
Developing programs by “Splitting atoms”
(rely/guarantee conditions, data reification, . . .)

Cliff B Jones

Computing Science
Newcastle University

FMCO 2008-10-22

Cliff B Jones (Newcastle) Developing programs by “Splitting atoms” (rely/guarantee conditions, data reification, . . .)FMCO 2008-10-22 1 / 36

Contents

1 Design as abstraction layers

2 ACMs
Where to start – a specification
Splitting atoms (gently) in abstract state
Retaining less history
The four-slot representation

3 Conclusions

Cliff B Jones (Newcastle) Developing programs by “Splitting atoms” (rely/guarantee conditions, data reification, . . .)FMCO 2008-10-22 2 / 36

Key abstractions

Pre/post-conditions (as in VDM/B/. . .)
I design by sequential“operation decomposition rules”
I Floyd/Hoare-like rules (coping with relational post-conditions)

Rely/Guarantee “thinking”
I not (just) a specific set of rules
I show importance of “frames” (cf. Separation Logic)
I using “auxiliary variables”

Abstract objects
I choice of abstract data objects key for specifications
I data “reification” (classic-VDM / Nipkow’s rule)
I link with R/G development

“fiction of atomicity”
I “splitting (software) atoms safely” [Jon07]
I cf. database transactions [JLRW05], . . .

Cliff B Jones (Newcastle) Developing programs by “Splitting atoms” (rely/guarantee conditions, data reification, . . .)FMCO 2008-10-22 3 / 36

While (operation decomposition) rule

While-I

S sat (P ∧ b, P ∧W)
P ⇒ δl(b)
mk-While(b, S) sat (P, P ∧ ¬ b ∧W ∗)

Cliff B Jones (Newcastle) Developing programs by “Splitting atoms” (rely/guarantee conditions, data reification, . . .)FMCO 2008-10-22 4 / 36

An R/G picture

P

Program

Environment

Q

G

RRRR

GG

Cliff B Jones (Newcastle) Developing programs by “Splitting atoms” (rely/guarantee conditions, data reification, . . .)FMCO 2008-10-22 5 / 36

One R/G rule
cf. [CJ07]

Par-I

{P,R ∨ Gr} ` sl sat (Gl,Ql)
{P,R ∨ Gl} ` sr sat (Gr,Qr)
Gl ∨ Gr ⇒ G
↼−
P ∧Ql ∧Qr ∧ (R ∨ Gl ∨ Gr)∗ ⇒ Q

{P,R} ` mk-Par(sl, sr) sat (G,Q)

Cliff B Jones (Newcastle) Developing programs by “Splitting atoms” (rely/guarantee conditions, data reification, . . .)FMCO 2008-10-22 6 / 36

Subtle link between R/G and data reification
cf. [Jon07]

in FINDP
I we have t ← min(t , local) in n parallel processes
I assuming we don’t want to “lock” t
I need a representation that helps us to preserve R/G conditions
I (simple to) represent as t as min(et , ot)

SIEVE
I we have to remove an element from a set s
I assuming we don’t want to “lock” s (big!)
I need a representation that helps preserve R/G conditions s ⊆↼−s
I (less obvious) represent s as a bit vector

Simpson
I extremely interesting
I my claim: this is the essence of Simpson’s contribution

Cliff B Jones (Newcastle) Developing programs by “Splitting atoms” (rely/guarantee conditions, data reification, . . .)FMCO 2008-10-22 7 / 36

Contents

1 Design as abstraction layers

2 ACMs
Where to start – a specification
Splitting atoms (gently) in abstract state
Retaining less history
The four-slot representation

3 Conclusions

Cliff B Jones (Newcastle) Developing programs by “Splitting atoms” (rely/guarantee conditions, data reification, . . .)FMCO 2008-10-22 8 / 36

ACMs: topic of [JP08]
Communication (Atomic?)

Write(42)  x := Read() 

Cliff B Jones (Newcastle) Developing programs by “Splitting atoms” (rely/guarantee conditions, data reification, . . .)FMCO 2008-10-22 9 / 36

ACMs
Atomic and (trying for) Asynchronous

Write 

Read() 

Cliff B Jones (Newcastle) Developing programs by “Splitting atoms” (rely/guarantee conditions, data reification, . . .)FMCO 2008-10-22 10 / 36

Simpson’s algorithm

Simpson’s algorithm
I ingenious algorithm
I difficult to prove correct
I actually, all proofs make assumptions
I different verification methods give different insights
I but, even then, lack of explanation

several other folk still working on this
I come back to at end

run through our “rational reconstruction”
I “explanation” via layers of abstraction

essential to get the big steps right before detailed proof

apologies for so much argument about eight lines of code . . .

Cliff B Jones (Newcastle) Developing programs by “Splitting atoms” (rely/guarantee conditions, data reification, . . .)FMCO 2008-10-22 11 / 36

Cliff B Jones (Newcastle) Developing programs by “Splitting atoms” (rely/guarantee conditions, data reification, . . .)FMCO 2008-10-22 12 / 36

Specification

Σa :: data-w : Value∗

fresh-w : N
hold -r : N

inv (mk -Σa(data-w , fresh-w , hold -r)) 4
fresh-w , hold -r ∈ {1..len data-w} ∧ hold -r ≤ fresh-w

σa
0 = mk -Σa([x], 1, 1)

while true do
start-Write(v : Value): data-w ← data-w y [v];
commit-Write(): fresh-w ← len data-w

od
while true do

start-Read(): hold-r ← fresh-w ;
end-Read()r : Value: r ← data-w(i) for some i ∈ {hold-r..fresh-w}

od

Cliff B Jones (Newcastle) Developing programs by “Splitting atoms” (rely/guarantee conditions, data reification, . . .)FMCO 2008-10-22 13 / 36

Examples 1, 2

start-Write(y) .. mk-Σa([x, y], 1, 1)
commit-Write() .. mk-Σa([x, y], 2, 1)
start-Read() .. mk-Σa([x, y], 2, 2)
end-Read() .. r = y

start-Write(y) .. mk-Σa([x, y], 1, 1)
start-Read() .. mk-Σa([x, y], 1, 1)
end-Read() .. r = x
commit-Write() .. mk-Σa([x, y], 2, 1)

Cliff B Jones (Newcastle) Developing programs by “Splitting atoms” (rely/guarantee conditions, data reification, . . .)FMCO 2008-10-22 14 / 36

Example 3

start-Read() .. mk-Σa([x], 1, 1)
start-Write(y) .. mk-Σa([x, y], 1, 1)
commit-Write() .. mk-Σa([x, y], 2, 1)
start-Write(z) .. mk-Σa([x, y, z], 2, 1)
commit-Write() .. mk-Σa([x, y, z], 3, 1)
end-Read() .. r ∈ {x, y, z}
start-Read() .. mk-Σa([x, y, z], 3, 3)
end-Read() .. r = z

Cliff B Jones (Newcastle) Developing programs by “Splitting atoms” (rely/guarantee conditions, data reification, . . .)FMCO 2008-10-22 15 / 36

Specification in terms of four sub-operations (Write)
Atomic operations — therefore pure pre/post specification

while true do
start-Write(v : Value): data-w ← data-w y [v];
commit-Write(): fresh-w ← len data-w

od
||
.
.
.

Write(v : Value)
start-Write(v : Value)

wr data-w

post data-w =
↼−−−−
data-w y [v]

commit-Write(v : Value)
rd data-w
wr fresh-w
pre data-w(len data-w) = v
post fresh-w = len data-w

Cliff B Jones (Newcastle) Developing programs by “Splitting atoms” (rely/guarantee conditions, data reification, . . .)FMCO 2008-10-22 16 / 36

Specification in terms of four sub-operations (Read)

.

.

.
||
while true do

start-Read(): hold-r ← fresh-w ;
end-Read()r : Value: r ← data-w(i) for some i ∈ {hold-r..fresh-w}

od

Read()r : Value
local hold-r : N
start-Read()

wr hold-r
rd fresh-w
post hold-r = fresh-w

end-Read()r : Value
rd data-w, fresh-w
post ∃i ∈ {hold-r..fresh-w} · r = data-w(i)

Cliff B Jones (Newcastle) Developing programs by “Splitting atoms” (rely/guarantee conditions, data reification, . . .)FMCO 2008-10-22 17 / 36

General messages

note “algorithmic” specification

“fiction of atomicity”
I but single “atomic” variable does not cover all behaviour

“frames” (for rd/wr access)
I plus “local”

data abstraction

Cliff B Jones (Newcastle) Developing programs by “Splitting atoms” (rely/guarantee conditions, data reification, . . .)FMCO 2008-10-22 18 / 36

Splitting atoms in Σa (Write)
Accept overlap (only read/write) — therefore rely/guarantee

Write(v : Value)
start-Write(v : Value)

rd fresh-w
wr data-w
rely fresh-w =

↼−−−−
fresh-w ∧ data-w =

↼−−−−
data-w

guar {1..fresh-w}� data-w = {1..fresh-w}�
↼−−−−
data-w

post data-w =
↼−−−−
data-w y [v]

commit-Write(v : Value)
rd data-w
wr fresh-w
pre data-w(len data-w) = v
rely fresh-w =

↼−−−−
fresh-w ∧ data-w =

↼−−−−
data-w

post fresh-w = len data-w

Cliff B Jones (Newcastle) Developing programs by “Splitting atoms” (rely/guarantee conditions, data reification, . . .)FMCO 2008-10-22 19 / 36

Splitting atoms in Σa (Read)

Read()r : Value
start-Read()

rd fresh-w
wr hold -r
rely hold -r =

↼−−−
hold -r

post hold -r ∈ {
↼−−−−
fresh-w , fresh-w}

end -Read()r : Value
rd data-w , fresh-w , hold -r
rely hold -r =

↼−−−
hold -r∧∀i ∈ {hold -r ..

↼−−−−
fresh-w}·data-w(i) =

↼−−−−
data-w(i)

post ∃i ∈ {hold -r ..
↼−−−−
fresh-w} · r =

↼−−−−
data-w(i)

Cliff B Jones (Newcastle) Developing programs by “Splitting atoms” (rely/guarantee conditions, data reification, . . .)FMCO 2008-10-22 20 / 36

General messages

phasing
I makes clear start-Write cannot interfere with commit-Write
I avoids implications in rely conditions

frames plus phasing significantly simplify R/G assertions

cf. rely-start-Write on Σa above

Cliff B Jones (Newcastle) Developing programs by “Splitting atoms” (rely/guarantee conditions, data reification, . . .)FMCO 2008-10-22 21 / 36

Retaining less history
A data reification exercise — still very general

Σi :: data-w : X m−→ Value
fresh-w : X
hold -r : X
hold -w : X

inv (mk -Σi(data, fresh, hold -r , hold -w)) 4
{fresh, hold -r , hold -w} ⊆ dom data

σi
0 = mk -Σi({α 7→ x}, α, α, α)

Cliff B Jones (Newcastle) Developing programs by “Splitting atoms” (rely/guarantee conditions, data reification, . . .)FMCO 2008-10-22 22 / 36

Relating Σi to Σa

Using Nipkow’s rule

r(σa
1 , σ

i
1) ∧ post i(σi

1, σ
i
2) ⇒ ∃σa

2 ∈ Σa · posta(σa
1 , σ

a
2) ∧ r(σa

2 , σ
i
2)

r : Σa × Σi → B

r(mk -Σa(data-wa , fresh-wa , hold -ra),
mk -Σi(data-w i , fresh-w i , hold -r i , hold -w i)) 4

rng data-w i ⊆ elems data-wa ∧
data-wa(fresh-wa) = data-w i(fresh-w i) ∧
data-wa(hold -ra) = data-w i(hold -r i)

Cliff B Jones (Newcastle) Developing programs by “Splitting atoms” (rely/guarantee conditions, data reification, . . .)FMCO 2008-10-22 23 / 36

Specifications of the sub-operations on Σi

Still overlapped — still rely/guarantee

Write(v : Value)
local hold-w : X
start-Write(v : Value)

rd hold-r, fresh-w
wr data-w, hold-w

rely fresh-w =
↼−−−−
fresh-w ∧ data-w =

↼−−−−
data-w

guar {↼−−−hold-r, hold-r}� data-w = {↼−−−hold-r, hold-r}�
↼−−−−
data-w

post hold-w ∈ (X − {fresh-w,
↼−−−
hold-r, hold-r}) ∧ data-w =

↼−−−−
data-w † {hold-w 7→ v}

end-Write(v : Value)
rd data-w, hold-w
wr fresh-w
pre data-w(hold-w) = v

rely fresh-w =
↼−−−−
fresh-w ∧ data-w =

↼−−−−
data-w

post fresh-w = hold-w

Cliff B Jones (Newcastle) Developing programs by “Splitting atoms” (rely/guarantee conditions, data reification, . . .)FMCO 2008-10-22 24 / 36

Specifications of the sub-operations on Σi

Read()r : Value
start-Read()

rd fresh-w
wr hold-r

rely hold-r =
↼−−−
hold-r

post hold-r ∈ {↼−−−−fresh-w, fresh-w}
end-Read()r : Value

rd hold-r, data-w

rely hold-r =
↼−−−
hold-r ∧ data-w(hold-r) =

↼−−−−
data-w(hold-r)

post r = data-w(hold-r)

Cliff B Jones (Newcastle) Developing programs by “Splitting atoms” (rely/guarantee conditions, data reification, . . .)FMCO 2008-10-22 25 / 36

General messages

simpler R/G because of read/write frames

data reification
I (potentially) reducing non-determinism
I use of VDM’s other reification rule

still have “bold” atomicity assumptions
I couldn’t update data-w atomically on any reasonable machine

still work to be done

role of data reification in achieving rely conditions

Simpson’s representation crucial

Cliff B Jones (Newcastle) Developing programs by “Splitting atoms” (rely/guarantee conditions, data reification, . . .)FMCO 2008-10-22 26 / 36

The four-slot representation
Focus on Simpson’s inspiration

Σr :: data-w : P × S m−→ Value
pair -w : P
pair -r : P
slot-w : P m−→ S
wp-w : P
ws-w : S
rs-r : S

where (key assumptions about granularity (ρ)):

P ,S = Token-set

P = S
card P = 2
ρ(i) 6= i

Cliff B Jones (Newcastle) Developing programs by “Splitting atoms” (rely/guarantee conditions, data reification, . . .)FMCO 2008-10-22 27 / 36

Connection Σr with Σi

Σi represented in Σr by

data-wi data-wr

fresh-wi (pair-wr, slot-wr(pair-wr))
hold-ri (pair-rr, slot-wr(pair-rr))
hold-wi (wp-wr, wp-sr)

Cliff B Jones (Newcastle) Developing programs by “Splitting atoms” (rely/guarantee conditions, data reification, . . .)FMCO 2008-10-22 28 / 36

Specifications of the sub-operations on Σr

Write(v : Value)
local wp-w : P
local ws-w : S
start-Write(v : Value)

rd pair-r, slot-w
wr data-w

rely slot-w =
↼−−−
slot-w ∧ data-w =

↼−−−−
data-w

guar {(↼−−−pair-r, slot-w(
↼−−−
pair-r)), (pair-r, slot-w(pair-r))}� data-w =

{(↼−−−pair-r, slot-w(
↼−−−
pair-r)), (pair-r, slot-w(pair-r))}�

↼−−−−
data-w

post wp-w = ρ(
↼−−−
pair-r) ∧ ws-w = ρ(slot-w(wp-w)) ∧ data-w(wp-w,ws-w) = v

end-Write()
wr pair-w, slot-w

rely pair-w =
↼−−−−
pair-w ∧ slot-w =

↼−−−
slot-w

guar slot-w(pair-r) =
↼−−−
slot-w(pair-r)

post slot-w(wp-w) = ws-w ∧ pair-w = wp-w

Cliff B Jones (Newcastle) Developing programs by “Splitting atoms” (rely/guarantee conditions, data reification, . . .)FMCO 2008-10-22 29 / 36

Specifications of the sub-operations on Σr

Read()r : Value
local rs-r : S
start-Read()

rd pair-w, slot-w
wr pair-r

rely slot-w(pair-r) =
↼−−−
slot-w(pair-r) ∧ pair-r =

↼−−−
pair-r

post pair-r =
↼−−−−
pair-w ∧ rs-r =

↼−−−
slot-w(pair-r)

end-Read()r : Value
rd pair-r, data-w

rely pair-r =
↼−−−
pair-r ∧ data-w(pair-r, rs-r) =

↼−−−−
data-w(pair-r, rs-r)

post r = data-w(pair-r, rs-r)

Cliff B Jones (Newcastle) Developing programs by “Splitting atoms” (rely/guarantee conditions, data reification, . . .)FMCO 2008-10-22 30 / 36

Satisfies guarantee conditions (as well as post)

Write(v : Value)
local wp-w : P
local ws-w : S

wp-w ← ρ(pair-r);
ws-w ← ρ(slot-w(wp-w));
data-w(wp-w,ws-w)← v ;
slot-w(wp-w)← ws-w ;
pair-w ← wp-w

Read()r : Value
local rs-r : S

pair-r ← pair-w ;
rs-r ← slot-w(pair-r);
r ← data-w(pair-r, rs-r)

Cliff B Jones (Newcastle) Developing programs by “Splitting atoms” (rely/guarantee conditions, data reification, . . .)FMCO 2008-10-22 31 / 36

Contents

1 Design as abstraction layers

2 ACMs
Where to start – a specification
Splitting atoms (gently) in abstract state
Retaining less history
The four-slot representation

3 Conclusions

Cliff B Jones (Newcastle) Developing programs by “Splitting atoms” (rely/guarantee conditions, data reification, . . .)FMCO 2008-10-22 32 / 36

Comparisons

Henderson’s thesis (JSF/CBJ supervision)
I use “shrinking sequence” in specification
I different approaches (including CSP/FDR) highlight facets
I up to, including “meta-stability” of control bits

event refinement (Abrial)
I f /g to “avoid” algorithmic specification
I we were working on proof — in communication
I non-deterministic order of events, virtual “instruction counter”
I refine one event to many: all but one “refines skip”

Separation Logic (Bornat, Parkinson, Vafeiadis, O’Hearn)
I “frame” defined by alphabet of assertions
I notation certainly more compact
I expected it to be much better on 4-slot because of “ownership”
I in fact, doesn’t offer intuition

Cliff B Jones (Newcastle) Developing programs by “Splitting atoms” (rely/guarantee conditions, data reification, . . .)FMCO 2008-10-22 33 / 36

Conclusions

all at FMCO probably accept “refinement from abstractions”

“splitting atoms” – a new/old formal addition

subsidiary points
I rely/guarantee “thinking”
I remember frame descriptions
I combination with data reification
I link with “phasing”
I “auxiliary variables” + Nipkow’s rule
I . . .
I tool support (ASE*2)

one further technical issue
I expressiveness of R/G (thanks to Viktor Vafeiadis)

Cliff B Jones (Newcastle) Developing programs by “Splitting atoms” (rely/guarantee conditions, data reification, . . .)FMCO 2008-10-22 34 / 36

References

J. W. Coleman and C. B. Jones.
A structural proof of the soundness of rely/guarantee rules.
Journal of Logic and Computation, 17(4):807–841, 2007.

C. B. Jones, D. Lomet, A. Romanovsky, and G. Weikum.
The atomicity manifesto.
Journal of Universal Computer Science, 11(5):636–650, 2005.

C. B. Jones.
Splitting atoms safely.
Theoretical Computer Science, 357:109–119, 2007.

Cliff B. Jones and Ken G. Pierce.
Splitting atoms with rely/guarantee conditions coupled with data
reification.
In ABZ2008, volume LNCS 5238, pages 360–377, 2008.

Cliff B Jones (Newcastle) Developing programs by “Splitting atoms” (rely/guarantee conditions, data reification, . . .)FMCO 2008-10-22 35 / 36

Cliff B Jones (Newcastle) Developing programs by “Splitting atoms” (rely/guarantee conditions, data reification, . . .)FMCO 2008-10-22 36 / 36

	Design as abstraction layers
	ACMs
	Where to start -- a specification
	Splitting atoms (gently) in abstract state
	Retaining less history
	The four-slot representation

	Conclusions

