Do we need formal methods for developing
component-based software ?

Safe COTS-based development
=>

Behaviour Specifications

A
B

C
???

Safe management for complex
systems

(e.g. replacement at runtime)

C2
A

B
C

Eric MADELAINE -- GridComp -- OASIS 3

Is it more difficult for distributed,
asynchronous components ?

Yes !
Asynchrony creates race-conditions, dead-locks, etc.
Transparent Futures do not solve all inter-component deadlocks

Eric MADELAINE -- GridComp -- OASIS 4

• Context
• Active Objects, Components and Grids

• Safe Distributed Components
• Definitions
• Model generation (= operational semantics)
• Checking Properties

• Specification and Verification Tools, Case Study
• Conclusion & Perspectives

Agenda

Eric MADELAINE -- GridComp -- OASIS 5

Asynchronous and Deterministic Objects
[Denis Caromel – Ludovic Henrio]

ASP (Asynchronous Sequential Processes) =
• Distributed Active Objects
• Asynchronous method calls
• Futures and Wait-by-necessity

Determinism/Confluence properties
Programming abstractions
Formal Basis for Verification

Eric MADELAINE -- GridComp -- OASIS 6

A

ProActive : Active objects

Proxy

Java Object

A ag = newActive (“A”, […], VirtualNode)
V v1 = ag.foo (param);
V v2 = ag.bar (param);
...
v1.bar(); //Wait-By-Necessity

V

Wait-By-Necessity
is a

Dataflow
Synchronization

JVM

A

JVM

Active Object

Future Object Request

Req. Queue

Thread

v1v2 ag

WBN!

Eric MADELAINE -- GridComp -- OASIS 7

Fractal hierarchical model :

Attribute
Controller

Binding
Controller

Lifecycle
Controller

Content
Controller

Content

Controller / membrane

composites encapsulate primitives, which encapsulates code

• Provided/Required
Interfaces

• Hierarchy

• Separation of
concern: functional
/ non-functional

• ADL

• Extensible

Eric MADELAINE -- GridComp -- OASIS

GCM
[Caromel, FMCO’07]

Scopes and Objectives:
Grid Component Model
Extension of Fractal for programming Grids

Innovations:
Abstract Deployment
Multicast and GatherCast
Controller (NF) Components

Standardization
By the ETSI TC-GRID

Eric MADELAINE -- GridComp -- OASIS 9

ProActive Parallel Suite

Spin-off company 2007 :

Eric MADELAINE -- GridComp -- OASIS 10

• Context
• Active Objects, Components and Grids

• Safe Distributed Components
• Definitions
• Model generation
• Properties

• Specification and Verification Tools, Case Study
• Conclusion & Perspectives

Agenda

Eric MADELAINE -- GridComp -- OASIS 11

My Definition :
Software modules, composable, reconfigurable, with
well-defined interfaces, and well-defined black box behaviour

Our interests :
1. Encapsulation

Black boxes, offered and required services
2. Composition

Design of complex systems, hierarchical organization into sub-systems
3. Separation of concerns

Architecture Description Language (ADL), management components
4. Distribution (e.g. Computational Grid)

Interaction at interfaces through asynchronous method calls

Software Components

Eric MADELAINE -- GridComp -- OASIS 12

Applications :
• Check behavioural compatibility between sub-components
• Check correctness of component deployment
• Check correctness of the transformation inside a running application.

Behaviour specification and
Safe composition

Aim :
Build reliable components from the composition of smaller pieces,
using their formal specification.

Component paradigm : only observe activity at interfaces.
Behavioural properties:

Deadlock freeness, progress/termination, safety and liveness.

Eric MADELAINE -- GridComp -- OASIS 13

The pNET model

Specification
language

Source code

pNets
systemAbstraction

Instantiation

Verification
tools

Constraint: domains in pNets are “simple types”.
The data domains in the source language have to be abstracted beforehand.

Eric MADELAINE -- GridComp -- OASIS 14

pNets : Hierarchical and Parameterized Models

[Arnold, Nivat 92] Synchronization networks
[Lin 92] symbolic graphs with assignments
[Lakas 96] semantics of Lotos open expressions

• Value-passing, Dynamic architectures, etc.
• But close to code structure
• Instantiation to finite structures (through abstract interpretation)

[Forte’04: T. Barros, R. Boulifa, E. Madelaine]
[Annals of Telecomunications’08: A. Cansado, L. Henrio, E. Madelaine]

Eric MADELAINE -- GridComp -- OASIS 15

Parameterized LTSs : definition

Given :
A set of parameters V (with domains in first order “simple types”)
An many-sorted term algebra ∑V, with a distinguished Action sort

A parameterized LTS is <V, S, s0, L> in which:
• Each state s ∈ S has free variables fv(s) ⊆ V
• Labels l ∈ L have the form <eB, α, xj := ej>

• eB∈ ∑V,Bool a guard
• α ∈ ∑V,Action a parameterized action
• xj := ej an assignment of the state variables

i,x i,y

y=x-1

Eric MADELAINE -- GridComp -- OASIS 16

Parameterized Network of Synchronised
Automata (pNets) : definition

• A pNet is <V, Ag, J, pj, Oj, T> in which:
• Ag ⊆ ∑V is the pNet sort, ie the set of global actions
• J is a set of Holes, each of them with a parameter pj and a sort Oj

• T is the transducer (or control automaton) of the pNet, whose labels are
synchronisation vectors :
<αg, {ai,j}> that relate actions of some instances of the holes to a global action.

PhiloNET : < Philo[k], Fork[k] > k ∈ [1:n]
Ag = { Think(k), TakeL(k), … }
T static (single state), with synchronisation vectors :

<Think(k), Think Philo[k] >
<TakeL(k), TakeL Philo[k] , Take Fork[k-1] >

Eric MADELAINE -- GridComp -- OASIS 17

pNets and Nets : operators

• pNets are generalized synchronisation operators at the semantic level,
in the spirit of Lotomaton.
They address: multiway synchronisation, parameterized topologies, and
dynamic topologies.

Define:

• A System is a tree-like structure with pNets at nodes and pLTS at leaves

• Abstraction: given a countable (resp, finite) domain for each parameter
of a system, its instantiation is a countable (resp. finite) system.

• The synchronisation product is only defined for instantiated systems.

Eric MADELAINE -- GridComp -- OASIS 18

(1) Program semantics ==> Behaviour Model (parameterized)

user-specified abstract interpretation

(2) Behaviour Model ==> Finite Model

Value Passing case : define an abstract representation from a finite partition of the
value domains, on a per-formula basis

⇒ Preservation of safety and liveness properties [Cleaveland & Riely 93]

Families of Processes : no similar generic result (but many results for specific
topologies).

Counter-example : on parameterized topologies of processes, reachability properties
require induction reasoning.

Practical approach :
• explore small finite configurations in a “bug search” fashion,
• use “infinite systems” techniques for decidable domains when available

Abstractions and Correctness

Eric MADELAINE -- GridComp -- OASIS 19

• Context
• Active Objects, Components and Grids

• Safe Distributed Components
• Definitions
• Model generation
• Properties

• Specification and Verification Tools, Case Study
• Conclusion & Perspectives

Agenda

Eric MADELAINE -- GridComp -- OASIS 20

Building Behavioural Models : Principles
For a given language/framework, define an operational

semantics that builds pNets from the program structure.

For GCM components:
• Reason separately at each composition level

Primitive components : functional behaviour is known
• Given by the user (specification language)
• Obtained by static analysis (primitive components, e.g. ProActive active objects)
• Computed from lower level

Composites : structure and non functional behaviour automatically added
from the component’s ADL

Eric MADELAINE -- GridComp -- OASIS 21

Building pNet models (ex 1)

Nets for Active objects communication schema :
From the set of public methods, and their signature, build :
• The (parameterized) action algebra
• The structure of the future proxies and request queue
• One synch vector per exchanged message.

Buffer(Max,S)Consumer(c)

call(get,f)

return(get,x)

Proxy
[f]

Queue
[…]

body body

A
JVM

A

V

JVM
v1v2 ag

WBN!

Eric MADELAINE -- GridComp -- OASIS 22

Building pNet models (ex 2)

Nets and pLTS for
Fractal non-
functional
controllers :

• Binding
controllers

• Life-cycle cont.
• Content cont. C[c]

B

Q_get()

R_get(v)

?bind(B,IA) ?unbind(B,IA)

!Err(unbound,B,IA)

B.Call

(alarm)

?bind(B,IF)

?unbind(B,IF)

unboundbound

Eric MADELAINE -- GridComp -- OASIS 23

pNet Models for a GCM composite
1) Assemble sub-

components
2) add non-functional

controls:
1) Bindings
2) Start/Stop
3) …

3) Add Interceptors :
1) Body
2) Queue, LF

and proxies

Body Proxy
(f)

Queue
?Serve(M,…) Call(M,…)

LF Response…
Request…

C(c)

B

!Err(unbound,…)

P(p)

!start()
!stop()

?bind(…)
?unbind(…)

Eric MADELAINE -- GridComp -- OASIS 24

• Context
• Active Objects, Components and Grids

• Safe Distributed Components
• Definitions
• Model generation
• Properties

• Specification and Verification Tools, Case Study
• Conclusion & Perspectives

Agenda

Eric MADELAINE -- GridComp -- OASIS 25

What do you expect to prove ?
(the application developer point of view)

Initial Composition
• Generic properties : successful deployment, absence of standard errors (unbound

interface, etc.), deadlock freeness
• User Requirements expressed as temporal formulas

Reconfiguration preserving the network structure
• Preservation of properties (aka service interaction)
• New features

Compositionality / Substitutability
• The Component Automaton, after hiding/minimization, is the functional

behaviour used at next level of composition

Eric MADELAINE -- GridComp -- OASIS 26

The question of the property definition language :

- Various temporal logics (CTL, ACTL, …)
- Regular μ-calculus (Mateescu’2004) : the assembly language of temporal logics

- Specification patterns (Dwyer’199x)
- Or parameterized symbolic automata ?

Verification of Properties

Eric MADELAINE -- GridComp -- OASIS 27

Functional properties under reconfiguration (respecting the topology)
• Future update (asynchronous result messages) independent of

life-cycle or binding reconfigurations
• Build a model including life-cycle controllers,

with the reconfiguration actions visible:

• Then we can prove:

Verification of Properties

[true*.Req_Get()] μX. (< true > true ∧ [¬Resp_Get()] X)

Eric MADELAINE -- GridComp -- OASIS 28

• Context
• Active Objects, Components and Grids

• Safe Distributed Components
• Definitions
• Model generation
• Properties

• Specification and Verification Tools, Case Study
• Conclusion & Perspectives

Agenda

Eric MADELAINE -- GridComp -- OASIS 29

The Vercors Specification and
Verification Platform (middle term)

JDC
Specification

Graphical Editor
(Eclipse Plugin)

Vercors

JDC
Formula

G
C
M
/

ProActi
ve

Code
Generator

ADL/IDL
(final)

Java
Skeletons

Business
code

Runtime

pNets/
Fiacre

Model
Generator

Finite
model

Formula
Compiler

Prover

Eric MADELAINE -- GridComp -- OASIS 30

The Vercors Specification and Verification
Platform (current prototypes)

Behav
Specification

(LTS)

Graphical Editor
(Eclipse Plugin)

Vercors

G
C
M
/

ProActi
ve

ADL/IDL
(final)

Runtime

pNets/
Fiacre

Model
Generator

Finite
model

Prover

Eric MADELAINE -- GridComp -- OASIS 31

Graphical Specifications : VCE tool

GCM specific constructs:
- 1 to N and N to 1 bindings

(multicast and gathercast interfaces)

- Open issue :
attach a behaviour to
these interfaces.

Eric MADELAINE -- GridComp -- OASIS 32

Graphical Specifications : VCE tool

GCM specific constructs:
- Non-functional controller components in the membrane

Interceptors
Autonomic management

Eric MADELAINE -- GridComp -- OASIS 33

Graphical Specifications : VCE tool

Eric MADELAINE -- GridComp -- OASIS 34

Verification Tools

CADP toolset (INRIA Rhones-Alpes, VASY team)

• Generic Front-end
(Lotos, BCG, Sync-vectors)

• Model generation: distributed on a cluster
Up to 100 millions of states
On-the-fly, Tau-reduction, Constrained…

• Verification Evaluator tool:
Deadlock search / Regular μ-calculus

• Bisimulation ckecking, minimizing

Eric MADELAINE -- GridComp -- OASIS 35

Case study : Point of Sale

CoCoME : Common Component Modeling Example

Hierarchical model for a Cashdesk system
16 components, 5 levels, 10 parameters
Brute force state space would be 2.10^8
optimized generation => biggest size < 100000 states
Mastering data parameters, and broadcast communication.
Code generation (GCM/ProActive)

Eric MADELAINE -- GridComp -- OASIS 36

Case study

• Deadlocks were found (due to synchronous versions of our encoding)
• Checking Specification Requirements:

• Main sale process is feasible (Use Case 1)

• Wrong behaviours
(Booking an Empty Sale, Successful Sale with Insufficient Money)

• Error due to incomplete specification : safety of the Express Mode (an
express mode may be triggered during an ongoing sale

Eric MADELAINE -- GridComp -- OASIS 37

Ongoing work

Code Generation :
• From Architecture and Behaviour Diagrams

… to ADL descriptions and GCM/ProActive code skeletons

Extensions :
• 1 to N and M to 1 communication
• Parameterized components in the specification language
• Tool support for abstraction specification

New verification tools :
• Specialized model-checking engines for decidable classes of problems:

– unbound fifo channels
– Counters + presburger

Eric MADELAINE -- GridComp -- OASIS 38

Conclusions
pNETs:

Semantic model for hierarchical, parameterized asynchronous systems
Flexible, expressive and compact.

Model generation for the behaviour of distributed hierarchical components
• Automatic Construction of the control automata and of synchronisation

constructs
• Verification of properties in different phases
• Prototype platform for graphical specification, model construction,

model-checking.

Papers, Use-cases and Tools at :
http://www-sop.inria.fr/oasis/Vercors

