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Why calculi? 

•  Prove properties on programs and languages 
•  Principle: tiny syntax, small semantics, to be 

handled on paper or mechanically 
•  Prove properties on the principles of a language 

or a programming paradigm 

•  Examples: lambda calculus, sigma calculus, … 



Static semantics : examples 

•  Checks non-syntactic constraints 
•  compiler front-end : 
-  declaration and utilisation of variables, 
-  typing, scoping, … 

•  or back-ends : optimisers 
•  defines legal programs : 
-  static typing => no execution error ? 
-  Java byte-code verifier 
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What can we do/know about a  
program without executing it? 



Dynamic semantics 

•  Gives a meaning to the program (a semantic 
value)  

•  Describes the behaviour of a (legal) program 
•  Defines a language interpreter  

e -> e’ 
let i=3 in 2*i   -> 2*3 -> 6 
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Objective = prove properties on 
Program execution  
(optimizations, determinacy,  
subject reduction, …) 



The different semantic families 

•  Denotational semantics 
-  mathematical model, high level, abstract  

•  Axiomatic semantics 
-  provides the language with a theory for 

proving properties / assertions of programs 
•  Operational semantics 
-  expresses the evaluation of a program 
-  used to build evaluators, simulators. 
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What about concurrency and communication? 

•  Different timing (synchronous/asynchronous …) 
•  Different programming models (what is the unit 

of concurrency? What is sufficient to 
characterize an execution?...?) 

•  Interaction between communication/
concurrency/shared memory! 

Through CCS, this course  is a simple 
study of synchronous communications 



SEMANTICS 



Operational Semantics  

•  Describes the computation 
•  Generally uses states and configuration of an 

abstract machine: 
-  Stack, memory state, registers, heap... 

•  Abstract machine transformation steps 
•  Several different operational semantics 
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Natural Semantics : big steps (Kahn 1986) 
•  Defines the results of evaluation. 
•  Direct relation from programs to results  
                             env  |- prog  =>  result 
-  env: binds variables to values 
-  result: value given by the execution of prog 
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describes each elementary step of the evaluation 
•  rewriting relation : reduction of program terms 
•  stepwise reduction: <prog, s>  -> <prog’, s ’> 

–  infinitely, or until reaching a normal form. 

Reduction Semantics : small steps 



Deduction Rules 



Labelled Transition Systems (LTS) 

•  Basic model for representing reactive, concurrent, 
parallel, communicating systems. 

•  Definition: 
  < S, s0, L, T> 
  S = set of states 
  S0 ∈ S = an initial state 
  L = set of labels (events, communication actions, etc) 
  T ⊆ S x L x S  = set of transitions 

  Notation:   s1            s2  =  (s1, a, s2) ∈ T 
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a 



An example 

Exercise:  
What are the possible traces (output sequences) of Ven? 



CCS – SYNTAX AND 
SEMANTICS  



CCS syntax 

•  Channel names: a, b, c , . . . 
•  Co-names:    
•  Silent action: τ  
•  Actions: 
•  Processes: 



A tiny example 

recC1(Tick.C1)

Labelled graph 
•  vertices: process expressions 
•  labelled edges: transitions 
•  Each derivable transition of a vertex is depicted 
•  Abstract from the derivations of transitions 

Exercise:  
What are the possible traces (output sequences) of C1? 



CCS : behavioural semantics (1)  
Operators and rules 

•  Action prefix: 

•  Communication: 

•  Parallelism 



CCS : behavioural semantics (2)  
Operators and rules 

•  Non-deterministic choice 

•  Scope restriction 

•  Recursive definition 



Derivations 
(construction of each transition step) 
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Par-L 

a P | Q 
Par-2 

τ 

Prefix 
 a 

a 
Prefix 

One amongst 3 possible derivations of 

Par-2(Par_L(Prefix), Prefix) 

Exercise: what are the other possible derivations? 



More general recursion 

•  To have a recursion over several variables we can use: 
let rec K1=P1 
   and  K2=P2 
   and …. 
in Pn 

for example  
let rec A=a.B and B=b.A in A+B 
----> let rec A=a.B and B=b.A in B a 
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Exercise: Alternated Bit Protocol 

Hypotheses: channels can loose 
messages 

Requirement:  

the protocol ensures no loss of 
messages 

imss 

imss 

imss 
ack0 

ack0 

ack1 

ack1 

in0 

in1 

out0 

out1 
ack0 

omss 

ack1 

omss 

out0 

out1 

omss 

emitter 

Fwd_channel 

Bwd_channel 

receiver 

Write emitter in 
CCS (use let rec) 
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Example: Alternated Bit Protocol (2) 

•  emitter =  
          let rec em0 = ack1 . em0 + imss . em1 
                and em1 = in0 . em1 + ack0 . em2 
                and em2 = ack0 . em2 + imss . em3  
                and em3 = in1 . em3 + ack1 . em0    
                in em0 
•  ABP =  

emitter | Fwd_channel | Bwd_channel | receiver 

Note this shows how to build a CCS term from 
a LTS, we have seen the other direction  
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Example: Alternated Bit Protocol (3) 

Channels that  loose and 
duplicate messages (in0 
and in1) but preserve their 
order ? 

•  Exercise : 
0) Draw the LTS describing the perfect channel (no 

loss – no duplication) 
1) Draw an LTS describing the loosy channel 

behaviour 
2) Write the same description in CCS  



Exercise (4): synchronized product 

out0 out1 out0 

in1 τ in0 

out1 

τ τ 
τ 

Compute the synchronized product 
of the LTS representing the ABP 
emitter with the (forward) Channel: 

 new {in0, in1} in  

 (Emitter | Channel) 

imss 

imss 

imss 
ack0 

ack0 

ack1 

ack1 

in0 

in1 

0 1 

2 3 

0 
1 2 



Exercise: synchronized product 
Correction ? partially… 

 local {in0, in1} in 
 (Emitter || Channel) 

imss 

imss 
ack0 

ack0 

ack1 

ack1 

in1 

0,0 1,0 

2,0 

3,0 

out0 

!out1 

out0 

τ 
τ 1,1 

τ 

out0 

ack0 
2,1 τ 

τ 
τ 

τ 

out0 

3,1 

imss 



Exercise: synchronized product 
Correction ? Tool generated LTS… 



EQUIVALENCES 
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Why an equivalence relation?  

•  Identify similar processes 

•  Idea: 2 equivalent processes should behave the same - 
or more or less the same 

•  What does “behave the same” mean? 

•  Strict structural equality is not sufficient (optimisation / 
alternative implementation / …) 

•  What is an equivalence relation? 

-  symmetrical: 

-  transitive: 

-  reflexive: 



Behavioural Equivalences 

•  Intuition: 
-  Same possible sequences of observable actions 
-  Finite / infinite sequences 
-  Various refinements of the concept of observation 

•  Definition: Trace Equivalence 
 For a LTS (S, s0, L, T) its Trace language T is the set of finite 
sequences {(t = t1, …, tn such that ∃s0,…,sn ∈ Sn+1, 

 and (sn-1,tn,sn) ∈ T} 

 Two LTSs are Trace equivalent iff their Trace languages are equal. 

 Corresponding Ordering: Trace inclusion 

28 



Trace Languages, Examples 

•  Those 2 systems are trace equivalent: 

•  A trace language can be an infinite set: 
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≡a a a
b c b c T = {(), (a), (a,b), (a,c)} 

b
a T = {(), (a), (a,a), (a,…,a),… 

         (a,b), (a,a,b), (a,a,…,a,b), 
…} 



Exercice: Trace equivalence 

Are those 3 LTSs trace-equivalent? 

out0 out0 

in0 
τ 

out0 

in0 
τ out0 τ 

in0 

in0 
out0 



Bisimulation 
•  Behavioural Equivalence 

-  non distinguishable states by observation: 
   two states are equivalent if for all possible transitions labelled 

by the same action, there exist equivalent resulting states.  

•  Bisimulations 
R ⊆ SxS is a simulation iff 
-  ∀(p,q) ∈ R,  
     p       p’ ∈ T => ∃ q’. q       q’ ∈ T and (p’,q’) ∈ R 
-  R is a bisimulation if the same condition hold with q too: 
∀(p,q) ∈ R,  

     q       q’ ∈ T => ∃ q’. q       q’ ∈ T and (p’,q’) ∈ R 

•  ~ is the coarsest bisimulation:  
p~q if there exists a bisimulation R such that p R q 
2 LTS are bisimilar iff their initial states are in ~ 

-> all their reachable states are in ~ 
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~ 

~ 
act
 act


l 

l 

l 

l 



Transitivity 

•  If R, S are bisimulations, then so is their composition  
RS = {(P, P’) | ∃ Q. P R Q and Q S P’}  
•  In particular, ∼∼ ⊆ ∼, i.e., bisimilarity is transitive  
•   ∼ is an equivalence relation 

Exercise: 
Explain why RS is a bisimulation 



Bisimulation Properties  

•  More precise than trace equivalence : 

•  Preserves deadlock properties. 
•  Can be built by adding elements in the 

equivalence relation 
•  Coinductive definition (biggest set verifying …) 
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No state in B is equivalent to 
A1 - Check ~ 

a a a 

b c b c 

A0 

A1 

A2 A3 

B0 

B1 

B3 

B2 

B4 



Bisimulation Properties (2) 

•  Congruence laws: 
P1~P2  => a.P1 ~ a.P2  (∀ P1,P2,a) 
P1~P2,  Q1~Q2 => P1+Q1 ~ P2+Q2 
P1~P2,  Q1~Q2 => P1|Q1 ~ P2|Q2 
Etc… 

•  ~ is a congruence for all CCS operators : 

Basis for compositional proof methods 
•  Maximal trace is not a congruence 
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for any CCS context C[.],  C[P] ~ C[Q] <=> P~Q 



Weak bisimulation(1) 

•  Weak bisimulation 
-  Let us hide some actions (tau transitions) 
-  We define a new reduction       that allows for arbitrary 

many internal actions, more preciisely: 

35 

τ

τ*
 τ*
 τ*


act

act


µ 
⇒ 



Weak bisimulation (2) 

A weak bisimulation is a relation R such that 
P R Q ⇒ ∀µ, P, P’ (P →P’ ⇒ ∃Q’. Q ⇒Q’ and P’ R Q’) 

and conversely 
•  Note the dissymetry between the use of →on the left and 

of ⇒ on the right 
•  Two processes are weakly bisimilar (notation P ≈ Q) if 

there exists a weak bisimulation R such that P R Q. 

µ 
µ 

µ µ 



Coffee machine Exercise 



ADDITIONAL NOTATIONS AND 
CONSTRUCTS 



Alternative Notations (if you read books or 
papers or for other courses) 

•    

•  Input/output: a=?a ; a = !a 
•  | or || 
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recC1(Tick.C1)



Extension: Parameterized actions 

•  input of data at port a, a(x ).P 
•  a(x) binds free occurrences of x in P .  
•  Port a represents {a(v):v∈D} where D is a family of data 

values  
•  Output of data at port a, a(e).P where e is a data 

expression.  
•  Transition Rules depend on extra machinery for expression 

evaluation: Val(e) is the data value in D to which e evaluates  

•  R (in) a(x ).P  →  P{v/x} if v∈D where {v/x} is substitution  
•  R (out) a(e ).P   →   P      if   Val(e ) = v 
•  Example 
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a(v )  

a (v )  

Regi = read(i).Regi + write(x ).Regx  



CONCLUSION 

•  A synchronous communication language 
•  A (complex but) efficient notion of equivalence on 

processes 
•  What is missing? 
-  Channel communication (like in pi-calculus):  

a channel name can be communicated over another 
channel 
-> much more complex 

-  No data or computation 



EXERCISES 



Guided exercise: dining philosophers 

Take_left 
Take_right 

Take_right 

Take_left 

Drop_left! 

Drop_left 

Drop_right! 

Drop_right 

Idle 

Eat 
Drop? 

Take? 

let rec idling = idle.idling + take_left.take_right.eating + 
take_right.take_left.eating 

and eating = eat.eating + drop_left.drop_right.idling + 
drop_right.drop_left.idling 

in idling 

Consider 2 philos and 2 forks 

philosopher 

fork 

Deadlock or not ? 
Mutual exclusion ? 



(trivial) example: Milner’s 
Scheduler 

•  Processes iteratively start and finish executing 
tasks (one task per process) 

•  Task starts are cyclically ordered 

cycler = α.start.( β.0 | end.cycler) 

properties? 

scheduler_3 = new α1, α2, α3 in 

(  [α1/ α, α2/β, start1/start, end1/end] cycler 

| [α2/ α, α3/β, start2/start, end2/end] cycler 

| [α3/ α, α1/β, start3/start, end3/end] cycler 

| α1.0) 



Scheduler_2 
expanded 

start1 

tau 

tau 

tau 

tau 
start1 

start2 

start2 

end1 

end1 

end1 

end1 

end2 

end2 

end2 

end2 

end2 

end1 



Scheduler_2 reducing 

start1 

tau 

tau 

tau 

tau 
start1 

start2 

start2 

end1 

end1 

end1 

end1 

end2 

end2 

end2 

end2 

end2 

end1 



Scheduler_2 reduced 

start1 

start1 

start2 

start2 

end1 

end1 

end1 

end2 
end2 

end2 

end2 

end1 

is this LTS bisimilar to the first one? 



Exercise: Bisimulations 

Are those 3 LTSs equivalent by: 

-  Strong bisimulation? 

-  Weak bisimulation ? 

In each case, give a proof. 

out0 out0 

in0 
τ 

out0 

in0 
τ 

out0 τ 

in0 in1 

τ 



Exercise: Bisimulation 

•  Exercice : 
1)  Compute the strong minimal automaton for A1. 
2)  Compute the weak minimal automaton for A1. 

out0 out0 

τin0 
τ

A1 



Exercise  
•  Compare the construct  = and recK : 

1.  Let us start by a simple pair of processes 

2.  Suppose rec can accept several variables:  
rec (K=P,L=Q) express the same term 

3.  Is it possible to express the same thing with a single variable K? 
Here are some possible hints: 
  Define a recursive process All that contains A and B and can 

trigger each of them by the reception of a message on channel cA 
or cB 

  (we suppose cA and cB cannot be used elsewhere) 
  What kind of equivalence between the two expressions do you 

have? 

A
def= ā.A + b.B

B
def= a.A

def  



Additional exercise 

•  Why is maximal trace not a congruence? give an 
example. (small hint – use the example of the course) 



CORRECTION 



Exercice: Alternated Bit Protocol 
Correction (1): 

!out0 !out1 !out0 

?in1 τ ?in0 

!out1 

τ τ 
τ 

Channels that  loose and 
duplicate messages (in0 
and in1) but preserve their 
order ? 

1) Draw an automaton 
describing the loosy 
channel behaviour 
•  It is a symmetric system, receiving ?in0 and ?in1 messages, then delivering 0 , 
1 or more times the corresponding !out0 or !out1 message. 

•  On each side (bit 0 or 1), the initial state has a single transition for the 
reception. 

•  In the next state, it can either : return silently to the initial state (= lose the 
message), deliver the message and return to the initial state (exactly one 
delivery), or deliver the message and stay in the same state (thus enabling 
duplication). 



Exercice: Alternated Bit Protocol 
Correction (2): 

          let rec {ch0 = ?in0 :ch1 + ?in1:ch2 
                and ch1 = τ :ch1 + τ :ch0 + !out0 :ch1 + !out0 :ch0 
                and ch2 = τ :ch2 + τ :ch0 + !out0 :ch2 + !out0 :ch0 
                }  
                in ch0 

!out0 !out1 !out0 

?in1 τ ?in0 

!out1 

τ τ 
τ 

•  Lousy channel =   

Channels that  loose and 
duplicate messages (in0 
and in1) but preserve their 
order ? 

 2) Write it in CCS 



Exercice: Alternated Bit Protocol 
Correction (3): 

!out0 !out0 

?in0 
τ 

Channels that  loose and 
duplicate messages (in0 
and in1) but preserve their 
order ? 

 Other Solutions: 

More generally, 
parameterized model : 

!out0 

?in0 
τ 

!out(x) τ 
?in(x) 

x 



Exercice 2 : Bisimulations 

Are those 3 LTSs equivalent by: 

-  Strong bisimulation? 
NO ! Need find non equivalent states. E.g. counter 
example for 1 ≠ 2:  

States 1.0 and 1.1 are different because 1.0 can do ?
in0 and 1.1 cannot. 

Then 1.1 and 2.1 are different because 1.1 can do !
out0 -> 1.0, while no 2.1 !out0 transitions can go to a 
state equivalent to 1.0. 

-  Weak bisimulation ? 
YES. Exhibit a partition of equivalent states: 

1={1.0,2.0}, 2={1.1, 2.1} 

Check all possible (τ*aτ*) transitions: 

 1 - !in0 -> 2, … , 2 - !out0.τ* -> 1 

Remark: this transition set defines the minimal 
representant modulo weak bisimulation… 

!out0 !out0 

?in0 
τ 

!out0 

?in0 
τ 

!out0 τ 

?in0 ?in1 

τ 

1.0 

1.1 

2.1 

2.0 


