
Communication and
Concurrency: CCS

R. Milner, “A Calculus of Communicating Systems”,
1980

cours SSDE – Master 1

Why calculi?

•  Prove properties on programs and languages
•  Principle: tiny syntax, small semantics, to be

handled on paper or mechanically
•  Prove properties on the principles of a language

or a programming paradigm

•  Examples: lambda calculus, sigma calculus, …

Static semantics : examples

•  Checks non-syntactic constraints
•  compiler front-end :
-  declaration and utilisation of variables,
-  typing, scoping, …

•  or back-ends : optimisers
•  defines legal programs :
-  static typing => no execution error ?
-  Java byte-code verifier

3

What can we do/know about a
program without executing it?

Dynamic semantics

•  Gives a meaning to the program (a semantic
value)

•  Describes the behaviour of a (legal) program
•  Defines a language interpreter

e -> e’
let i=3 in 2*i -> 2*3 -> 6

4

Objective = prove properties on
Program execution
(optimizations, determinacy,
subject reduction, …)

The different semantic families

•  Denotational semantics
-  mathematical model, high level, abstract

•  Axiomatic semantics
-  provides the language with a theory for

proving properties / assertions of programs
•  Operational semantics
-  expresses the evaluation of a program
-  used to build evaluators, simulators.

5

What about concurrency and communication?

•  Different timing (synchronous/asynchronous …)
•  Different programming models (what is the unit

of concurrency? What is sufficient to
characterize an execution?...?)

•  Interaction between communication/
concurrency/shared memory!

Through CCS, this course is a simple
study of synchronous communications

SEMANTICS

Operational Semantics

•  Describes the computation
•  Generally uses states and configuration of an

abstract machine:
-  Stack, memory state, registers, heap...

•  Abstract machine transformation steps
•  Several different operational semantics

8

Natural Semantics : big steps (Kahn 1986)
•  Defines the results of evaluation.
•  Direct relation from programs to results
 env |- prog => result
-  env: binds variables to values
-  result: value given by the execution of prog

9

describes each elementary step of the evaluation
•  rewriting relation : reduction of program terms
•  stepwise reduction: <prog, s> -> <prog’, s ’>

–  infinitely, or until reaching a normal form.

Reduction Semantics : small steps

Deduction Rules

Labelled Transition Systems (LTS)

•  Basic model for representing reactive, concurrent,
parallel, communicating systems.

•  Definition:
  < S, s0, L, T>
  S = set of states
  S0 ∈ S = an initial state
  L = set of labels (events, communication actions, etc)
  T ⊆ S x L x S = set of transitions

  Notation: s1  s2 = (s1, a, s2) ∈ T

11

a

An example

Exercise:
What are the possible traces (output sequences) of Ven?

CCS – SYNTAX AND
SEMANTICS

CCS syntax

•  Channel names: a, b, c , . . .
•  Co-names:
•  Silent action: τ
•  Actions:
•  Processes:

A tiny example

recC1(Tick.C1)

Labelled graph
•  vertices: process expressions
•  labelled edges: transitions
•  Each derivable transition of a vertex is depicted
•  Abstract from the derivations of transitions

Exercise:
What are the possible traces (output sequences) of C1?

CCS : behavioural semantics (1)
Operators and rules

•  Action prefix:

•  Communication:

•  Parallelism

CCS : behavioural semantics (2)
Operators and rules

•  Non-deterministic choice

•  Scope restriction

•  Recursive definition

Derivations
(construction of each transition step)

18

Par-L

a P | Q
Par-2

τ

Prefix
 a

a
Prefix

One amongst 3 possible derivations of

Par-2(Par_L(Prefix), Prefix)

Exercise: what are the other possible derivations?

More general recursion

•  To have a recursion over several variables we can use:
let rec K1=P1
 and K2=P2
 and ….
in Pn

for example
let rec A=a.B and B=b.A in A+B
----> let rec A=a.B and B=b.A in B a

20

Exercise: Alternated Bit Protocol

Hypotheses: channels can loose
messages

Requirement:

the protocol ensures no loss of
messages

imss

imss

imss
ack0

ack0

ack1

ack1

in0

in1

out0

out1
ack0

omss

ack1

omss

out0

out1

omss

emitter

Fwd_channel

Bwd_channel

receiver

Write emitter in
CCS (use let rec)

21

Example: Alternated Bit Protocol (2)

•  emitter =
 let rec em0 = ack1 . em0 + imss . em1
 and em1 = in0 . em1 + ack0 . em2
 and em2 = ack0 . em2 + imss . em3
 and em3 = in1 . em3 + ack1 . em0
 in em0
•  ABP =

emitter | Fwd_channel | Bwd_channel | receiver

Note this shows how to build a CCS term from
a LTS, we have seen the other direction

Mastère RSD - TC4 oct-nov 2007 22

Example: Alternated Bit Protocol (3)

Channels that loose and
duplicate messages (in0
and in1) but preserve their
order ?

•  Exercise :
0) Draw the LTS describing the perfect channel (no

loss – no duplication)
1) Draw an LTS describing the loosy channel

behaviour
2) Write the same description in CCS

Exercise (4): synchronized product

out0 out1 out0

in1 τ in0

out1

τ τ
τ

Compute the synchronized product
of the LTS representing the ABP
emitter with the (forward) Channel:

 new {in0, in1} in

 (Emitter | Channel)

imss

imss

imss
ack0

ack0

ack1

ack1

in0

in1

0 1

2 3

0
1 2

Exercise: synchronized product
Correction ? partially…

 local {in0, in1} in
 (Emitter || Channel)

imss

imss
ack0

ack0

ack1

ack1

in1

0,0 1,0

2,0

3,0

out0

!out1

out0

τ
τ 1,1

τ

out0

ack0
2,1 τ

τ
τ

τ

out0

3,1

imss

Exercise: synchronized product
Correction ? Tool generated LTS…

EQUIVALENCES

26

Why an equivalence relation?

•  Identify similar processes

•  Idea: 2 equivalent processes should behave the same -
or more or less the same

•  What does “behave the same” mean?

•  Strict structural equality is not sufficient (optimisation /
alternative implementation / …)

•  What is an equivalence relation?

-  symmetrical:

-  transitive:

-  reflexive:

Behavioural Equivalences

•  Intuition:
-  Same possible sequences of observable actions
-  Finite / infinite sequences
-  Various refinements of the concept of observation

•  Definition: Trace Equivalence
 For a LTS (S, s0, L, T) its Trace language T is the set of finite
sequences {(t = t1, …, tn such that ∃s0,…,sn ∈ Sn+1,

 and (sn-1,tn,sn) ∈ T}

 Two LTSs are Trace equivalent iff their Trace languages are equal.

 Corresponding Ordering: Trace inclusion

28

Trace Languages, Examples

•  Those 2 systems are trace equivalent:

•  A trace language can be an infinite set:

29

≡a a a
b c b c T = {(), (a), (a,b), (a,c)}

b
a T = {(), (a), (a,a), (a,…,a),…

 (a,b), (a,a,b), (a,a,…,a,b),
…}

Exercice: Trace equivalence

Are those 3 LTSs trace-equivalent?

out0 out0

in0
τ

out0

in0
τ out0 τ

in0

in0
out0

Bisimulation
•  Behavioural Equivalence

-  non distinguishable states by observation:
 two states are equivalent if for all possible transitions labelled

by the same action, there exist equivalent resulting states.

•  Bisimulations
R ⊆ SxS is a simulation iff
-  ∀(p,q) ∈ R,
 p p’ ∈ T => ∃ q’. q q’ ∈ T and (p’,q’) ∈ R
-  R is a bisimulation if the same condition hold with q too:
∀(p,q) ∈ R,

 q q’ ∈ T => ∃ q’. q q’ ∈ T and (p’,q’) ∈ R

•  ~ is the coarsest bisimulation:
p~q if there exists a bisimulation R such that p R q
2 LTS are bisimilar iff their initial states are in ~

-> all their reachable states are in ~

31

~

~
act
 act

l

l

l

l

Transitivity

•  If R, S are bisimulations, then so is their composition
RS = {(P, P’) | ∃ Q. P R Q and Q S P’}
•  In particular, ∼∼ ⊆ ∼, i.e., bisimilarity is transitive
•  ∼ is an equivalence relation

Exercise:
Explain why RS is a bisimulation

Bisimulation Properties

•  More precise than trace equivalence :

•  Preserves deadlock properties.
•  Can be built by adding elements in the

equivalence relation
•  Coinductive definition (biggest set verifying …)

33

No state in B is equivalent to
A1 - Check ~

a a a

b c b c

A0

A1

A2 A3

B0

B1

B3

B2

B4

Bisimulation Properties (2)

•  Congruence laws:
P1~P2 => a.P1 ~ a.P2 (∀ P1,P2,a)
P1~P2, Q1~Q2 => P1+Q1 ~ P2+Q2
P1~P2, Q1~Q2 => P1|Q1 ~ P2|Q2
Etc…

•  ~ is a congruence for all CCS operators :

Basis for compositional proof methods
•  Maximal trace is not a congruence

34

for any CCS context C[.], C[P] ~ C[Q] <=> P~Q

Weak bisimulation(1)

•  Weak bisimulation
-  Let us hide some actions (tau transitions)
-  We define a new reduction that allows for arbitrary

many internal actions, more preciisely:

35

τ

τ*
 τ*
 τ*

act

act

µ
⇒

Weak bisimulation (2)

A weak bisimulation is a relation R such that
P R Q ⇒ ∀µ, P, P’ (P →P’ ⇒ ∃Q’. Q ⇒Q’ and P’ R Q’)

and conversely
•  Note the dissymetry between the use of →on the left and

of ⇒ on the right
•  Two processes are weakly bisimilar (notation P ≈ Q) if

there exists a weak bisimulation R such that P R Q.

µ
µ

µ µ

Coffee machine Exercise

ADDITIONAL NOTATIONS AND
CONSTRUCTS

Alternative Notations (if you read books or
papers or for other courses)

• 

•  Input/output: a=?a ; a = !a
•  | or ||

39

recC1(Tick.C1)

Extension: Parameterized actions

•  input of data at port a, a(x).P
•  a(x) binds free occurrences of x in P .
•  Port a represents {a(v):v∈D} where D is a family of data

values
•  Output of data at port a, a(e).P where e is a data

expression.
•  Transition Rules depend on extra machinery for expression

evaluation: Val(e) is the data value in D to which e evaluates

•  R (in) a(x).P → P{v/x} if v∈D where {v/x} is substitution
•  R (out) a(e).P → P if Val(e) = v
•  Example

40

a(v)

a (v)

Regi = read(i).Regi + write(x).Regx

CONCLUSION

•  A synchronous communication language
•  A (complex but) efficient notion of equivalence on

processes
•  What is missing?
-  Channel communication (like in pi-calculus):

a channel name can be communicated over another
channel
-> much more complex

-  No data or computation

EXERCISES

Guided exercise: dining philosophers

Take_left
Take_right

Take_right

Take_left

Drop_left!

Drop_left

Drop_right!

Drop_right

Idle

Eat
Drop?

Take?

let rec idling = idle.idling + take_left.take_right.eating +
take_right.take_left.eating

and eating = eat.eating + drop_left.drop_right.idling +
drop_right.drop_left.idling

in idling

Consider 2 philos and 2 forks

philosopher

fork

Deadlock or not ?
Mutual exclusion ?

(trivial) example: Milner’s
Scheduler

•  Processes iteratively start and finish executing
tasks (one task per process)

•  Task starts are cyclically ordered

cycler = α.start.(β.0 | end.cycler)

properties?

scheduler_3 = new α1, α2, α3 in

([α1/ α, α2/β, start1/start, end1/end] cycler

| [α2/ α, α3/β, start2/start, end2/end] cycler

| [α3/ α, α1/β, start3/start, end3/end] cycler

| α1.0)

Scheduler_2
expanded

start1

tau

tau

tau

tau
start1

start2

start2

end1

end1

end1

end1

end2

end2

end2

end2

end2

end1

Scheduler_2 reducing

start1

tau

tau

tau

tau
start1

start2

start2

end1

end1

end1

end1

end2

end2

end2

end2

end2

end1

Scheduler_2 reduced

start1

start1

start2

start2

end1

end1

end1

end2
end2

end2

end2

end1

is this LTS bisimilar to the first one?

Exercise: Bisimulations

Are those 3 LTSs equivalent by:

-  Strong bisimulation?

-  Weak bisimulation ?

In each case, give a proof.

out0 out0

in0
τ

out0

in0
τ

out0 τ

in0 in1

τ

Exercise: Bisimulation

•  Exercice :
1)  Compute the strong minimal automaton for A1.
2)  Compute the weak minimal automaton for A1.

out0 out0

τin0
τ

A1

Exercise
•  Compare the construct = and recK :

1.  Let us start by a simple pair of processes

2.  Suppose rec can accept several variables:
rec (K=P,L=Q) express the same term

3.  Is it possible to express the same thing with a single variable K?
Here are some possible hints:
  Define a recursive process All that contains A and B and can

trigger each of them by the reception of a message on channel cA
or cB

  (we suppose cA and cB cannot be used elsewhere)
  What kind of equivalence between the two expressions do you

have?

A
def= ā.A + b.B

B
def= a.A

def

Additional exercise

•  Why is maximal trace not a congruence? give an
example. (small hint – use the example of the course)

CORRECTION

Exercice: Alternated Bit Protocol
Correction (1):

!out0 !out1 !out0

?in1 τ ?in0

!out1

τ τ
τ

Channels that loose and
duplicate messages (in0
and in1) but preserve their
order ?

1) Draw an automaton
describing the loosy
channel behaviour
•  It is a symmetric system, receiving ?in0 and ?in1 messages, then delivering 0 ,
1 or more times the corresponding !out0 or !out1 message.

•  On each side (bit 0 or 1), the initial state has a single transition for the
reception.

•  In the next state, it can either : return silently to the initial state (= lose the
message), deliver the message and return to the initial state (exactly one
delivery), or deliver the message and stay in the same state (thus enabling
duplication).

Exercice: Alternated Bit Protocol
Correction (2):

 let rec {ch0 = ?in0 :ch1 + ?in1:ch2
 and ch1 = τ :ch1 + τ :ch0 + !out0 :ch1 + !out0 :ch0
 and ch2 = τ :ch2 + τ :ch0 + !out0 :ch2 + !out0 :ch0
 }
 in ch0

!out0 !out1 !out0

?in1 τ ?in0

!out1

τ τ
τ

•  Lousy channel =

Channels that loose and
duplicate messages (in0
and in1) but preserve their
order ?

 2) Write it in CCS

Exercice: Alternated Bit Protocol
Correction (3):

!out0 !out0

?in0
τ

Channels that loose and
duplicate messages (in0
and in1) but preserve their
order ?

 Other Solutions:

More generally,
parameterized model :

!out0

?in0
τ

!out(x) τ
?in(x)

x

Exercice 2 : Bisimulations

Are those 3 LTSs equivalent by:

-  Strong bisimulation?
NO ! Need find non equivalent states. E.g. counter
example for 1 ≠ 2:

States 1.0 and 1.1 are different because 1.0 can do ?
in0 and 1.1 cannot.

Then 1.1 and 2.1 are different because 1.1 can do !
out0 -> 1.0, while no 2.1 !out0 transitions can go to a
state equivalent to 1.0.

-  Weak bisimulation ?
YES. Exhibit a partition of equivalent states:

1={1.0,2.0}, 2={1.1, 2.1}

Check all possible (τ*aτ*) transitions:

 1 - !in0 -> 2, … , 2 - !out0.τ* -> 1

Remark: this transition set defines the minimal
representant modulo weak bisimulation…

!out0 !out0

?in0
τ

!out0

?in0
τ

!out0 τ

?in0 ?in1

τ

1.0

1.1

2.1

2.0

