

Denis Caromel Arnaud Contes Univ. Nice ActiveEon

Agenda

- ProActive and ProActive Parallel Suite
- Programming and Composing
 - ProActive Core
 - High Level Programming models
 - ProActive Components
- Deployment Framework
- Development Tools

Unification of Multi-Threading and Multi-Processing

Multi-Threading

Multi-Core Programming

- Symmetric Multi-Processing
- Shared-Memory Parallelism
- Solutions : OpenMP, pThreads, Java Threads...

Programming, Composing, Deploving on

Multi-Processing

Distributed programming, Grid Computing

MPP

- **Massively Parallel** Programming or
- **Message Passing** Parallelism
- Solutions: PVM, MPI, RMI, sockets ,...

ProActive

ProActive is a JAVA middleware for parallel, distributed and multi-threaded computing.

ProActive features:
 A programming model
 A comprehensive framework

To simplify the programming and execution of parallel applications within multi-core processors, distributed on Local Area Network (LAN), on clusters and data centers, on intranet and Internet Grids.

Unification of Multi-threading and Multi-processing

Seamless

- Most of the time, activities and distribution are not known at the beginning, and change over time
- Seamless implies reuse, smooth and incremental transitions

ProActive Parallel Suite includes:

- □ The ProActive middleware featuring services like:
 - Fault tolerance, Load balancing, Distributed GC, Security, WS
 - A set of parallel programming frameworks
 - A framework for deploying applications on distributed infrastructures
- Software for scheduling applications and resource management
- Software for monitoring and profiling of distributed applications
- Online documentation
- Full set of demos and examples

Applications

ProActive Parallel Suite

Physical Infrastructure

Ways of using Proactive Parallel Suite?

- To easily develop parallel/distributed applications from scratch
- Develop applications using well-known programming paradigms thanks to our high-level programming frameworks (master-worker, Branch&Bound, SPMD, Skeletons)
- To transform your sequential mono-threaded application into a multi-threaded one (with minimum modification of code) and distribute it over the infrastructure.

Ways of using Proactive Parallel Suite?

- To wrap your native application with ProActive in order to distribute it
- Define jobs containing your native-applications and use ProActive to schedule them on the infrastructure

Agenda

- ProActive and ProActive Parallel Suite
- Programming and Composing
 - ProActive Core
 - High Level Programming models
 - ProActive Components
- Deployment Framework
- Development Tools

ProActive Core ACTIVE OBJECTS

ProActive

A 100% Java API + Tools for Parallel, Distributed Computing

- A programming model: Active Objects

 Asynchronous Communications, Wait-By-Necessity, Groups, Mobility, Components, Security, Fault-Tolerance
- A formal model behind: Determinism (POPL'04)
 Insensitive to application deployment
- A uniform Resource framework
 - Resource Virtualization to simplify the programming

Active Objects

ProActive model : Basis

- Active objects
 - coarse-grained structuring entities (subsystems)
 - □ has exactly one thread.
 - owns many passive objects (Standard Java Objects, no thead)
 - No shared passive objects -- Parameters are deep-copy
- Remote Method Invocation
 - Asynchronous Communication between active objects
- Full control to serve incoming requests

JVM

ProActive : Reuse and seamless

Polymorphism between standard and active objects

- Type compatibility for classes (and not only interfaces)
- Needed and done for the future objects also

Wait-by-necessity: inter-object synchronization
 Systematic, implicit and transparent futures
 Ease the programming of synchronizations, and the reuse of routines

Proofs in GREEK

 $\frac{(a,\sigma) \to_S (a',\sigma')}{\alpha[a;\sigma;\iota;F;R;f] \parallel P \longrightarrow \alpha[a';\sigma';\iota;F;R;f] \parallel P}$ (LOCAL) γ fresh activity $\iota' \notin dom(\sigma)$ $\sigma' = \{\iota' \mapsto AO(\gamma)\} :: \sigma$ $\sigma_{\gamma} = copy(\iota'', \sigma) \qquad Service = (\text{ if } m_j = \emptyset \text{ then } FifoService \text{ else } \iota''.m_j())$ (NEWACT) $\alpha[\mathcal{R}[Active(\iota'', m_i)]; \sigma; \iota; F; R; f] \parallel P$ $\longrightarrow \alpha[\mathcal{R}[\iota']; \sigma'; \iota; F; R; f] \parallel \gamma[Service; \sigma_{\gamma}; \iota''; \emptyset; \emptyset; \emptyset] \parallel P$ $\sigma_{\alpha}(\iota) = AO(\beta) \qquad \iota'' \notin dom(\sigma_{\beta}) \qquad f_i^{\alpha \to \beta} \text{ new future} \qquad \iota_f \notin dom(\sigma_{\alpha})$ $\sigma'_{\beta} = Copy \& Merge(\sigma_{\alpha}, \iota'; \sigma_{\beta}, \iota'') \qquad \sigma'_{\alpha} = \{\iota_f \mapsto fut(f_i^{\alpha \to \beta})\} :: \sigma_{\alpha}$ (REQUEST) $\overline{\alpha[\mathcal{R}[\iota.m_{j}(\iota')];\sigma_{\alpha};\iota_{\alpha};F_{\alpha};R_{\alpha};f_{\alpha}] \parallel \beta[a_{\beta};\sigma_{\beta};\iota_{\beta};F_{\beta};R_{\beta};f_{\beta}] \parallel P \longrightarrow}$ $\alpha[\mathcal{R}[\iota_f]; \sigma'_{\alpha}; \iota_{\alpha}; F_{\alpha}; R_{\alpha}; f_{\alpha}] \parallel \beta[a_{\beta}; \sigma'_{\beta}; \iota_{\beta}; F_{\beta}; R_{\beta} :: [m_j; \iota''; f_i^{\alpha \to \beta}]; f_{\beta}] \parallel P$ $R = R' :: [m_j; \iota_r; f'] :: R'' \qquad m_j \in M \qquad \forall m \in M, \, m \notin R'$ $\alpha[\mathcal{R}[Serve(M)];\sigma;\iota;F;R;f] \parallel P \longrightarrow \alpha[\iota.m_j(\iota_r) \uparrow f,\mathcal{R}[[]];\sigma;\iota;F;R'::R'';f'] \parallel P$ (SERVE) $\frac{\iota' \not\in dom(\sigma) \qquad F' = F :: \{f \mapsto \iota'\} \qquad \sigma' = Copy\&Merge(\sigma, \iota \ ; \ \sigma, \iota')}{\alpha[\iota \Uparrow (f', a); \sigma; \iota; F; R; f] \parallel P \longrightarrow \alpha[a; \sigma'; \iota; F'; R; f'] \parallel P}$ (ENDSERVICE) $\sigma_{\alpha}(\iota) = fut(f_{i}^{\gamma \to \beta}) \qquad F_{\beta}(f_{i}^{\gamma \to \beta}) = \iota_{f} \qquad \sigma_{\alpha}' = Copy\&Merge(\sigma_{\beta}, \iota_{f} ; \sigma_{\alpha}, \iota)$ (REPLY) $\alpha[a_{\alpha};\sigma_{\alpha};\iota_{\alpha};F_{\alpha};R_{\alpha};f_{\alpha}] \parallel \beta[a_{\beta};\sigma_{\beta};\iota_{\beta};F_{\beta};R_{\beta};f_{\beta}] \parallel P \longrightarrow$ $\alpha[a_{\alpha};\sigma'_{\alpha};t_{\alpha};F_{\alpha};R_{\alpha};f_{\alpha}] \parallel \beta[a_{\beta};\sigma_{\beta};t_{\beta};F_{\beta};R_{\beta};f_{\beta}] \parallel P$

A Theory of Distributed Objects

Asynchrony – Mobility – Groups – Components

Preface by Luca Cardelli

Deringer

ProActive Core MIGRATION: MOBILE AGENTS

Mobile Agents: Migration

- ► The active object migrates with:
 - □ its state
 - □ all pending requests
 - □ all its passive objects
 - all its future objects
- Automatic update of references: requests (remote references remain valid)
 - □ replies (its previous queries will be fulfilled)
- Migration is initiated by the active object itself
- Can be initiated from outside through any public method

Migration Strategies

Forwarders

- □ Migration creates a chain of forwarders
- A forwarder is left at the old location to forward requests to the new location
- Tensioning: shortcut the forwarder chains by notifying the sender of the new location of the target (transparently)

Location Server

- A server (or a set of servers) keeps track of the location of all active objects
- Migration updates the location on the server
- Mixed (Forwarders / Local Server)

Limit the size of the chain up to a fixed size

ProActive Core PROACTIVE GROUPS

ProActive Groups

Manipulate groups of Active Objects, in a simple and typed manner:

Typed and polymorphic Groups of local and remote objects
 Dynamic generation of group of results
 Language centric, Dot notation

- > Be able to express high-level collective communications (like in MPI):
 - broadcast,
 - scatter, gather,
 - all to all

```
A ag=(A)ProActiveGroup.newGroup(«A», {{p1},...}, {Nodes,..});
V v = ag.foo(param);
v.bar();
```


ProActive Groups

Group Members

- Active Objects
- POJO
- Group Objects
- Hierarchical Groups
- Based on the ProActive communication mechanism
 - Replication of N ' single ' communications
 - Parallel calls within a group (latency hiding)

Polymorphism

Group typed with member's type

Two Representations Scheme

Typed Group as Result of Group Communication

- Ranking Property:
 - Dynamically built and updated
 - B groupB = groupA.foo();
 - Ranking property: order of result group members = order of called group members
- Explicit Group Synchronization Primitive:
 - Explicit wait
 - ProActiveGroup.waitOne(groupB);
 - ProActiveGroup.waitAll(groupB);
 - Predicates

- noneArrived
- kArrived
- allArrived, ...

ProActive Core FAULT TOLERANCE SERVICE

Fault-tolerance in ProActive

- Restart an application from latest valid checkpoint
 Avoid cost of restarting from scratch
 Fault-tolerance is non intrusive
 - set in a deployment descriptor file
 - Fault-tolerance service attached to resources
 - **No** source code alteration
 - Protocol selection , Server(s) location, Checkpoint period

Fault-tolerance in ProActive

- Rollback-Recovery fault-tolerance
 - After a failure, revert the system state back to some earlier and correct version
 - Based on periodical checkpoints of the active objects

Stored on a stable server

- Two protocols are implemented
 - Communication Induced Checkpointing (CIC)
 - + Lower failure free overhead
 - Slower recovery
 - Pessimistic Message Logging (PML)
 - Higher failure free overhead
 - + Faster recovery

Transparent and non intrusive

Built-in Fault-tolerance Server

- Fault-tolerance is based on a global server
- This server is provided by the library, with
 - Checkpoint storage
 - Failure detection
 - Detects fail-stop failures
 - Localization service
 - Returns the new location of a failed object
 - Resource management service
 - Manages a set of nodes on which restart failed objects

ProActive Core SECURITY SERVICE

ProActive Security Framework

Issue

Access control, communication privacy and integrity

- Unique features
 - □ SPKI: Hierarchy of certificates
 - No security related code in the application source code
 - Declarative security language
 - Security at user- and administrator-level
 - Security context dynamic propagation
- Configured within deployment descriptors
 Easy to adapt according the actual deployment

ProActive Core
WEB SERVICES

Web Service Integration

- Aim Turn active objects and components interfaces into Web Services
 - ➔ interoperability with any foreign language or any foreign technology.
 - Expose an active object as a web Service (the user can choose the methods he wants to expose)
 - exposeAsWebService(Object o, String url, String urn, String [] methods);

Expose component's interfaces as web services

exposeComponentAsWebService(Component component, String url, String componentName);

► API

3. BlightyGalIntposeAsWebService ()

Agenda

- ProActive and ProActive Parallel Suite
- Programming and Composing
 - ProActive Core
 - High Level Programming models
 - ProActive Components
- Deployment Framework
- Development Tools

ProActive Parallel Suite

High Level Programming models

Master-Worker Framework

Motivations

- Embarrassingly parallel problems : simple and frequent model
- Write embarrassingly parallel applications with ProActive :
 - May require a sensible amount of code (faulttolerance, load-balancing, ...).
 - Requires understanding of ProActive concepts (Futures, Stubs, Group Communication)

Goals of the M/W API

Provide a easy-to use framework for solving embarrassingly parallel problems:

- Simple Task definition
- □ Simple API interface (few methods)
- □ Simple & efficient solution gathering mechanism
- Provide automatic fault-tolerance and loadbalancing mechanism
- Hide ProActive concepts from the user

How does it work?

Comparison between specific implementation and M/W

- Experiments with nQueens problem
- Runs up to 25 nodes

High Level Programming models

Skeletons Framework

Algorithmic Skeletons

- High Level Programming Model
- Hides the complexity of parallel/distributed programming.
- Exploits nestable parallelism patterns

Skeletons Big Picture

Parameters/Results are passed through streams
 Streams are used to connect skeletons (CODE)

Pipe Skeleton

 Represents computation by stages.
 Stages are computed in parallel for different parameters. Input Stream
 Execute Skeleton
 Output Stream

Simple use of Pipe skeleton

Skeleton<Eggs, Mix> stage1 = new Seq<Eggs,Mix>(new Apprentice());

Skeleton<Mix, Omelette> stage2 = new Seq<Mix,Omelette>(new Chef());

Skeleton<Eggs, Omelette> kitchen = new Pipe<Eggs, Omelette>(stage1, stage2);

High Level Programming models

Branch-and-Bound Framework

Branch & Bound API (BnB)

- Provide a high level programming model for solving BnB problems:
 - manages task distribution and provides task communications

► Features:

- Dynamic task split
- Automatic result gather
- Broadcasting best current result
- Automatic backup (configurable)

Global Architecture : M/W + Full connectivity

High Level Programming models

OO-SPMD

Object-Oriented Single Program Multiple Data

Motivation

- Cluster / GRID computing
- □ SPMD programming for many numerical simulations
- Use enterprise technology (Java, Eclipse, etc.) for Parallel Computing
- Able to express most of MPI's
 - Collective Communications (broadcast, gathercast, scattercast,..)
 - Barriers

2009

Topologies

With a small object-oriented API

Execution example

A ag = newSPMDGroup ("A", [...], VirtualNode)

// In each member

- myGroup.barrier ("2D"); // Global Barrier
- myGroup.barrier ("vertical"); // Any Barrier
 - myGroup.barrier ("north","south","east","west");

Topologies

Topologies are typed groups
 Customizable
 Define neighborhood

Plan plan = new Plan(groupA, Dimensions); Line line = plan.getLine(0);

High Level Programming models

Scheduler

Programming with flows of tasks

- Program an application as an ordered tasks set
 - Logical flow : Tasks execution are orchestrated
 - Data flow : Results are forwarded from ancestor tasks to their children as parameter

- Two types of tasks:
 - Standard Java
 - □ Native, i.e. any third party application

Defining and running jobs with ProActive

- A workflow application is a job
 - a set of tasks which can be executed according to a dependency tree
- Rely on ProActive Scheduler only
- Java or XML interface
 - Dynamic job creation in **Java**
 - □ Static description in XML

- Task failures are handled by the ProActive Scheduler
 - A task can be automatically re-started or not (with a user-defined bound)
 - Dependant tasks can be aborted or not
 - □ The finished job contains the cause exceptions as results if any

Agenda

- ProActive and ProActive Parallel Suite
- Programming and Composing
 - ProActive Core
 - High Level Programming models
 - ProActive Components
- Deployment Framework
- Development Tools

ProActive Parallel Suite

A framework for Grid components

- Facilitating the design and implementation of complex distributed systems
- Leveraging the ProActive library ProActive components benefit from underlying features
- Allowing reuse of legacy components (e.g. MPI)
- Providing tools for defining, assembling and monitoring distributed components

Component - What is it ?

► A component in a given infrastructure is:

a software module,

with a standardized description of what it needs and provides, to be manipulated by tools for Composition and Deployment

ProActive Component Definition

A component is:

□ Formed from one (or several) Active Object

Executing on one (or several) JVM

Provides a set of server ports: Java Interfaces

□ Uses a set of client ports: Java Attributes

Point-to-point or Group communication between components

► Hierarchical:

Primitive component: define with Java code and a descriptor

Composite component: composition of primitive + composite

Parallel component: multicast of calls in composites

Descriptor:

XML definition of primitive and composite (ADL)

Virtual nodes capture the deployment capacities and needs

Virtual Node:

2009

□ a very important abstraction for GRID components

Components for the GRID

H

An activity, a process, ... potentially in its own JVM

2. Composite component

Composite: Hierarchical, and Distributed over machines

Parallel: Composite + Broadcast (group)

1. Primitive component

3. Parallel and composite component

Components vs. Activity and JVMs

- Components are orthogonal to activities and JVMs
 - They contain activities, span across several JVMs
- Components are a way to globally manipulate distributed, and running activities

Agenda

- ProActive and ProActive Parallel Suite
- Programming and Composing
 - ProActive Core
 - High Level Programming models
 - ProActive Components
- Deployment Framework
- Development Tools

GCM Deployment

VE

Abstract Deployment Model

Problem

Difficulties and lack of flexibility in deployment Avoid scripting for configuration, getting nodes, connecting...

A key principle: Virtual Node (VN)

Abstract Away from source code:

Machines names Creation/Connection Protocols

Lookup and Registry Protocols

Interface with various protocols and infrastructures:

Cluster: LSF, PBS, SGE, OAR and PRUN(custom protocols) Intranet P2P, LAN: intranet protocols: rsh, rlogin, ssh

Grid: Globus, Web services, ssh, gsissh

Resource Virtualization

Runtime structured entities: 1 VN --> n Nodes in m JVMs on k Hosts

Resource Virtualization Host JVM node Application **VN1** node **GCM XML** Deployment JVM **Descriptor VN2** node Host **JVM** node

Multiple Deployments

Rmissh : SSH Tunneling

A fact : overprotected clusters

- □ Firewalls prevent incoming connections
- Use of private addresses
- □ NAT, IP Address filtering, ...

► A consequence :

Multi clustering is a nightmare

Context :

- □ SSH protocol : encrypt network traffic
- Administrators accept to open SSH port
- □ SSH provides encryption

Rmissh : SSH Tunneling (2)

- Create a communication protocol within ProActive that allows firewall transversal
- Encapsulates rmi streams within ssh tunnels
- Avoid ssh tunneling costs when possible by first trying a direct rmi connection then fallbacking with rmissh

The ProActive P2P

The ProActive P2P

Unstructured P2P
 Easier to deploy/manage
 Only 1 resource : CPU

Java code
Each peer is written in Java and can run any Java application

Direct communications
 Peers are reachable using their name (URLs)
 One peer can send/receive a reference on another peer

The ProActive P2P (2)

Applications

Resource Management

P2P Infrastructure

Direct

Access

Infrastructure

- A peer is an Active Object in a JVM
- Each peer knows a limited number of other peers (bi-directional links)
 - □ Its acquaintances
 - □ The number is set by a variable (NOA)
- Goal of a peer
 - A peer will always try to maintain the number of its acquaintances equals to its NOA
- 2 basic operations
 - Adding an acquaintance
 - Removing an acquaintance

Requesting Nodes

- To request a node
 Contact only a Peer (URLs)
- The infrastructure will handle the reservation
- The application has to wait until the nodes are available
- Using the P2P network
 Programmatically at runtime using the Java API
 At Deployment time through the GCMDeployment

Scheduler and Resource manager

Scheduler / Resource Manager

	🕏 🕘 🖉 ProActive S	cheduler	ProActive	Resource Manager	_ [_] ×					
<u>File Window H</u> elp			<u>E</u> ile <u>W</u> indow							
			B Resource				🖺 🗈 Scheduler	-		
	📱 Jabs 😫		Resource Explorer			∜ ≁ 🕾	🗊 🔳 z:	22 II I> 🖷 💥 🕻	- =)	
		Pending (674)	✓		-	Ein	ished (31)			
	ld State User	r Priority	▶ ■ PA_JVM204471797			User	Priority	Name		
2	1996 Pending jl	Normal	✓ [™] PA_JVM810169833			jl	Low	job_proActive		
	1997 Pending jl	Normal	rmi://eon17.inria.fr:2500/	Schodulor//N/20360650		jl	Low	job_proActive		
_	1998 Pending ji	Normal	Var Don Article In W. Moneyer			jl	Low	job_proActive		
	1999 Pending ji	Normal	mi://eon17.inria.fr:2500/	SchedulerviN429360659		jl	Low	job_proActive	Ξ	Jav
	2000 Pending	Normal	▼ [®] PA_JVM795760154			ji	Low	job_proActive		ati
	2001 Pending jl	Normal	ermi://eon17.inria.fr:2500/	SchedulerVN1535983771		JI	Low	Job_proActive		au
-	2002 Pending jl	Normal	▼ PA_JVM2114202422			ji	Low	job_proActive		
	2003 Pending jl	Normal	mi://eon17.inria.fr:2500/	SchedulerVN1213436452		jl	Low	job_proActive		
	2004 Pending jl	Normal	▽ 르 eon 12.inria.fr			jl	Low	job_proActive		
	2005 Pending jl	Normal	✓ □ PA_JVM2142254126			jl	Low	job_proActive		
_	2006 Pending jl	Normal	en 12.inria.fr:2500/	SchedulerVN228546106		user1	Normal	job_with_dep		
	2007 Pending jl	Normal	✓ PA_JVM535885306			user1	Normal	job_with_dep		
	2008 Pending jl	Normal	rmi://eon12.inria.fr:2500/	SchedulerVN923937998		user1	Normal	job_with_dep		
	2009 Pending jl	Normal	✓ □ PA_JVM938550174			admin	Normal	job_with_dep		
	2010 Pending jl	Normal	rmi://eon12.inria.fr:2500/	SchedulerVN237369195		admin	Normal	job_with_dep	v	. ,.
			▼ BPA_IVM244285108						-1	
Ļ			mi://eon12.inria.fr:2500/	SchedulerVN1918969159						
	🗉 Console 📱 Tasks 🕱			Senedaler Hills 10505155		Info 🕱 🔪	🔲 Result I	Preview 5	- 8	
			▼ ■PA_IVM1945520612			arty	Valu	e	^	
	ld State Na	ame H	rmi://eon18.inria.fr:2500/2	C-h-dul1/N1822461200			20	08		
	200800: Submitted ta	osk4 r		SchedulerviN1625461509		2	Pe	nding		
-	200800: Submitted task2 n, 200800: Submitted task6 n, 200800: Submitted task1 n, 200800: Submitted task1 n, 200800: Submitted task1 n,		▼ 🗟 PA_JVM1372728190		e.	job	_with_dep			
$k \parallel$			mi://eon18.inria.fr:2500/	SchedulerVN858092814		ty	No	rmal	Ξ	
			✓		ing tasks n	umber 0			S,	
					ng tasks n	umber 0	er O			
	200800: Submitted task7 n,		Statistics 🛙 🗖 🗆		ed tasks n	umber 0				
	2008008 Submitted Lask3 n,		name value			tasks num	ber 8			
	2008000 Submitted ta	esk8 r	# free nodes 95			itted time	: 09	:40:06 03/12/08		
501			# busy nodes 11			ed time	No	tyet		
	r . I		# down nodes 0			ed time	No	t vet	~	

Agenda

- ProActive and ProActive Parallel Suite
- Programming and Composing
 - ProActive Core
 - High Level Programming models
 - ProActive Components
 - Legacy code wrapping
- Deployment Framework
- Development Tools

ProActive Parallel Suite

IC2D

Interactive Control & Debug for Distribution

Basic Features:

- Graphical visualization
- Textual visualization
- Monitoring and Control
- Extensible through RCP plug-ins
 - Timlt
 - Chartlt
 - P2P view
 - DGC view

IC2D: Monitor your application

Monitoring View	Job Monitoring View
Monitoring - Eclipse SDK	
<u>File Edit N</u> avigate Se <u>a</u> rch <u>P</u> roject <u>R</u> un <u>C</u> ontrol <u>M</u> onitoring <u>W</u> indow <u>H</u> elp	
] 🕞 🕶] 🕰 🕶] 🖋] 🗂 🕶 🎆 🚵 📾] 🗶 🛩 🖏 🛩 🍩 🗢 🗢 🖓 🖓 🐨 💭] 😨] 🕥 👘 🔀 Monitori	ng 🕅 Launcher 🚸 Plug-in De 🏻 🐣
😤 Monitoring 🗙 😔 😁 🗖 🗖	Legend 📲 Job Monito 😫 🖵 🗖
Virtual nodes	E E
Renderer DefaultVN Dispatcher User	▼ 🖵 DefaultVN (JOB-135745762)
bebita.inria.fr:1099:05 u	∽ 💓 bebita.inria.fr:1099:OS un
Node Node60562498	▽
DinnerLayout#2	V Node Node605624!
Table#3 PA_VM 136155261_be PA_VM 1672076195_b PA_VM 291719007_be PA_VM 1631909821_b	OinnerLayout#2
Philosopher#4 Node Renderer-127 Node Dispatcher-5 Node User10020446 Node Renderer1307	Table#3(JOB-13
Philosopher#5 C3DRendering C3DD is pate he C3DU ser#13 C3DRendering	OPhilosopher#4(J
Philosopher#G	🗢 Philosopher#5() 🖇
Philosopher#7	Philosopher#6()
Philosopher#8	OPhilosopher#7(J
	OPhilosopher#8(J
	Þ 🗊 sidonie.inria.fr:1099:OS u
duff.inria.fr:1099:OS und sidonie.inria.fr:1099:OS PA_IVM1530781642_du PA_IVM-772843461_si	Dispatcher (JOB167207649
Node Renderer1174 Node Renderer151 Node Node-4551805	∽ ⊏ User (JOB294719007)
C3DRendering	🐨 🧊 bebita.inria.fr:1099:OS un
	│
🗹 Display topology 🔘 Proportional 🔘 Ratio 💿 Filaire 🛛 Reset Topology 🗹 Monitoring enable	🏹 🔜 Node User1602644
	C3DUser#13()C
	_ ▽ ⊏ Renderer (JOB1672076495
Monitoring 15:09:15 => NodeObject id=Node 455186381 already monitored, ekeek for new active objects] ▽ 💓 bebita.inria.fr:1099:OS un
	¤*
2009 ProActive	
2009 ProActive	86

y, Compasing, Daplaying on the Grid

Timlt Automatic Timarc in ICOD

Analysis and Ontimization

. 8)

M/W Success Story: Artificial Life Generation

Sylvain Cussat-Blanc, Yves Duthen – IRIT TOULOUSE

Initial Application (C++)	1 PC	56h52 => Crashed		
ProActive Version	300 CPUs	19 minutes		

00	~~
20	na
20	03

Price-It workload distribution with ProActive

- Low level parallelism : shared memory
- ► Written in c++
- Originally written for microsoft compiler
- ► JNI, Com interface
- No thread safe
- Upgrading the code base to thread safe code might be costly
- Is there any easier and cheaper alternative to extract parallelism from Price-it Library ?

CPS : C++ API Client for ProActive Scheduler

- CPS : Client for ProActive Scheduler
- Shipped as .so/.dll
- A set of C++ methods to submit jobs to the Scheduler
 - □ SchedulerClient::init() and dispose()
 - SchedulerClient::submitJob(Job* jobPtr)
 - SchedulerClient::getJobResult(int jobId)
- Internally uses JNI

Conclusion

- Simple and Uniform programming model
- Rich High Level API
- ► Write once, deploy everywhere (GCMD)
- Let the developer concentrate on his code, not on the code distribution
- Easy to install, test, validate on any network

Now, let's play with ProActive...

Start and monitor with IC2D the ProActive examples, and have a look at the source code

org.objectweb.proactive.examples.*

Features	Applications
Basics, Synchronization	Doctors problem (doctors.bat), Reader/Writer problem (readers.bat),
Futures, Automatic Continuation	Binary Search Tree (bintree.bat)
Migration	Migrating Agent (/migration/penguin.bat)
Group	Chat(/group/chat.bat)
Fault-Tolerance	N-body problem (/FT/nbodyFT.bat)
All	Distributed 3D renderer (c3d*.bat)

