Cloud Computing Revolution

D. Caromel, et al.

Agenda

1. Background: INRIA, ActiveEon
2. CLOUD Computing
3. ProActive Parallel Suite

Programming, Scheduling, Resourcing
4. Use Cases \& Demos:

Genomics, Engineering, Multi-Disciplinary
5. Conclusion: Cloud Revolution?

Cloud: Pay as you Go Opex vs. Capex

CLOUD Revolution

- 1990: PCs
- 2000: Internet for Companies
- 2010: Cloud for Companies

Concept: John McCarthy in 1961 originally coin the expression "Utility Computing" (Electricity, Water, Gas)

Today: How could we do without Internet and Google Search ? In 2020: we will not imagine working without Clouds

Today: We buy Network, Hardware, Software, Services
 Tomorrow: Cloud Services (hiding N, H, S)

1. Background

OASIS (HC: 35)

\square Researchers (5):

- D. Caromel (UNSA, Det. INRIA
- E. Madelaine (INRIA)
- F. Baude (UNSA)
- F. Huet (UNSA)
- L. Henrio (CNRS)
\square PhDs (11):
- Antonio Cansado (INRIA, Coni
- Brian Amedro (SCS-Agos)
- Cristian Ruz (INRIA, Conicyt)
- Elton Mathias (INRIA-Cordi)
- Imen Filali (SCS-Agos / FP7 SC
- Marcela Rivera (INRIA, Conicy
- Muhammad Khan (STIC-Asia)
- Paul Naoumenko (INRIA/Régio
- Viet Dung Doan (FP6 Bionets)
- Virginie Contes (SOA4ALL)
- Guilherme Pezzi (AGOS, CIFR

Startup Company Born of INRIA

Some Customers:
CeD тнales
Some Partners:

Lip

-Co-developing, Support for ProActive Parallel Suite
-Worldwide Customers: Fr, UK, Boston USA

2. Cloud Computing

Clouds: Basic Definition.

\square Dynamically scalable, often virtualized resources
\square Provided as a service over the Internet
-Users need not have knowledge of, expertise in, or control over the technology infrastructure

XaaS: Anything as a Service

- Software as a service (SaaS), CRM, ERP
-Platform as a service (PaaS), Google App Engine
- Infrastructure as a service (laaS), Amazon EC2

Clouds in Picture

From Grids to Clouds

\square Grid Computing

- Several administrative Domains
- Virtual Organizations
- Trading not based on Currency
\rightarrow (Too) Hard
-Cloud solves the issue:
- Pay as you Go

Distributed, //, \& Grid Technologies for Clouds

Symetrical Multi-Core: 8 -ways Niagara II

- 8 cores
 -4 Native threads per core

-Linux see 32 cores!

Today Off The Shelf Multi-Cores, $3 \mathbf{G H z}$

Multi-Cores: A Few Key Points

\square Moore's Law rephrased:
Nb. of Cores double every 18 to 24 months
\square Key expected Milestones: Cores per Chips (OTS)

- 2012: 32 to 64
- 2014: 64 to 128
$\square 1$ Million Cores Parallel Machines in 2014
$\square 100$ M cores coming in 2020
\square Multi-Cores are NUMA, and turning Heterogeneous (GPU)
\square They are turning into SoC with NoC

ProActive

Virtualization

Virtualization

What we Used to do as Syst. Admin.

With Virivalration + Software Appliance

ProACTIVE
Paraill sult

HOW DO YOU KNOW YOU'RE A CIO?

- Technology is getting too complex ... even for CIO (not for CTO)
- No longer want to buy rack of servers or storage or network device
- Want to by Services
- Want to Pay per Use
\square CBA Australian bank Group Executive and CIO, Michael Harte, announced their move to cloud computing.
- "We will never buy another data center"

Administration-Burden

Source: Save9

Parallel Suite

Cloud Solution: ProActive Parallel Suite

Java Parallel Toolkit

amadeus

Your technology partner

Multi-Platform Job Scheduler

Resource Manager

Strong Differentiation:
\square Java Parallel Programming + Integration $+$
-Portability: Linux, Windows, Mac

- Versatility: Desktops, Cluster, Grid, Clouds
$+$
$=$ Perfect Flexibility

ProActive Programming: Active Objects

ProActive Programming View

ProActive Programming View

Broadcast and Scatter

Broadcast is the default behavior
Use a group as parameter, Scattered depends on rankings

ag.bar(cg); // broadcast cg ProActive.setScatterGroup (cg) ; ag.bar(cg); // scatter cg

Dynamic Dispatch Group

ProActIve
Parailel suite

1020

C2D

Video $1:$
 IG2D Optimizing Monitoring, Debugging, Optimizing

ProActive
Parallel Suite ch

ProActive Scheduling

ProActive Schedulinci Bio Pigture

File Window Help

田 \# Scheduler \Rightarrow 今 Finished (31)

Id	State	User	Priority	Name
010	Finished	jl	Low	job_proActive
008	Finished	jl	Low	job_proActive
005	Finished	jl	Low	job_proActive
001	Finished	jl	Low	job_proActive
006	Finished	jl	Low	job_proActive
004	Finished	jl	Low	job_proActive
003	Finished	jl	Low	job_proActive
009	Finished	jl	Low	job_proActive
007	Finished	jl	Low	job_proActive
002	Finished	jl	Low	job_proActive
245	Finished	user1	Normal	job_with_dep
246	Finished	user1	Normal	job_with_dep
247	Finished	user1	Normal	job_with_dep
252	Finished	admin	Normal	job_with_dep
253	Finished	admin	Normal	job_with_dep

RESUMED

Workflow Example - Pictire Denoising

-with selection on native executable availability (ImageMagik, GREYstoration)

- Multi-platform selection and command generation
-with file transfer in pre/post scripts

ProActive Resourcing

ProActive Resourcing

Desktop, Cluster, Grid \& Cloud
Resource Manager

RESOURGING User Interface

＊（Q）ProActive Resource Manager

-8 \＆Shutdown

* Tab Explorer * Tree Explorer \mathbb{K}
（4）日～ロ Compact View \mathbb{K}

－FPA JVM2114960478

－mi：／／eon14．inria．fr：1099／PA」JM2114960478＿GCMNode－0 －mi：／／eon14．inria．fr：1099／PA」JMM2114960478＿GCMNode－1 －misi：／eon14．inria．fr：1099／PA JVM2114960478＿GCMNode－2
D $\overline{\text { BA }}$ PA JVM477486533
－或PA」MM2003420561
－mi：／／eon14．inria．fr：1099／PA＿JVM2003420561＿GCMNode－0 －mi：／／eon14．inria．fr：1099／PA」JMM2003420561＿GCMNode－1 Omi：／／eon14．inria．fr：1099／PA＿JVM2003420561＿GCMNode－2 L JMX Monitoring $\$$
－Activity History

EActivity 5
＊Node States Peaks

－Free Nodes History

Overview Charts

＊＇statistics is＊Info	
state	aggregate
\＃free nodes	272
\＃busy nodes	52
\＃down nodes	6

Clusters to Grids to Clouds: Q.g. on Amazon EC2

Private, Public \& Hybrid Clouds

Glourd Seeding with ProActive

- Amazon EC2 Execution
\square Cloud Seeding strategy to mix heterogeneous computing resources:
- External GPU resources

> "Cloud Seeding "

Gloud Seeding with ProActive

ProAcTIVY Paraill sulte

Gloud Seeding with ProActive

ProActIve

Gloud Seeding with ProActive

ProActIve

Gloud Seeding with ProActive

ProActIve

Gloud Seeding with ProActive

ProAcTIVY Parallel suite

Gloud Seeding with ProActive

ProActIve

OW2
Conso5tium

IPMC Use Case and Collaboration

SOLID
machine from

ProActive
 Parallel Suite

10 Applied

SCALE BEYOND LIMITS

Benchmarks

- The distributed version with ProActive of Mapreads has been tested on the INRIA cluster with two settings: the Reads file is split in either 30 or 10 slices
- Use Case: Matching 31 millions Sequences with the Human Genome ($\mathrm{M}=2$, $L=25$)

For only $\$ 3,2 /$ hour, EC2 has nearly the same perf. as
 the local SOLiD cluster (16 cores, for 2H30)

SCALE BEYOND LIMITS

Coupling Mechanics, Aerodynamics ...

3D Air Conditionning

Cylinder Head

ProActive OMD2 Demo

ProActIve Paraill suite

Video: Distributed Workflow

Engineering Optimizations: Renault UC

SIREHNA
a DCNS company

OpenDFOAM

 Open ∇ CFD
ProActive

KEPSTIEON

HYDRODYNAMIC \& AERODYNAMIC

Hydrodynamic Optimization: Workfiow coenerated from a CUI

Activeeon ProActive
SCALE BEYOND LIMITS
Parallel Suite sut

Hydrodynamic Optimization: Execution

Hydrodynamic: Remote Steering during execution

Applications Places System (3)

2atr

Conclusion Technology Preview*

ProActive Parallel Suite

ProActive Scheduling

- ProActive Fine Grain CLOUD management:
\rightarrow Pricing at the second (like GSM)
- Open Source Cloudware Initiative (OSCi)

Consortium

\rightarrow Elastic Clouds

	Industrial Revolution	Cloud Revolution
Concept	Mechanization and centralization of manufacturing activities	Computing as a Utility Centralization of Data Center
Technology	Supporting new technos (Mechanic, Tool Machines, etc.)	Distributed Computing Virtualization Multi-Cores Network
Socio Economical	Large new demand was ready to use the new offer. organization)	IT Cost Reduction Pressure CIO Nightmare CEO Out-of-DataCenter CapEx

- All elements converge for a strong Cloud Revolution

Sources \& Inspiration: Simon Wardley (CSC) Scott Stewart

proactive.inria.fr

\square Business revolution:
Not selling Hardware, nor Software, but Services
Also a Marketing Revolution:
\rightarrow Big thing is SLA, no longer Features insides ${ }^{\text {TM }}$

- Scientific Revolution:
- Capacity to use large Public facilities
- Capabilities: CERN-like EGEE no longer needed?
- Large Workflows: SpeedUp of Discoveries
\square Social Revolution:
- What will happen to CIOs ?
- What will happen to outsourcing companies ?
- Personal and Business facility convergence

Impact? (like PC, Internet) ProActive

OW2
Consortium

