r
)
3z
S @

NNNNNNNNNNNNNN
DE LA RECHERCHE
IIIIIIIIIIII
SOPHIA ANTIPOLIS

Communication and
Concurrency: CCS

R. Milner, “A Calculus of Communicating Systems”,
1980

cours SSDE — Master 1

Why calculi?

* Prove properties on programs and languages

* Principle: tiny syntax, small semantics, to be
nandled on paper or mechanically

* Prove properties on the principles of a language
or a programming paradigm

Examples: lambda calculus, sigma calculus, ...

Static semantics : examples

« Checks non-syntactic constraints
« compiler front-end :
- declaration and utilisation of variables,
- typing, scoping, ...
* or back-ends : optimisers
» defines legal programs :
- static typing => no execution error ?
- Java byte-code verifier

What can we do/know about a
program without executing it?

Dynamic semantics

« Gives a meaning to the program (a semantic
value)

* Describes the behaviour of a (legal) program
* Defines a language interpreter

e->e

leti=3in2% ->2*3->6

Objective = prove properties on
Program execution
(optimizations, determinacy,

— subject reduction, ...)

The different semantic families

* Denotational semantics
- mathematical model, high level, abstract
« Axiomatic semantics

- provides the language with a theory for
proving properties / assertions of programs

e Operational semantics
- expresses the evaluation of a program
- used to build evaluators, simulators.

What about concurrency and communication?

 Different timing (synchronous/asynchronous ...)

 Different programming models (what is the unit
of concurrency? What is sufficient to
characterize an execution?...?)

* |Interaction between communication/
concurrency/shared memory!

Through CCS, this course is a simple
study of synchronous communications

SEMANTICS

Operational Semantics

* Describes the computation

« Generally uses states and configuration of an
abstract machine:

- Stack, memory state, registers, heap...
Abstract machine transformation steps
Several different operational semantics

Natural Semantics : big steps (Kahn 1986)

* Defines the results of evaluation.
 Direct relation from programs to results
env |- prog => result
- env: binds variables to values

- result: value given by the execution of prog
Reduction Semantics : small steps
describes each elementary step of the evaluation
* rewriting relation : reduction of program terms

» stepwise reduction: <prog, s> -> <prog’, s >
— infinitely, or until reaching a normal form.

Deduction Rules

P—Q P

9

Labelled Transition Systems (LTS)

« Basic model for representing reactive, concurrent,
parallel, communicating systems.

* Definition:
e<3,s0,L, T>
e S = set of states
e SO € S = an initial state
e L = set of labels (events, communication actions, etc)
o | CSXxLxXxS =setof transitions

a
e Notation: s1 —> s2 = (s1,a,s2)&T

An example

Ven

collectb 2p 1p collectl

ven b Venl
big \\\i:%tle
collectb .Ven collectl .Ven
Exercise:

What are the possible traces (output sequences) of Ven?

CCS -SYNTAX AND
SEMANTICS

CCS syntax

« Channel names: a, b, c, ...
 Co-names: &,b,¢,. ..

» Silent action: t

.+ Actions: w = a | a | 7
* Processes:

P.Q === 0 inaction
. P prefix
P | Q parallel

P+ Q (external) choice
(va)P restriction
reck P process P with definition K = P

K (defined) process name

A tiny example

cl
recct (Tick.C1) K >

tick

Labelled graph Figure: The transition graph for C1

e vertices: process expressions

* labelled edges: transitions

« Each derivable transition of a vertex is depicted
» Abstract from the derivations of transitions

Exercise:
What are the possible traces (output sequences) of C17?

CCS : behavioural semantics (1)
Operators and rules

* Action prefix:

1. P Lt

PEP Q@iq
PIQ ~ P|Q

e Communication:

 Parallelism

P“P — Q'

plQ p/lo PIQL PIQ

CCS : behavioural semantics (2)
Operators and rules

« Non-deterministic choice

oo PL P
P+Q L Q P+Q L P

PLE P +4az
(va)P & (va)P’

» Scope restriction

P[reCKP/K] gy =

 Recursive definition

I’eCKP P’

Derivations
(construction of each transition step)

Prefix
aP & . P
Sl _ Prefix
aPlQ a_P|Q a.R2. R
Par-2

aP|Q|aR = P|Q|R
Par-2(Par_L(Prefix), Prefix)

One amongst 3 possible derivations of (a.P | Q) | a.rR

Exercise: what are the other possible derivations?

More general recursion

 To have a recursion over several variables we can use:
let rec K1=P1

and K2=P2

and
in Pn

for example
let rec A=a.B and B=b.A in A+B
-2_> |et rec A=a.B and B=b.A in B

Exercise: Alternated Bit Protocol

Fwd channel

Bwd channel

emitter receiver

Hypotheses: channels can loose
messages

Write emitter in z. uiement:
CCS (use Iet reC) the protocol ensures no loss of

messages

20

Example: Alternated Bit Protocol (2)

o emitter =
let rec emO = ack1 . emO + imss . em1
and em1 =in0 . em1 + ack0 . em2
and em2 = ack0 . em2 + imss . em3
and em3 = in1 . em3 + ack1 . em0
In emO
+ ABP =

emitter | Fwd_channel | Bwd_channel | receiver

Note this shows how to build a CCS term from
1a LTS, we have seen the other direction

Example: Alternated Bit Protocol (3)

Channels that loose and
duplicate messages (in0
and in1) but preserve their
order ?

* Exercise :
0) Draw the LTS describing the perfect channel (no
loss — no duplication)
1) Draw an LTS describing the loosy channel
behaviour

2) Write the same description in CCS

Mastére RSD - TC4 oct-nov 2007 22

Exercise (4): synchronized product

Compute the synchronized product
of the LTS representing the ABP

emitter with the (forward) Channel:

new {in0, in1} in

(Emitter | Channel)

1mss

Exercise: synchronized product
Correction ? partially...

local {in0, in1} in
(Emitter || Channel)

Exercise: synchronized product
Correction ? Tool generated LTS...

EQUIVALENCES

Why an equivalence relation?

* Identify similar processes

» |dea: 2 equivalent processes should behave the same -
or more or less the same

 \What does “behave the same” mean?

« Strict structural equality is not sufficient (optimisation /
alternative implementation / ...)

 What is an equivalence relation”?
- symmetrical:
- transitive:

- reflexive:

Behavioural Equivalences

 |ntuition:
- Same possible sequences of observable actions
- Finite / infinite sequences
- Various refinements of the concept of observation

» Definition: Trace Equivalence

Fora LTS (S, sO, L, T) its Trace language T is the set of finite
sequences {(t =t,, ..., t, such that 3s,,...,s, € S"*".
and (Sn-1’tn’sn) S T}

Two LTSs are Trace equivalent iff their Trace languages are equal.

Corresponding Ordering: Trace inclusion

Trace Languages, Examples

* Those 2 systems are trace equivalent:

2 a/\

p\e = [¢ 0@ @0 @0

« A trace language can be an infinite set:

IRE: T={(, (a), (a,a), (a,...,a),...
O ..} |

Exercice: Trace equivalence

Are those 3 LTSs trace-equivalent?

Bisimulation

 Behavioural Equivalence

- non distinguishable states by observation:

two states are equivalent if for all possible transitions labelled
by the same action, there exist equivalent resulting states.

. . . ® o~ ®

 Bisimulations
R C SxS is a simulation iff act act

; V(paq) ER, | ‘

p_lypET=>3q.ql,qgETand (p’,q) ER o~
- R is a bisimulation if the same condition hold with g too:
V(p,a) ER,

qtsqgEeT=>3q¢.9lsqgETand (p,q) ER

 ~ s the coarsest bisimulation:
p~q if there exists a bisimulation R such thatp R q

2 LTS are bisimilar iff their initial states are in ~
-> all their reachable states are in ~

Transitivity

 |f R, S are bisimulations, then so is their composition
RS={P,P)| 3 Q.PRQand QS P’}

* In particular, ~~ € -~, i.e., bisimilarity is transitive

* ~is an equivalence relation

Exercise:
Explain why RS is a bisimulation

Bisimulation Properties

 More preoise than trace equivalence :

74 B1 ‘/\ No state in B is equivalent to

\ L A1 - Check
A2 gA3 B3 ¢B4

* Preserves deadlock properties.

« Can be built by adding elements in the
equivalence relation

« Coinductive definition (biggest set verifying ...)

Bisimulation Properties (2)

« Congruence laws:
P1~P2 => a.P1~ a.P2 (V P1,P2,a)
P1~P2, Q1~Q2=>P1+Q1 ~ P2+Q2
P1~P2, Q1~Q2=>P1|Q1 ~ P2|Q2
Etc...

« ~is a congruence for all CCS operators :

for any CCS context C[.], C[P] ~ C[Q] <=> P~Q
Basis for compositional proof methods
« Maximal trace is not a congruence

Weak bisimulation(1)

 Weak bisimulation

- Let us hide some actions (tau transitions)

- We define a new reduction £ that allows for arbitrary
many internal actions, more preciisely:

T
> >
v/ TNy act T

Weak bisimulation (2)

A weak bisimulation is a relation R such that
PRQ= vu P.P (PLP = 3Q.Q 5Q and PR Q)
and conversely

» Note the dissymetry between the use of £>on the left and
of £ on the right

» Two processes are weakly bisimilar (notation P = Q) if
there exists a weak bisimulation R such that P R Q.

Coffee machine Exercise

reck coin.(coffee.ccup.K + tea.tcup.K)
coin.reck (coffee.ccup.coin.K + tea.tcup.coin.K)
reck(coin.coffee.ccup.K + coin.tea.tcup.K)

Question: which of these machines can we safely consider
equivalent?

Note that these machines have all the same traces.

ADDITIONAL NOTATIONS AND
CONSTRUCTS

Alternative Notations (if you read books or
papers or for other courses)

def

recc1(Tick.C1) <> €1 tick.Cl

* |nput/output: a=7a;a=!a

* |or]l

Extension: Parameterized actions

input of data at port a, a(x).P
a(x) binds free occurrences of x in P .

Port a represents {a(v).vED} where D is a family of data
values

Output of data at port a, a(e).P where e is a data
expression.

Transition Rules depend on extra machinery for expression

evaluation: Val(e) is the data value in D to which e evaluates

a(v)
R (in) a(x).P — P{v/x} if vED where {v/x} is substitution

R (out)ae)P 2Y)P if Valle)=v
=xample Reg; = read(i).Reg; + write(x).Reg,

40

CONCLUSION

* A synchronous communication language

* A (complex but) efficient notion of equivalence on
processes

 What is missing?

- Channel communication (like in pi-calculus):
a channel name can be communicated over another
channel
-> much more complex

- No data or computation

EXERCISES

Guided exercise: dining philosophers

fork

Drop_right} Drop_left!

Drop?

Eat
ake left T1ake_ITOR
ake_right

Take le Take?

philosopher

let rec idIin = idle.idling + take left.take right.eating +
take right.take left.eating

and eating = eat.eating + drop_left.drop_right.idling +
drop_right.drop_left.idling

in idling Deadlock or not ?

Mutual exclusion ?
Consider 2 philos and 2 forks

(trivial) éxample: Milner’s
Scheduler

* Processes iteratively start and finish executing
tasks (one task per process)

» Task starts are cyclically ordered

cycler = a.start.(.0 | end.cycler)

scheduler 3 = new a1, a2, a3 In

([a1/ o, a2/B, start1/start, end1/end] cycler
a2/ a, a3/p, start2/start, end2/end] cycler
[a3/ a, al/p, start3/start, end3/end] cycler
a1.0)

properties?

expanded

Scheduler_2 reducing

start1
end2

end1

Scheduler_2 reduced

O end1 sta

end2

end2
end start2 start1

end2

end1
end1

start2 (O
end2

is this LTS bisimilar to the first one?

Exercise: Bisimulations

Are those 3 LTSs equivalent by:
- Strong bisimulation?

- Weak bisimulation ?

In each case, give a proof.

Exercise: Bisimulation

« Exercice:
1) Compute the strong minimal automaton for A1.
2) Compute the weak minimal automaton for A1.

Exercise

def
« Compare the construct = and recy:

1. Letus st?lrtfby a simple pair of processes
e _
A = aA+0bB

B def a.A

2. Suppose rec can accept several variables:
rec (K=P,L=Q) express the same term

3. Isit possible to express the same thing with a single variable K?
Here are some possible hints:
e Define a recursive process All that contains A and B and can

trigger each of them by the reception of a message on channel cA
or cB

e (we suppose cA and cB cannot be used elsewhere)

e What kind of equivalence between the two expressions do you
have?

Additional exercise

« Why is maximal trace not a congruence? give an
example. (small hint — use the example of the course)

CORRECTION

Exercice: Alternated Bit Protocol
Correction (1):

Channels that loose and
duplicate messages (inl
and inl) but preserve their
order ?

1) Draw an automaton
describing the loosy
channel behaviour

* It is a symmetric system, receiving ?in0 and ?in1 messages, then delivering 0,
1 or more times the corresponding !outO or lout1 message.

» On each side (bit 0 or 1), the initial state has a single transition for the
reception.

* In the next state, it can either : return silently to the initial state (= lose the
message), deliver the message and return to the initial state (exactly one
delivery), or deliver the message and stay in the same state (thus enabling
duplication).
I I —

=

Exercice: Alternated Iéit Protocol
Correction (2):

Channels that loose and
duplicate messages (inl
and inl) but preserve their
order ?

2) Write it in CCS

* Lousy channel =

let rec {chO = ?in0 :ch1 + ?in1:.ch2
and ch1 =t :ch1 + 7 :chO + 'outO :ch1 + !outO :chO
and ch2 =t :ch2 + Tt :chO + !outO :ch2 + 'outO :chO

}
in chO

I L —

Exercice: Alternated Bit Protocol
Correction (3):

Channels that loose and
duplicate messages (in0
and inl) but preserve their
order ?

Other Solutions:

More generally,
parameterized model :

Exercice 2 : Bisimulations

Are those 3 LTSs equivalent by:

- Strong bisimulation?

NO ! Need find non equivalent states. E.g. counter
example for 1 # 2:

States 1.0 and 1.1 are different because 1.0 can do ?
in0 and 1.1 cannot.

Then 1.1 and 2.1 are different because 1.1 can do !
out0 -> 1.0, while no 2.1 !outO transitions can go to a
state equivalent to 1.0.

- Weak bisimulation ?

YES. Exhibit a partition of equivalent states:
1={1.0,2.0}, 2={1.1, 2.1}

Check all possible (t*at*) transitions:

?inl ~?in0 1-1in0->2,...,2 - lout0.t* -> 1

Remark: this transition set defines the minimal
representant modulo weak bisimulation: —

