Communication and Concurrency: CCS

cours SSDE – Master 1
Why calculi?

• Prove properties on programs and languages
• Principle: tiny syntax, small semantics, to be handled on paper or mechanically
• Prove properties on the principles of a language or a programming paradigm
• Examples: lambda calculus, sigma calculus, …
Static semantics : examples

• Checks non-syntactic constraints
• compiler front-end :
 – declaration and utilisation of variables,
 – typing, scoping, …
• or back-ends : optimisers
• defines legal programs :
 – static typing => no execution error ?
 – Java byte-code verifier

What can we do/know about a program without executing it?
Dynamic semantics

- Gives a meaning to the program (a semantic value)
- Describes the behaviour of a (legal) program
- Defines a language interpreter

\[
e \rightarrow e' \\
\text{let } i=3 \text{ in } 2*i \rightarrow 2*3 \rightarrow 6
\]

Objective = prove properties on Program execution (optimizations, determinacy, subject reduction, …)
The different semantic families

• Denotational semantics
 - mathematical model, high level, abstract

• Axiomatic semantics
 - provides the language with a theory for proving properties / assertions of programs

• Operational semantics
 - expresses the evaluation of a program
 - used to build evaluators, simulators.
What about concurrency and communication?

- Different timing (synchronous/asynchronous …)
- Different programming models (what is the unit of concurrency? What is sufficient to characterize an execution?…?)
- Interaction between communication/concurrency/shared memory!

Through CCS, this course is a simple study of synchronous communications
Operational Semantics

• Describes the computation
• Generally uses states and configuration of an abstract machine:
 – Stack, memory state, registers, heap...
• Abstract machine transformation steps
• Several different operational semantics
Natural Semantics : big steps (Kahn 1986)

- Defines the results of evaluation.
- Direct relation from programs to results
 \[\text{env} \mid- \text{prog} \Rightarrow \text{result} \]
 - env: binds variables to values
 - result: value given by the execution of prog

Reduction Semantics : small steps

describes each elementary step of the evaluation

- **rewriting relation**: reduction of program terms
- **stepwise reduction**: \(<\text{prog}, s> \Rightarrow <\text{prog}', s '>\)
 - infinitely, or until reaching a **normal form**.
Deduction Rules

\[
P \rightarrow Q \quad P
\]

\[
\frac{P}{Q}
\]

\[
P
\]

\[
\frac{P}{P \lor Q}
\]

\[
\frac{Q}{P \lor Q}
\]
Labelled Transition Systems (LTS)

- Basic model for representing reactive, concurrent, parallel, communicating systems.

- Definition:
 - $< S, s_0, L, T >$
 - S = set of states
 - $S_0 \in S$ = an initial state
 - L = set of labels (events, communication actions, etc)
 - $T \subseteq S \times L \times S$ = set of transitions
 - Notation: $s_1 \xrightarrow{a} s_2 = (s_1, a, s_2) \in T$
An example

Exercise:
What are the possible traces (output sequences) of Ven?
CCS – SYNTAX AND SEMANTICS
CCS syntax

- Channel names: a, b, c, \ldots
- Co-names: $\bar{a}, \bar{b}, \bar{c}, \ldots$
- Silent action: τ
- Actions: $\mu ::= a \mid \bar{a} \mid \tau$
- Processes:
 \[
P, Q ::= 0 \quad \text{inaction} \\
 \quad \mid \mu.P \quad \text{prefix} \\
 \quad \mid P \mid Q \quad \text{parallel} \\
 \quad \mid P + Q \quad \text{(external) choice} \\
 \quad \mid (\nu a)P \quad \text{restriction} \\
 \quad \mid \text{rec}_K P \quad \text{process } P \text{ with definition } K = P \\
 \quad \mid K \quad \text{(defined) process name}
\]
A tiny example

\[rec_{C_1}(Tick.C_1) \]

Labelled graph
- vertices: process expressions
- labelled edges: transitions
- Each derivable transition of a vertex is depicted
- Abstract from the derivations of transitions

Exercise:
What are the possible traces (output sequences) of C1?
CCS: behavioural semantics (1)
Operators and rules

- Action prefix:
 \[\mu P \xrightarrow{\mu} P \]

- Communication:
 \[P \xrightarrow{a} P' \quad Q \xrightarrow{\bar{a}} Q' \]
 \[P \mid Q \xrightarrow{\tau} P' \mid Q' \]

- Parallelism
 \[P \xrightarrow{\mu} P' \]
 \[P \mid Q \xrightarrow{\mu} P' \mid Q \]
 \[Q \xrightarrow{\mu} Q' \]
 \[P \mid Q \xrightarrow{\mu} P \mid Q' \]
CCS: behavioural semantics (2)

Operators and rules

- Non-deterministic choice

\[
\frac{Q \xrightarrow{\mu} Q'}{P + Q \xrightarrow{\mu} Q'}
\]

\[
\frac{P \xrightarrow{\mu} P'}{P + Q \xrightarrow{\mu} P'}
\]

- Scope restriction

\[
\frac{P \xrightarrow{\mu} P' \quad \mu \neq a, \overline{a}}{(\nu a)P \xrightarrow{\mu} (\nu a)P'}
\]

- Recursive definition

\[
\frac{P[\text{rec}_K P / K] \xrightarrow{\mu} P'}{	ext{rec}_K P \xrightarrow{\mu} P'}
\]
Derivations
(construction of each transition step)

One amongst 3 possible derivations of \((a.P \mid Q) \mid \overline{a}.R\)

Exercise: what are the other possible derivations?
More general recursion

• To have a recursion over several variables we can use:
 let rec K1=P1
 and K2=P2
 and
 in Pn

 for example
 let rec A=a.B and B=b.A in A+B
 \[\text{---\rightarrow let rec A=a.B and B=b.A in B}\]
Exercise: Alternated Bit Protocol

Hypotheses: channels can loose messages

Requirement: the protocol ensures no loss of messages

Write emitter in CCS (use let rec)
Example: Alternated Bit Protocol (2)

• **emitter** =

 let rec em0 = ack1 . em0 + imss . em1
 and em1 = in0 . em1 + ack0 . em2
 and em2 = ack0 . em2 + imss . em3
 and em3 = in1 . em3 + ack1 . em0
 in em0

• **ABP** =

 emitter | Fwd_channel | Bwd_channel | receiver

Note this shows how to build a CCS term from a LTS, we have seen the other direction
Example: Alternated Bit Protocol (3)

Channels that loose and duplicate messages (in0 and in1) but preserve their order?

- Exercise:
 0) Draw the LTS describing the perfect channel (no loss – no duplication)
 1) Draw an LTS describing the loosy channel behaviour
 2) Write the same description in CCS
Exercise (4): synchronized product

Compute the synchronized product of the LTS representing the ABP emitter with the (forward) Channel:

new \{in0, in1\} in

(Emitter | Channel)
Exercise: synchronized product

Correction ? partially...

local \{in0, in1\} in
(Emitter || Channel)
Exercise: synchronized product

Correction ? Tool generated LTS…
EQUIVALENCES
Why an equivalence relation?

- Identify similar processes
- Idea: 2 equivalent processes should behave the same - or more or less the same
- What does “behave the same” mean?
- Strict structural equality is not sufficient (optimisation / alternative implementation / …)
- What is an equivalence relation?
 - symmetrical:
 - transitive:
 - reflexive:
Behavioural Equivalences

• Intuition:
 - Same possible sequences of observable actions
 - Finite / infinite sequences
 - Various refinements of the concept of observation

• Definition: Trace Equivalence
 For a LTS \((S, s_0, L, T)\) its trace language \(T\) is the set of finite sequences \(\{ (t = t_1, ..., t_n \text{ such that } \exists s_0, ..., s_n \in S^{n+1}, \text{ and } (s_{n-1}, t_n, s_n) \in T \} \)

Two LTSs are Trace equivalent iff their Trace languages are equal.

Corresponding Ordering: Trace inclusion
Trace Languages, Examples

• Those 2 systems are trace equivalent:

\[T = \{(), (a), (a,b), (a,c)\} \]

\[T = \{(), (a), (a,a), (a...,a),... (a,b), (a,a,b), (a,a,...,a,b),...\} \]

• A trace language can be an infinite set:
Exercice: Trace equivalence

Are those 3 LTSs trace-equivalent?
Bisimulation

- **Behavioural Equivalence**
 - non distinguishable states by observation:
 two states are equivalent if for all possible transitions labelled by the same action, there exist equivalent resulting states.

- **Bisimulations**
 \[R \subseteq S \times S \text{ is a simulation iff} \]
 - \(\forall (p,q) \in R, \]
 \(p \xrightarrow{act} p' \in T \Rightarrow \exists q'. q \xrightarrow{act} q' \in T \text{ and } (p',q') \in R \]
 - \(R \) is a **bisimulation** if the same condition hold with \(q \) too:
 \(\forall (p,q) \in R, \]
 \(q \xrightarrow{act} q' \in T \Rightarrow \exists q'. q \xrightarrow{act} q' \in T \text{ and } (p',q') \in R \]

- \(\sim \) is the coarsest bisimulation:
 \[p \sim q \text{ if there exists a bisimulation } R \text{ such that } p \ R \ q \]
 2 LTS are **bisimilar** iff their initial states are in \(\sim \)
 -> all their reachable states are in \(\sim \)
Transitivity

• If \(R, S \) are bisimulations, then so is their composition \(RS = \{(P, P') | \exists Q. P R Q \text{ and } Q S P'\} \)
• In particular, \(\sim \subseteq \sim \), i.e., bisimilarity is transitive
• \(\sim \) is an equivalence relation

Exercise:
Explain why \(RS \) is a bisimulation
Bisimulation Properties

• More precise than trace equivalence:

\[A_0 \sim A_1 \sim A_2 \sim A_3 \sim B_0 \sim B_1 \sim B_2 \sim B_3 \sim B_4 \]

No state in B is equivalent to A1 - Check

• Preserves deadlock properties.
• Can be built by adding elements in the equivalence relation
• Coinductive definition (biggest set verifying …)
Bisimulation Properties (2)

- Congruence laws:
 \[P_1 \sim P_2 \Rightarrow a \cdot P_1 \sim a \cdot P_2 \quad (\forall P_1, P_2, a) \]
 \[P_1 \sim P_2, \quad Q_1 \sim Q_2 \Rightarrow P_1 + Q_1 \sim P_2 + Q_2 \]
 \[P_1 \sim P_2, \quad Q_1 \sim Q_2 \Rightarrow P_1 \mid Q_1 \sim P_2 \mid Q_2 \]
 Etc…

- \(\sim \) is a congruence for all CCS operators:

 for any CCS context \(C[.], \quad C[P] \sim C[Q] \Leftrightarrow P \sim Q \)

 Basis for compositional proof methods

- Maximal trace is not a congruence
Weak bisimulation

- Let us hide some actions (tau transitions)
- We define a new reduction \Rightarrow that allows for arbitrary many internal actions, more precisely:
Weak bisimulation (2)

A weak bisimulation is a relation R such that

$$P R Q \Rightarrow \forall \mu, P, P' \ (P \xrightarrow{\mu} P' \Rightarrow \exists Q'. Q \xrightarrow{\mu} Q' \text{ and } P' R Q')$$

and conversely

- Note the dissymmetry between the use of $\xrightarrow{\mu}$ on the left and of $\xrightarrow{\mu}$ on the right
- Two processes are weakly bisimilar (notation $P \approx Q$) if there exists a weak bisimulation R such that $P R Q$.
Coffee machine Exercise

- $\text{rec}_K \text{coin.}(\overline{\text{coffee.}ccup.K} + \overline{\text{tea.}tcup.K})$

- $\text{coin.rec}_K(\overline{\text{coffee.}ccup.coin.K} + \overline{\text{tea.}tcup.coin.K})$

- $\text{rec}_K(\overline{\text{coin.}coffee.}ccup.K + \overline{\text{coin.}tea.}tcup.K)$

- Question: which of these machines can we safely consider equivalent?

- Note that these machines have all the same traces.
ADDITIONAL NOTATIONS AND CONSTRUCTS
Alternative Notations (if you read books or papers or for other courses)

- def
 \[
 \text{rec}_{C_1}(\text{Tick}.C1) \leftrightarrow \text{Cl} \overset{\text{def}}{=} \text{tick}.\text{Cl}
 \]

- Input/output: \(a=?a\ ; \ a = !a\)
- \(\mid\) or \(||\)
Extension: Parameterized actions

• input of data at port a, \(a(x).P\)
• \(a(x)\) binds free occurrences of \(x\) in \(P\).
• Port \(a\) represents \(\{a(v):v \in D\}\) where \(D\) is a family of data values
• Output of data at port \(a\), \(a(e).P\) where \(e\) is a data expression.
• Transition Rules depend on extra machinery for expression evaluation: \(\text{Val}(e)\) is the data value in \(D\) to which \(e\) evaluates
 • \(R\) (in) \(a(x).P \xrightarrow{a(v)} P\{v/x\}\) if \(v \in D\) where \(\{v/x\}\) is substitution
 • \(R\) (out) \(a(e).P \xrightarrow{a(e)} P\) if \(\text{Val}(e) = v\)
• Example \(\text{Reg}_i = \text{read}(i).\text{Reg}_i + \text{write}(x).\text{Reg}_x\)
CONCLUSION

• A synchronous communication language
• A (complex but) efficient notion of equivalence on processes
• What is missing?
 − Channel communication (like in pi-calculus): a channel name can be communicated over another channel
 -> much more complex
 − No data or computation
Guided exercise: dining philosophers

Let rec idling = idle.idling + take_left.take_right.eating + take_right.take_left.eating

And eating = eat.eating + drop_left.drop_right.idling + drop_right.drop_left.idling

In idling

Consider 2 philos and 2 forks

Deadlock or not? Mutual exclusion?
(trivial) example: Milner’s Scheduler

- Processes iteratively start and finish executing tasks (one task per process)
- Task starts are cyclically ordered

\[
cycler = \alpha.\text{start}.(\,\beta.0 \mid \text{end}.\text{cycler})
\]

\[
scheduler_3 = \text{new } \alpha_1, \alpha_2, \alpha_3 \text{ in }
(\begin{array}{c}
[\alpha_1/\alpha, \alpha_2/\beta, \text{start}_1/\text{start}, \text{end}_1/\text{end}] \text{ cycler }
| [\alpha_2/\alpha, \alpha_3/\beta, \text{start}_2/\text{start}, \text{end}_2/\text{end}] \text{ cycler }
| [\alpha_3/\alpha, \alpha_1/\beta, \text{start}_3/\text{start}, \text{end}_3/\text{end}] \text{ cycler }
| \alpha_1.0)
\]

properties?
Scheduler_2
expanded

Diagram showing a network of nodes labeled 'start1', 'start2', 'end1', and 'end2', connected by arrows labeled 'tau'.
Scheduler_2 reducing

start1 -> tau

start2 -> end1

start1 -> end2

end1 -> tau

end2 -> start1

end2 -> end1

end2 -> start2

end1 -> end2

end1 -> start1

end2 -> end2

end2 -> start2
is this LTS bisimilar to the first one?
Exercise: Bisimulations

Are those 3 LTSs equivalent by:
- Strong bisimulation?
- Weak bisimulation?

In each case, give a proof.
Exercise: Bisimulation

Exercice:
1) Compute the strong minimal automaton for A1.
2) Compute the weak minimal automaton for A1.
Exercise

• Compare the construct $= \text{ and } \text{rec}_K$:

1. Let us start by a simple pair of processes

 $A \overset{\text{def}}{=} \bar{a}.A + b.B$

 $B \overset{\text{def}}{=} a.A$

2. Suppose rec can accept several variables: rec $(K=P,L=Q)$ express the same term

3. Is it possible to express the same thing with a single variable K? Here are some possible hints:
 - Define a recursive process All that contains A and B and can trigger each of them by the reception of a message on channel cA or cB
 - (we suppose cA and cB cannot be used elsewhere)
 - What kind of equivalence between the two expressions do you have?
Additional exercise

• Why is maximal trace not a congruence? give an example. (small hint – use the example of the course)
CORRECTION
Exercice: Alternated Bit Protocol

Correction (1):

Channels that loose and duplicate messages (in0 and in1) but preserve their order?

1) Draw an automaton describing the loopy channel behaviour

- It is a symmetric system, receiving ?in0 and ?in1 messages, then delivering 0, 1 or more times the corresponding !out0 or !out1 message.
- On each side (bit 0 or 1), the initial state has a single transition for the reception.
- In the next state, it can either: return silently to the initial state (= lose the message), deliver the message and return to the initial state (exactly one delivery), or deliver the message and stay in the same state (thus enabling duplication).
Exercice: Alternated Bit Protocol

Correction (2):

Channels that lose and duplicate messages (in0 and in1) but preserve their order?

2) Write it in CCS

• Lousy channel =

let rec {ch0 = ?in0 :ch1 + ?in1:ch2
and ch1 = τ :ch1 + τ :ch0 + !out0 :ch1 + !out0 :ch0
and ch2 = τ :ch2 + τ :ch0 + !out0 :ch2 + !out0 :ch0
}

in ch0
Exercice: Alternated Bit Protocol

Correction (3):

Channels that lose and duplicate messages (in0 and in1) but preserve their order?

Other Solutions:

More generally, parameterized model:
Exercice 2 : Bisimulations

Are those 3 LTSs equivalent by:

- **Strong bisimulation?**

 NO ! Need find non equivalent states. E.g. counter example for 1 ≠ 2:

 States 1.0 and 1.1 are different because 1.0 can do ? in0 and 1.1 cannot.

 Then 1.1 and 2.1 are different because 1.1 can do ! out0 -> 1.0, while no 2.1 !out0 transitions can go to a state equivalent to 1.0.

- **Weak bisimulation ?**

 YES. Exhibit a partition of equivalent states:

 1={1.0,2.0}, 2={1.1, 2.1}

 Check all possible (τ*āτ*) transitions:

 1 - !in0 -> 2, … , 2 - !out0.τ* -> 1

 Remark: this transition set defines the minimal representant modulo weak bisimulation…