
16/03/10

1

Asynchronous
communications: from calculi

to distributed components
Asynchonous CCS

Communication timing
Asynchronous components

ludovic.henrio@inria.fr

Synchronous and asynchronous languages

•  Systems build from communicating components :
parallelism, communication, concurrency

•  Asynchronous Processes
-  Synchronous communications (rendez-vous)

-  Asynchronous communications (message queues)

•  Synchronous Processes (instantaneous diffusion)

Question on D. Caromel course: how do you classify
ProActive ?

2

Process calculi: CCS, CSP, Lotos

SDL modelisation of channels

Esterel, Sync/State-Charts, Lustre

Processes Calculi – Asynchrony in CCS

•  A proposal in π-calculus: Asynchronous π-calculus
•  No consequence of output actions
•  Equivalent in CCS:

Processes Calculi – what is asynchrony? (2)

•  µ.P can be a.P, a.P, τ.P
•  An asynchronous version would be to allow only a.P, and
τ.P, and simply a without suffix

•  a.P has to be replaced by (a|P)

•  A very simple notion but sufficient at this level
•  Same expressivity, but simple synchronisation can

become more complex

Exercise: rewrite the following example in
asynchronous CCS:

(a.b.a + c.b.c) |(a.b.a + c.b.c)

16/03/10

2

Communication Ordering; A Deeper Study

Synchronous, asynchronous, and causally
ordered communication

 Bernadette Charron–Bost, Friedemann
Mattern, Gerard Tel

1996

Time and processes representation

  these execution are identical -> event representation
  Only the order of message reception matters, whatever the

transmission and execution duration

Imaginary
Time Axis

P0

P1

P2

P0

P1

P2

P2

P0
P1

P2

P0
P1 ≠

Happened Before Relation
= Asynchronous Communication

 a ≺i b ⇒ a ≺ b

+ transitivity: If e1 ≺ e2,
and e2 ≺ e3, then, e1 ≺ e3

If ≺ is a partial order (antisymetric) then it
represents a valid asynchronous
communication
i.e. there must be no cycle of different
events
Happened before relation

Happened-before relation

•  Not all events are mandatorily related along ≺
-  Incomparable, independent, concurrent:

  e1|| e2 if neither e1≺e2 nor e2≺e1
  Non transitivity of ||

P2

P0
P1

e1

e2

e3 e2’ e1’

e1 ≺e2
e1 ≺e2’
e2 ≺e3
e1 ≺e3
e1’ ≺e2’
e2’ ≺e3
e1’ ≺e3

e1 || e1’
e2 || e2’

||

e1’ || e1
e2 || e1’
e2’ || e2

16/03/10

3

Exercise

•  Why is the above execution not asynchronous?
•  Make it a correct execution by changing just the

red arrow
•  Find 2 unrelated events

Synchronous communication

FIFO Causal Ordering

16/03/10

4

Causal ordering (2): Causality Violation

•  Causality violation occurs when order of messages
causes an action based on information that another host
has not yet received.

P1

P2

P3

1 2

3 4

5

0

0

0

1

2

Physical Time

4
6

Causal ordering (3): The “triangle pattern”

A

C

B

2

1
(e.g., init)

3

Objective: Ensure that 3 arrive at C after 1.

Summary of communicaiton orderings

•  Asynchronous FIFO channels Causal ordering
Synchronous

•  Several characterization of communication timing
(equations, diagram, …)

•  Such characterizations are useful for
-  Identifying coherent states (states that could exist)
-  Performing fault-tolerance and checkpointing
-  Study which algorithms are applicable on which

communication orderings
-  Might be useful for debugging, or replaying an

execution

⊂ ⊂ ⊂

Exercise: Are the execution CO, synchronous,
asynchronous or FIFO?

16/03/10

5

Weak common past – weak common future

 Exercise: find a computation that does not ensure
weak common past

is it asynch FIFO CO or synch?

Exercise

•  Rendez-vous:

Exercise: What does rendez-vous ensure?

•  So why is ProActive said asynchronous?

No event between sending
and reception

16/03/10

6

GCM: “Asynchronous” Fractal Components

GCM – Quick Context

•  Designed in the CoreGrid Network of Excellence,
Implemented in the GridCOMP European project

•  Add distribution to Fractal components
•  OUR point of view in OASIS:
-  No shared memory between components
-  Components evolve asynchronously

-  Components are implemented in ProActive
-  Communicate by request/replies (Futures)

•  A good context for presenting asynchronous components
futures and many-to-many communications

What are (GCM/Fractal) Components?

Bindings

Business code

Business code

Server
interfaces

Client
interfaces Primitive component

Primitive component

Composite component

NF (server) interfaces

A Primitive GCM Component

CI.foo(p)

Primitive components communicating by asynchronous
remote method invocations on interfaces (requests)

  Components abstract away distribution and concurrency

in ProActive components are mono-threaded
 simplifies concurrency but can create deadlocks

16/03/10

7

Composition in GCM

Bindings:
Requests = Asynchronous method invocations

Futures for Components

f=CI.foo(p)
……….
f.bar() f.bar()

Component are independent entities
(threads are isolated in a component)

+
Asynchronous method invocations with results

Futures are necessary

Replies

f=CI.foo(p)

…
…
… f.bar()

First-class Futures

f=CI.foo(p)

…
…
… CI.foo(f) CI.foo(f)

•  Only strict operations are blocking (access to a future)
•  Communicating a future is not a strict operation

16/03/10

8

First-class Futures and Hierarchy

Without first-class futures, one thread is systematically
blocked in the composite component.

f=f’

First-class Futures and Hierarchy

… …
…

Almost systematic dead-lock in ProActive

A lot of blocked threads otherwise

Reply Strategies

In ASP / ProActive, the result is insensitive to the order of
replies (shown for ASP-calculus)

experiments with different strategies

Future Update Strategies

•  How to bring future values to components that need them
•  Different strategies can be envisioned
•  A “naive” approach: Any component can receive a value for

a future reference it holds.
•  More operational is the lazy approach:

require future value

« On demand » future update
No-unnecessary transfer of values - Single step uptate

« registration delay + time for transfer »
Results stored for long term Not much operational.

16/03/10

9

Eager home-based future update

•  A strategy avoiding to store future values indefinitely
•  Relies on future registration and sends the value as soon

as it is calculated register future

register future
Results sent as soon as available - Un-necessary transfers

Every component with future reference registers
Garbage collection of computed results possible

Eager forward-based strategy

•  Future updates follow the same path as future flow
•  Each component remembers only the components to

which it forwarded the future

34

Results sent as soon as available

No registration required

Future updates form a chain intermediate components

Easy to garbage collect computed results

A Distributed Component Model with Futures

•  Primitive components contain the business code

•  Primitive components act as the unit of distribution and
concurrency (each thread is isolated in a component)

•  Communication is performed on interfaces and follows
component bindings

•  Futures allow communication to be asynchronous
requests

•  Futures are transparent can lead to optimisations
and are a convenient programming abstraction but
…

What Can Create Deadlocks?

•  A race condition:

•  Detecting deadlocks can be difficult behavioural specification and
verification techniques (cf Eric Madelaine)

16/03/10

10

Conclusion

•  An overview of asynchronism and different
communication timings

•  Applied to components with richer language constructs
(futures, collective interfaces, …)

•  Still a lot of other distributed computing paradigms exist
(Ambient Talk, creol, X10 for example)

•  A formalism for expressing communication ordering

Exercise 1: Request queue

•  In CCS with parameters (a value can be a request)
-  Express a request queue:

-  Also express 2 simple processes accessing it

•  Same thing in asynchronous CCS (without and with
RDV)

Request
queue Enqueue(R)

Dequeue(R)

Hint from last course: Regi = read(i).Regi + write(x).Reg x

Exercise 2: find a solution to the deadlock slide 37

Exercise 3: Ensuring causal ordering with a
sending queue

In the example below, suppose that the bottom thread has
a sending queue, that is it sends all messages to an
additional thread that emits the final messages.
-  Draw the new message exchanges
-  Suppose the communications are synchronous, what

is lost by adding this new thread? what is the new
overall ordering (what if CO, FIFO, or asynch?)

Exercise 4: Ensuring causal ordering with
many sending queues

•  Same thing but with one sending queue per destination
process
-  Draw the new message exchanges
-  Suppose the communications are synchronous, what

is lost by adding this new thread? what is the new
overall ordering (what if CO, FIFO, or asynch?)

16/03/10

11

Pointeurs pour exposés SSDE

wikipedia Model-checking:
http://en.wikipedia.org/wiki/Model_checking

Sites
•  SPIN: http://spinroot.com/
•  SMV: http://www-cad.eecs.berkeley.edu/~kenmcmil/
•  PSL/SuGaR: http://www.pslsugar.org/

http://www.haifa.il.ibm.com/projects/verification/sugar/
•  Ptolemy: http://ptolemy.eecs.berkeley.edu/
•  Metropolis: http://www.gigascale.org/metropolis/
•  Bandera: http://bandera.projects.cis.ksu.edu/
•  Blast: http://www-cad.eecs.berkeley.edu/~blast/
•  Slam: http://research.microsoft.com/slam/
•  SPEC#: http://research.microsoft.com/specsharp/

 http://spex.projects.cis.ksu.edu/spex-jml/
•  AmbientTalk: http://prog.vub.ac.be/amop/
•  Fractal: http://fractal.objectweb.org/documentation.html

Sites
•  SCA+ Frascati:

http://www.davidchappell.com/articles/Introducing_SCA.pdf
http://wiki.ow2.org/frascati/

•  AltaRica/ARC:
 http://altarica.labri.fr/tools:arc
 http://altarica.labri.fr/api-docs/current/arc/arc-handbook.pdf

•  Divine:
 http://divine.fi.muni.cz/page.php?page=overview
 http://divine.fi.muni.cz/page.php?page=language

•  MCRL2
 http://www.mcrl2.org/mcrl2/wiki/index.php/Tool_manual_pages
 http://www.mcrl2.org/mcrl2/wiki/index.php/MCRL2_primer

