ProAcrive

Parallel Suite

Denis Caromel Arnaud Contes et al.
Univ. Nice/INRIA/CNRS ActiveEon

January 2009

1 i;ﬁr_ersiiﬁ CENTRE NATIONAL .
an:._e SOPHIA ANTIPOLIS % DE LA RECHERCHE F‘l INRIA ObjectW%
L | Open Source Middleware
2009 Projcive &

Agenda

» ProActive and ProActive Parallel Suite

» Programming and Composing
 ProActive Core
 High Level Programming models
d ProActive Components

» Deployment Framework
» Development Tools

Parallel Suite >

ProActive

» ProActive is a JAVA middleware for parallel,
distributed and multi-threaded computing.

» ProActive features:
O A programming model
d A comprehensive framework

To simplify the programming and execution of parallel applications within
multi-core processors, distributed on Local Area Network (LAN), on clusters
and data centers, on intranet and Internet Grids.

Parallel Suite >

B B
Current Open SourproAcTve
TOOIS: Parallel Suite

PROGRAMMING
Java Parallel Eclipse GUI (IC2D) Multi-Language Scheduler
Frameworks for Developing, Debugging, for Workflows made of C,
for HPC, Multi-Cores, Optimizing your parallel C++, Java, Scripts, Matlab,
Distribution, Enterprise applications. _ Scilab tasks.

Grids and Clouds.

Programming & Composing

Master-Worker Monte-Carlo Branch&Bound Workflow
vent MATLAB
. SCILAB Skeletons SPMD
— =

GCM - Components

Legacy Code Wrapping

Acceleration Toolkit :

Concurrency+Parallelism OWE

+Distributed —onsertium

Parallel Suite

B B
Unification of Multi-Threading

and Multi-Processing

Multi-Threading Multi-Processing
Multi-Core Programming Distributed programming,
Grid Computing
» SMP » MPP
Q Symmetric Multi- O Massively Parallel
Processing Programming or
Q Shared-Memory d Message Passing
Parallelism Parallelism
> » Solutions: PVM, MPI,

RMI, sockets,...
N ProAcrive @

Parallel Suite LS

2009 ProAcrtive &
Parallel Suite >

S B
Unification of Multi-threading

and Multi-processing

Seamless
Sequential Multithreaded Distributed

O

- o} (—
H<O S H<O||[lS

» Most of the time, activities and distribution are not known at
the beginning, and change over time

» Seamless implies reuse, smooth and incremental transitions

2009 ProAcrive &
Parallel Suite >

ProActive Parallel Suite

» ProActive Parallel Suite includes:

d The ProActive middleware featuring services like:

® Fault tolerance, Load balancing, Distributed GC, Security, WS
m A set of parallel programming frameworks
m A framework for deploying applications on distributed infrastructures

d Software for scheduling applications and resource
management

O Software for monitoring and profiling of distributed
applications

d Online documentation

d Full set of demos and examples

‘\\
i

%
[T,

A\'..' i
X
KN

Pro

Programming, Composing, Deploying on the Grid

2009 ProAcrive &
Parallel Suite . &%

ProActive Parallel Suite

froclve® D

ProActive Parallel Suite

Developer Tools & Eclipse IDE Plugins

-

Programming & Composing

High-Level Programming Models &
Legacy Code Wrapping

Core API
Active Objects
Asynchrony
Futures
Mobile Agents Distributed
MOP / AOP Garbage

' | Collector

) [(1) (i

_ Deployment & Virtualization

| DesktopP2P |
Grid

T

Scheduler & |
Infrastructure
Manager

frocive® D

%

i | File Transter

[

S B
Ways of using

Proactive Parallel Suite?

» To parallel/distributed applications from
scratch

> using well-known
thanks to our
(master-worker, Branch&Bound, SPMD,

Skeletons)

» To your sequential mono-threaded application
Into a multi-threaded one (with minimum modification of
code) and It over the infrastructure.

Profcle @

S B
Ways of using
Proactive Parallel Suite?

» To wrap your native application with ProActive in order
to distribute it

» Define jobs containing your native-applications and use
ProActive to schedule them on the infrastructure

Parallel Suite >

Agenda

» ProActive and ProActive Parallel Suite

» Programming and Composing
O ProActive Core
 High Level Programming models
d ProActive Components

» Deployment Framework
» Development Tools

Parallel Suite >

S - s
ProActive Parallel Suite

Fault
Tolerance

Master-Worker
Event
Programming

GCM - Componentis

Security

) (1) (i)

[Distributed
Garbage
| Collector

L egacy Code Wrapping

]|

~ Deployment & Virtualization

| Desktop P2P
Grid

Scheduler & |
Infrastructure
Manager

AR

File Transfer

%

!

ProActive Core
ACTIVE OBJECTS

AR

ProActive

A 100% Java API| + Tools for
Parallel, Distributed Computing

» A programming model: Active Objects
d Asynchronous Communications, Wait-By-Necessity,
Groups, Mobility, Components, Security, Fault-
Tolerance

» A formal model behind: Determinism (POPL’'04)
O Insensitive to application deployment

» A uniform Resource framework
1 Resource Virtualization to simplify the programming

2009 ProAciive &
Parallel Suite . &%

B - s
Active Objects

Remote Accessible
Objects

. . Asynch
With ProActive, he gets ...
Developer writes @

o new A(...) newActive(A,..)
Fault Tolerance

Distributed
Garbage Collector

Resource

Virtualization

TS

ProActive model : Basis

» Active objects
 coarse-grained structuring entities (subsystems)

 has exactly one thread.
d owns many passive objects (Standard Java Objects, no

thead)
1 No shared passive objects -- Parameters are deep-copy

» Remote Method Invocation
d Asynchronous Communication between active objects

» Full control to serve incoming requests IVM

oy ' ol
e W =

ProAcTive &
Parallel Suite >

0 B
Active objects

® Aag = newActive (“A” [...], Node)
® Vvl =ag.foo (param);
® Vv2=ag.bar (param);

® vl.bar(); [/\Wait-By-Necessity
JVM

T

Le

O Java Object Q Active Object Req. Queue Wait-By-Necessity
_ provides
O Future Object O Proxy @ Request Thread Dataflow

Synchronization

Parallel Suite S&F

E I
ProActive : Creating active objects

O An object created with A a = new A (obj, 7);
O can be turned into an active and remote object:

d Instantiation-based: The most general case.
U | Aa=(A)ProActive. newActive («A», params, node);

d Class-based: In combination with a static method as a factory

To get a non-FIFO behavior (Class-based)
O |class pA extends A implements RunActive { ... }

J Object-based:
A a =new A (obj, 7);

a = (A)ProActive. turnActive (a, node);

Parallel Suite >

S B
Wait by necessity

» A call on an active object consists in 2 steps

UA query : name of the method, parameters...
UA Reply : the result of the method call

» A query returns a Future object which is a placeholder for
the result

» The callee will update the Future when the result is
available

» The caller can continue its execution event if the Future
has not been updated

foo () Result process()
Resultr = a.process(); //perform long
//do other things //calculation
r.iéString(); return result;
} }
will block if

not available

Parallel Suite 5%

—— C —
ProActive : Explicit Synchronizations

Aag = newActive (A", [...], VirtualNode)
V v = ag.foo(param);

v.bar(); [/Wait-by-necessity

» EXxplicit Synchronization:
= - ProActive. ISAwalted (v); // Testif vailable

e . waltFor — (v); // Wait until availab.
» Vectors of Futures:

e . walitForAll (Vector); // Wait Al

. - . waltForAny (Vector); // Get First

Parallel Suite >

0 B
ProActive : Active object

Standard object
Objet 1

An active object 1s composed of several
objects :

Active object

——————————————————

Proxy | Object 1

* The object being activated: Active
Object (1)

* A set of standard Java objects

* A single thread (2)

* The queue of pending requests (3)

. ProAcTive @
Parallel Suite &%

— o
ProActive : Reuse and seamless

» Two key features:

» Polymorphism between standard and active objects
- Type compatibility for classes (and not only
Interfaces)

- Needed and done for the future objects also
- Dynamic mechanism (dynamically achieved if
needed)

P \\alt-hv-necessitv . inter-obhiect svnchronization

‘A foo (A a)
Q {
() 0 a.g (...);

AT v=af (...);

v.bar (...):

Parallel Suite >

E— e
ProActive : Reuse and seamless

» Two key features:

» Polymorphism between standard and active objects
- Type compatibility for classes (and not only interfaces)
- Needed and done for the future objects also
- Dynamic mechanism (dynamically achieved if needed)

» \Wait-by-necessity :inter-object synchronization
- Systematic, implicit and transparent futures _
- Ease the programming of synchronizations, and the reuse of routines

"A" foo (A a) O.foo(a)
a.g() and a.f()
a.g (...); are « local »
V af () O.foo(ra):
v.bar (...); a.g() and
a.f()are
«remote +
Async.»
LTI @ el
Parallel Suite 5%

- Reuse and seamless

» Polymorphism between standard and active

objects
dType compatibility for classes (and not only
Interfaces)
(dNeeded and done for the future objects also

»\\Vait-by-necessity : Inter-object synchronization
L Systematic, implicit and transparent futures
L Ease the programming of synchronizations, and the
reuse of routines

2009 ProAcrtive &
Parallel Suite >

Intra Active
Object
Svynchronizations

H ProActive @
Parallel Suite 5%

B I
ProActive:

Inter- to Intra- Synchronization

Inter-Synchro: mainly Data-Flow
Sequential Multithreaded Distributed

5 . (gzb 65—
O~ O OOl H

Synchronizations do not dependent upon

the physical location (mapping of activities)

N ProAcrive @
Parallel Suite . &%

E— I
ProActive : Intra-object synchronization

class BoundedBuffer extends FixedBuffer

> EXpIICIt control: implements RUNACtive {
» Library of service | |
routines_ Il Pr.og.rammlng Non FIFO behavior
O Non-blocking services, ... runActivity (ExplicitBody myBody) {
= serveOldest (); while (..){
B serveOldest (f)’ if (this. iskFull ()
O Blocking services, timed, serveOldest(" get "),
etc. else if (this. ISEmpty ())
m serveOldestBl serveOldest (* put ™);

: else serveOldest ();
m serveOldestTm

(ms); // Non-active wait
O Waiting primitives waitArequest ();
= waitARequest(); }
® efc. 1

Implicit (declarative) control: library classes
e.g. : Blocking Condition Abstraction for concurren cy control:

doNotServe ("put"”, "isFull");

Parallel Suite >

First-Class
Futures
Update

E—— e
Wait-By-Necessity: First Class Futures

Futures are Global Single-Assignment Variables

E— _ I
Wait-By-Necessity: Eager Forward Based

AO forwarding a future: will have to forward its va lue

E— I
Wait-By-Necessity: Eager Message Based

AO receiving a future: send a message

m— B
Standard system at Runtime:

No Sharing
NoC: Network On Chip

I,

. Active Object ----- = Synchronous Call Sub System

Ii] Passive Object —= Asynchronous Call C) Address Space

Parallel Suite . &%

E B
Proofs In GREEK

(@,0) =g (a',0') _
(LOCAL) Denis Caromel
afa; 055 7 B f] | P— ala’;o’s 7505 /] || P Ludovic Henrie

v fresh activity ¢ & dom(o) o' ={/—A0O(Y)} 0

o',},=copy({,",a') Servzce:(ifmJ=@thenFifoServicee]ge L"mj()) [Il (R MR R Il FRREE R

(NEWACT) I | [LABE LT LIRS] | INE
Q[R[Active(éﬁ,mj)];ﬂ'; L,F, R,f] || P :I‘III |III|\I||I|\I III Il b .llllll\lll l\lll III\I‘I‘I‘I‘H
HQ[R[L’];OJ;L;F;R;f] || W[Service;a’y;én;m;m;m] ||P LLLEEL L] ([YRR Pl | IRt | 11
0a(t) = AO(B) ' ¢dom(og) f*P new future o ¢ dom(os)
o5 = Copy&eMerge(oa,t' ; 05,0") oo ={ts Fut(f2P)} « o () A Theory Of
REQUEST) . .
a[Rlem; ()] 0as to; Fu; R fo] || Blass oa; 055 Fa; Res fo] |l Pﬁ—* DIS’[I’IbUtEd ObJeCtS
a[Resls 05 tes Fos Bos fol | Blas; o s Py Rg w [mys s f7 715 fal | P
Asynchrony — Mobility - Groups — Components
R=Ru[mye; fluR" mjeM VYmeM,m¢R
(SERVE)

o[R[Serve(M)]; 054 F; B; f] | P — afemi(ee) ft £, R[;056 F3 R = R] || P

dgdom(c) F =Fu{f-/} o =Copy&Merge(o,¢; 0,!) Preface by Luca Cardelli
(ENDSERVICE)
alef (f, 0055 F B f] || P— ola;o’s5 F5 B 1] || P

o0at) = fut(F777) Fa(f77%) =1 ol = Copy&Merge(og, it ; 0ast)

003 005 s P Ry fo] | Blos; o o5 Fgs Ry fo] | P — (REPLY)
Ot 05 bers Pl B fo] || Blags o3 005 Fgs Fgs fo] || P

ProAcTive @
Parallel Suite >

@ Springer

ProActive Core
PROACTIVE GROUPS

froive® I

ProActive Groups

» Manipulate groups of Active Objects, in a simple and typed manner:

mm) Typed and polymorphic Groups of local and remote objects
=) Dynamic generation of group of results
=) | anguage centric, Dot notation

> Be able to express high-level collective communications (like in MPI):
 broadcast,
e Scatter, gather,
o all to all

A ag=(A)ProActiveGroup. newGroup («A»,{{p1},...},{Nodes,..});
V v = ag.foo(param);
v.bar();

— Locie®
Parallel Suite >

ProActive Groups

» Group Members

O Active Objects
a POJO
O Group Objects

» Hierarchical Groups

» Based on the ProActive communication
mechanism

O Replication of N ‘single ’ communications
 Parallel calls within a group (latency hiding)

» Polymorphism

0 Group typed with member’s type

2009 ProAcrtive &
Parallel Suite >

Two Representations Scheme

Management
getGroup of the group
method of class
Group
Typed group Group of objects
“A “Group’
getGroupByType
static method of class
ProActive

Functional use
of the group

Parallel Suite >

Creating AO and Groups
® Aag = newGroup (A" [...], Nodel])
® Vv = ag.foo(param);
(X ¥ X
v @ v.bar(); [/Wait-by-necessity

/

O Typed Group O Java or Active Object

Parallel Suite . &%

I& o ke

39

B B
Typed Group as Result of Group

Communication

» Ranking Property:
 Dynamically built and updated
= B groupB = groupA.foo();
1 Ranking property: order of result group members =
order of called group members

» Explicit Group Synchronization Primitive:
 Explicit wait
= ProActiveGroup.waitOne(groupB);
®m ProActiveGroup.waitAll(groupB);

J Predicates

r noneArrived
r kArrived
r allArrived, ...

2009 ProAcrive &8
Parallel Suite >

B
Broadcast and Scatter

Broadcast is the default behavior
Use a group as parameter, Scattered depends on rankings

mm) ag.bar(cg); // broadcast cg
ProActive.setScatterGroup(cg)
ag.bar(cg); /[scatter cg

(D
(
(

Parallel Suite >

E .
Static Dispatch Group

Parallel Suite . &%

E B
Dynamic Dispatch Group

ag.bar(cg);

Parallel Suite . &%

. B
Handling Group Failures (2)

mmp \/ vg = ag.foo (param)

Group groupV = PAG.getGroup(vg); failure
el = groupV.getExceptionList();

;/.(sz.gee();

. ProAcrive @
Parallel Suite . &%

ProActive Core
MIGRATION: MOBILE AGENTS

froclve® D

Mobile Agents: Migration

» The active object migrates with:
 its state
4 all pending requests
d all its passive objects
4 all its future objects

» Automatic management of references:
1 Remote references remain valid: Requests to new location
1 Previous queries will be fulfilled: Replies to new location

» Migration is initiated by the active object itself
> API: static migrateTo

» Can be initiated from outside through any public
method

2088 ProAciive &
Parallel Suite .

- T
Migration: Localization Strategies

» Forwarders
 Migration creates a chain of forwarders
A forwarder is left at the old location to forward
reguests to the new location
 Tensioning: shortcut the forwarder chains by
notifying the sender of the new location of the target
(transparently)

» Location Server
A server (or a set of servers) keeps track of the
location of all active objects
1 Migration updates the location on the server

» Mixed (Forwarders / Local Server)
d Limit the size of the chain up to a fixed size

2088 ProAciive &
Parallel Suite .-«

B B
Migration of AO with Forwarders

|
Calling
Object =
0
r
W
a
r
d
Proxy ?

HE ProAcrive @
Parallel Suite .V

Principles and optimizations

» Same semantics guaranteed (RDV, FIFO order point to
point, asynchronous)

» Safe migration (no agent in the air!)
» Local references if possible when arriving within a VM
» Tensionning (removal of forwarder)

[.,,‘\
“ %

Y e

R

ProAcrive &

Parallel Suite 5%

Principles and optimizations

» Same semantics guaranteed (RDV, FIFO order point to
point, asynchronous)

» Safe migration (no agent in the air!)
» Local references if possible when arriving within a VM
» Tensionning (removal of forwarder)

[.,,‘\
“ %

e

=

O

ProAcrive &

Parallel Suite 5%

Principles and optimizations

» Same semantics guaranteed (RDV, FIFO order point to
point, asynchronous)

» Safe migration (no agent in the air!)
» Local references if possible when arriving within a VM
» Tensionning (removal of forwarder)

[.M‘\
“ %

=

O

}.

—_—)

e

direct

ProAcrive &

Parallel Suite 5%

Principles and optimizations

» Same semantics guaranteed (RDV, FIFO order point to
point, asynchronous)

» Safe migration (no agent in the air!)
» Local references if possible when arriving within a VM
» Tensionning (removal of forwarder)

[.M‘\
“ %

=

O

e

ProAcrive &

Parallel Suite 5%

Principles and optimizations

» Same semantics guaranteed (RDV, FIFO order point to
point, asynchronous)

» Safe migration (no agent in the air!)
» Local references if possible when arriving within a VM
» Tensionning (removal of forwarder)

[.M‘\
“ %

%él forw%er

O

e

ProAcrive &

Parallel Suite 5%

S B
Principles and optimizations

» Same semantics guaranteed (RDV, FIFO order point to
point, asynchronous)

» Safe migration (no agent in the air!)
» Local references if possible when arriving within a VM
» Tensionning (removal of forwarder)

%?Oifor;v%er

o
oy %2

N ProAcTive &
Parallel Suite >

S B
Principles and optimizations

» Same semantics guaranteed (RDV, FIFO order point to
point, asynchronous)

» Safe migration (no agent in the air!)
» Local references if possible when arriving within a VM
» Tensionning (removal of forwarder)
&
forwarder

o O
oy %2

N ProAcTive &
Parallel Suite >

N
—

E B
Principles and optimizations

» Same semantics guaranteed (RDV, FIFO order point to
point, asynchronous)

» Safe migration (no agent in the air!)
» Local references if possible when arriving within a VM
» Tensionning (remao

["" ?? fo rw%er

e

Parallel Suite >

A : B
ProActive : APl for Mobile

Agents

» Mobile agents (active objects) that
communicate

» Basic primitive: migrateTo

® public static void migrateTo (String u)
// string to specify the node (VM)

® public static void migrateTo (Object 0)
// joinning another active object

® public static void migrateTo (Node n)
// ProActive node (VM)

m public static void migrateTo (JiniNode n)
// ProActive node (VM)

Parallel Suite >

0 B
AP| for Mobile Agents

Mobile agents (active objects) that communicate

Il A simple agent
class SimpleAgent implements runActive , Serializable {
public SimpleAgent () {}

public void moveTo (String t){ // Move upon request

}
public String whereAreYou ({// Repplies to queries

return(“lamat 7 + InetAddress.getLocalHost ());

1

public runActivity (Body myBody){
while (... not end of itinerary D) S
res = myFriend. whatDidYouFind () // Query other agents |

myBody.fifoPolicy(); // Serves request, potentially
moveTo

}

VY VVVVVVYIVVVYVYVYVY VVYVY Y

}

ProAcrive &

Parallel Suite 5%

0 B
AP| for Mobile Agents

Mobile agents that communicate
Primitive to automatically execute action upon migration

public static void onArrival (String r)

// Automatically executes the routine r upon arrival

// in a new VM after migration

public static void onDeparture (Stringr)
// Automatically executes the routine r upon migration
// to a new VM, guaranted safe arrival
public static void beforeDeparture (String r)
// Automatically executes the routine r before trying a
migration
// to a new VM

Parallel Suite . &%

S B
APl for Mobile Agents

Itinerary abstraction
» Itinerary : VMSs to visit

L specification of an itinerary as a list of (site, method)
O automatic migration from one to another

0 dynamic itinerary management (start, pause, resume, stop,
modification, ...)

O myltinerary.add (“machinel”, “routineX”); ...
O itinerarySetCurrent, itineraryTravel, itineraryStop , itineraryResume, ...

» Still communicating, serving requests:
O itineraryMigrationFirst ();

/[Do all migration first, then services, Default behavior
O itineraryRequestFirst ();

/[Serving the pending requests upon arrival before
migrating again

. ProActive @
Parallel Suite 5%

Dynamic Itineraries

L

—— Host 4
Destination Methods Mlgr'aTlor;
Host 1 echo
Host 2 callhome
Host 3 processDaTa Host 3
Host 4 Mlgr'aTlorJ
Mlgr‘aTlon Mlgr'a’rlon
—Iome Hos’r 1 Hos’r 2
HE e B

S B
Communicating with mobile

objects

» Ensuring communication |n presence of migration
» Should be transparent (i.e. nothing in the application code)

» Impact on performance should be limited or well known

» ProActive provides 2 solutions to choose from at object
creation

(d Location Server
d Forwarders

> also, it is easy to add new ones!

N ProActive &
Parallel Suite >

Forwarders

» Migrating object leaves forwarder on current site

» Forwarder is linked to object on remote site

O Possibly the mobile object
O Possibly another forwarder => a forwarding chain is built

» \When receiving message, forwarder sends it to next
hop

» Upon successful communication, a tensioning takes
place

N ProActive &
Parallel Suite . &%

B B
Other Strategy:

Centralized (location Server)

S . Source
A . Agent
Host A Server ., reference

@ O
@) [

Host B Host C Host D

. ProAcrive @ T
Parallel Suite >

E B
Centralized Strategy (2)

S . Source
A . Agent
Host A Server ., reference

@ Q

Server Update

@ Migration @ D

Host B Host C Host D
A migrating object updates the server

Parallel Suite >

E B
Centralized Strategy (3)

S i Source
A . Agent
Host A Server . reference
® O
Failed | Message Update
[] D Migration D
Host B Host C Host D

A migrating object updates the server

A ProAcTive @ R
Parallel Suite >

Centralized Strategy (4)

S . Source
Ask for a new A : Agent
Host A reference Server référence
e Request |<> |
/ ‘ ReSPOnSC I But the AO mlgh'r

have moved again
Message in the meantime

.. Just play again.

Host B Host C Host D
The source get a new reference from the server

A B
Location Server vs Forwarder

» Server
O No fault tolerance if single server
O Scaling is not straightforward
O Added work for the mobile object
O The agent can run away from messages

» Forwarders

O Use resources even if not needed
O The forwarding chain is not fault tolerant
O An agent can be lost

» What about performance?

N ProActive @
Parallel Suite >

[B
On the cost of the communication

» Server:

0 The agent must call the server => the migration is longer
L Cost for the source:

m Call to site where the agent was

m Call to the server and wait for the reply

m Call to the (maybe) correct location of the agent

» Forwarder:

O The agent must create a forwarder (< to calling server)
O Cost for the source:

m Follow the forwarding chain

m Cost of the tensioning (1 communication)

. ProActive &
Parallel Suite >

Conclusion

» Weak Migration of any active object

» Communications using two schemes: server and
forwarders

» Current applications:

O Network Administration
L Desktop to Laptop

» Perspective: Taking the best of the forwarders and the

server

O Forwarder with limited lifetime
O Server as a backup solution

Parallel Suite 5%

S B
TTL-TTU mixed parameterized

protocol
» TTL: Time To Live + Updating Forwarder:

m After TTL, a forwarder is subject to self destruction
m Before terminating, it updates server(s) with last agent known location

> TTU: Time To Update mobile AO:

= After TTU, AO will inform a localization server(s) of its current location

» Dual TTU: first of two events:

= maxMigrationNb: the number of migrations without server update
= maxTimeOnSite: the time already spent on the current site

N ProActive &
Parallel Suite . &%

HE B
TTL-TTU mixed parameterized

protocol
S . Source
A . Agent
Host A Server ., reference

@ O
@) [

Host B Host C Host D

HE Pro/iclve & .
Parallel Suite . &%

m— I
TTL-TTU mixed parameterized

protocol
S . Source
A . Agent
Host A Server ., reference

@ Q

Server Update

\ Migration —] 1y
O W
Host B Host C Host D

E ProAcrive @
Parallel Suite . &%

. -
Conclusion on Mobile Active Objects

» AO = a good unit of Computational Mobility
» \Weak Migration OK (even for Load Balancing)
» Both Actors and Servers

» Ensuring communications: several

Implementation to choose from:

d Location Server
O Forwarders
O Mixed: based on TTL-TTU

» Primitive + Higher-Level abstractions:

0 migrateTo (location)
O onArrival, onDeparture
d Itinerary, etc.

R ProAcTive @
Parallel Suite . &%

Formal Performance Evaluation of
Mobile Agents: Markov Chains

» Objectives:

d Formally study the performance of Mobile Agent
localization mechanism

4 Investigate various strategies (forwarder, server, etc.)

1 Define adaptative strategies

Forwarder Strategy

R ProAcTive @
Parallel Suite . &%

S B
Modeling of Server Strategy

Servenr notif

A=00
B =10
=k
0= i
E =X
Serveur bhlagué
F=00
G =0

Parallel Suite

ProActive Core
FAULT TOLERANCE SERVICE

froive®

Fault-tolerance in ProActive

» Restart an application from latest
valid checkpoint
JAvoid cost of restarting from scratch

» Fault-tolerance Is non intrusive
set in a deployment descriptor file
JFault-tolerance service attached to

JNo source code
m Protocol selection , Server(s) location, Checkpoint
period

2009 Pro/ciive &

Fault-tolerance in ProActive

» Rollback-Recovery fault-tolerance
 After a failure, revert the system state back to some
earlier and correct version

 Based on periodical of the active
objects
4 Stored on a server

» Two protocols are implemented

d Communication Induced Checkpointing (CIC)
+ failure free overhead
— Slower recovery
1 Pessimistic Message Logging (PML)
— Higher failure free overhead
+ recovery

» Transparent and non intrusive

2009 ProAcrive &
Parallel Suite .

A B
Built-in Fault-tolerance Server

» Fault-tolerance is based on a global server

» This server is provided by the library, with
1 Checkpoint storage
1 Failure detection
m Detects fail-stop failures
1 Localization service
m Returns the new location of a failed object
1 Resource management service
® Manages a set of nodes on which restart failed objects

2009 ProAciive &
Parallel Suite . &%

ProActive Core
SECURITY SERVICE

frolve®

ProActive Security Framework

Issue
Access control, communication privacy and integrity

» Unique features
 SPKI: Hierarchy of certificates
[No security related code in the application source
code
 Declarative security language
 Security at user- and administrator-level
 Security context dynamic propagation

» Configured within deployment descriptors
 Easy to adapt according the actual deployment

E ProAciive &
Parallel Suite 5<%

ProActive Core
WEB SERVICES

AR

B B
Web Service Integration

> Aim
dTurn active objects and components interfaces into
Web Services

=>» interoperabllity with any foreign language or any
foreign technology.
> API

JEXpose an active object as a web Service (the user
can choose the methods he wants to expose)

m exposeAsWebService(Object o, String url,
String urn, String [] methods);

L EXxpose component’s interfaces as web services

= exposeComponentAsWebService(Component
component, String url, String componentName

2009 ProAciive &
Parallel Suite .=V

-WSDL

fle y 4

Urn=

piComMon’

\ — =

Provider \
ProActive Comims , o 1
ProActive &

Programming, Composing, Deploying on the Grid | ‘\’\

ProActive. b licati
exposeAsWebService Web application

......... . server

Parallel Suite >

Agenda

» ProActive and ProActive Parallel Suite

» Programming and Composing
 ProActive Core
O High Level Programming models
d ProActive Components

» Deployment Framework
» Development Tools

ProAcTive &
Parallel Suite >

. B
ProActive Parallel Suite

Master-Worker
Event
Programming

GCM - Components

Legacy Code Wrapping Distributed

Garbage
Collector

_ Deployment & Virtualization

| DesktopP2P |
Grid

Scheduler & |
Infrastructure
Manager

AR

File Transfer

ProACTIVe &

Parallel Suite
High Level Programming models

Master-Worker Framework

AR

Motivations

» Embarrassingly parallel problems : simple and
frequent model

» \Write embarrassingly parallel applications with
ProActive :

1 May require a sensible amount of code (fault-
tolerance, load-balancing, ...).

d Requires understanding of ProActive concepts (
Futures, Stubs, Group Communication)

2009 ProAcrive &8
Parallel Suite >

Goals of the M/W API

» Provide a easy-to use framework for solving

embarrassingly parallel problems:

 Simple Task definition

d Simple API interface (few methods)

d Simple & efficient solution gathering mechanism

» Provide automatic fault-tolerance and load-
balancing mechanism

» Hide ProActive concepts from the user

2009 ProAcrive &8
Parallel Suite . &%

How does it work?

add'q

R B AL
RSB’
Tas|

- - -~
‘.' e

’ s,
. ‘
.
.

User

Task n+1

S
© TRHNE1 TaigkR2

ot

Slave! Slave2

2009

sultM — — |
ki..JTaskM~— — — —

/v

/w3 .0rq/2001/ K150}

public class MyTa

\

public String ru
retum "Hel

Results

Resultl

s Task<String>

Result2

Result3

W ([N |-

Result4

Resultn

Slave3

ProAcrtive

Parallel Suite

Comparison between specific
Implementation and M/W

» Experiments with nQueens problem

» Runs up to 25 nodes

01:26:24

01:12:00

00:57:36

00:43:12

computation time

00:28:48

00:14:24

00:00:00

NQueensOpt vs MasterWorker

\

N\

N\

—e— Nqueens Opt

—m— MasterWorker

\
\

20 40 60 80

number of nodes used

2009

ProAcrive é&

Parallel Suite 5<%

ProACTIVe &

Parallel Suite
High Level Programming models

Skeletons Framework

AR

S B
Algorithmic Skeletons

» High Level Programming Model

» Hides the complexity of parallel/distributed
programming.

» EXxploits nestable parallelism patterns

Task Parallelism Data Parallelism

divide & conquer

map

2088 ProAciive &
Parallel Suite .-«

B B
Skeletons Big Picture

» Parameters/Results are passed through streams
» Streams are used to connect skeletons (CODE)

Skeleton Code

Parameter
(Data) — B

—_

Input Stream

Solved: Results

2088 ProAciive g
Parallel Suite >

Pipe Skeleton

» Represents computation by stages.

» Stages are computed in parallel for different

parameters.
Input Stream Execute Skeleton Output Stream

P5 P4 P3 ~/ﬂﬁ)\/\/\/—\ Rl
g 2
P5 P4 ;/\A‘/_\A iii/—\ Rl

A Skeleton 1 A Skeleton 2
ProAciie &
Parallel Suite >

awi L

Simple use of Pipe skeleton

Skeleton<Eggs, Mix> stage1 =
new Seq<Eggs,Mix>(new Apprentice());

Skeleton<Mix, Omelette> stage2 =
new Seq<Mix,Omelette>(new Chef());

Skeleton<Eggs, Omelette> kitchen =
new Pipe<Eggs, Omelette>(stage1, stage2);

ProAcTive
Parallel Suite >

ProACTIVe &

Parallel Suite
High Level Programming models

Branch-and-Bound Framework

froive® I

HE B
Branch & Bound API (BnB)

» Provide a high level programming model for

solving BnB problems:
d manages task distribution and provides task
communications

» Features:
d Dynamic task split
d Automatic result gather
1 Broadcasting best current result
O Automatic backup (configurable)

2009 ProAciive &
Parallel Suite >

S B
Global Architecture :

M/W + Full connectivity

2009 ProAcrive &

100
Parallel Suite >

ProACTIVe &

Parallel Suite
High Level Programming models

OO SPMD

TS

Object-Oriented
Single Program Multiple Data

» Motivation
 Cluster / GRID computing
d SPMD programming for many numerical simulations
 Use enterprise technology (Java, Eclipse, etc.) for
Parallel Computing

» Able to express most of MPI's
 Collective Communications (broadcast, gathercast,
scattercast,..)
1 Barriers
O Topologies

2009 ProAciive &
Parallel Suite . &%

102

H B
ProActive OO SPMD

» A simple communication model

d Small API

1 No “Receive” but data flow synchronization
d No message passing but RPC (RMI)
 User defined data structure (Objects)

1 SPMD groups are dynamics

1 Efficient and dedicated barriers

N ProActive &
Parallel Suite >

E JEE——
Execution example

® Aag = newSPMDGroup (“A” [...], VirtualNode)
/I In each member
@ myGroup.barrier (“2D"); /I Global Barrier
® myGroup.barrier (“vertical”); /[Any Barrier
©® myGroup.barrier (“north”,”south”,“east”,“west”);

7 ‘
-, !
v "
~ - A 4 | |
S X S S
~
—

- F

. ®

ProAcTive @
Parallel Suite . &%

L
~

104

. B
Topologies

» Topologies are typed groups
» Customizable
» Define neighborhood

EEEEE @ S

Line Ring Plan Cube Torus Hypercube

Plan plan = new Plan(groupA, Dimensions);
Line line = plan.getLine(0);

Parallel Suite >

105

0 B
MPlI Communication primitives

» For some (historical) reasons, MPI has many com. Primitives:

> MPI_Send Std MPI_Recv Receive
> MPI_Ssend Synchronous MPI_Irecv Immediate
> MPI_Bsend Buffer ... (@any) source, (any) tag,
> MPI_Rsend Ready

> MPI_Isend Immediate, async/future

> MPI_Ibsend, ...

» I'd rather put the burden _ on the implementation _, not the Programmers !
» How to do adaptive implementation in that context ?

» Not talking about:
®= the combinatory that occurs between send and receive
® the semantic problems that occur in distributed implementations

» Is Recv at all needed ? (Dynamic Control of Message Asynchrony)

. ProAcTive @
Parallel Suite &%

. ProAcTive @
Parallel Suite &%

MPI and Threads

» MPI was designed at a different time

» When OS, languages (e.g. Fortran) were single-threaded

» No longer the case.

» Programmers can write more simple, "sequential” code,

» the implementation, the middleware, can execute things in parallel.

HE B
Main MPI problems for the GRID

» Too static in design
» Too complex in Interface (API)

» Too many specific primitives to be adaptive

» Type Less
» ... and you do not "lamboot” / "lamhalt” the
GRID !

Performance & Productivity
» HPC vs. HPC:

High Performance Computing
VS.

High Productivity Computing

. ProAcrive @
Parallel Suite . &%

S B
Sum up: MPI vs. ProActive OO SPMD

» A simple communication model, with simple

communication primitive(s):
= No RECEIVE but data flow synchronization
m Adaptive implementations are possible for:

» // machines, Cluster, Desktop, etc.,
» Physical network, LAN, WAN, and network conditions
» Application behavior

» Typed Method Calls:

m —=> Towards Components

» Reuse and composition:
= No main loop, but asynchronous calls to myself

N ProActive &
Parallel Suite . &%

ProACTIVE &8

Parallel Suite

High Level Programming models

Scheduling

TS

S B
Programming with flows of

tasks

» Program an application as an ordered tasks set
O Logical flow : Tasks execution are orchestrated
0 Data flow : Results are forwarded from ancestor tasks to their children
as parameter

Task 3(resl,res2)

» The task is the smallest execution unit

» Two types of tasks:
O Standard Java
O Native, i.e. any third party application

2009 ProAcrive &
Parallel Suite >

112

Defining and running jobs with
ProActive

» A workflow application is a job

O a set of tasks which can be executed according to a
dependency tree

» Rely on ProActive Scheduler only

» Java or XML interface

O Dynamic job creation in Java
O Static description in XML

» Task failures are handled by the ProActive Scheduler

O A task can be automatically re-started or not (with a user-defined
bound)

O Dependant tasks can be aborted or not
O The finished job contains the cause exceptions as results if any

ProAcTive @

Parallel Suite 5%

113

Agenda

» ProActive and ProActive Parallel Suite

» Programming and Composing
 ProActive Core
 High Level Programming models
J ProActive Components

» Deployment Framework
» Development Tools

114

Parallel Suite >

S - s
ProActive Parallel Suite

Fault
Tolerance

Master-Worker
Event
Programming

GCM - Components

Security

) (1) (i)

[Distributed
Garbage
| Collector

Legacy Code Wrapping

]|

~ Deployment & Virtualization

| Desktop P2P
Grid

Scheduler & |
Infrastructure
Manager

AR

File Transfer

%

!

A B
A framework for Grid

components

» Facilitating the design and implementation of
complex distributed systems

» Leveraging the ProActive library
ProActive components benefit from underlying features

» Allowing reuse of legacy components (e.g. MPI)

» Providing tools for defining, assembling and
monitoring distributed components

2088 ProAciive &
Parallel Suite .

116

Component - What is it ?

» A component in a given infrastructure is:

a software module ,
with a standardized description of what it needs and provides ,
to be manipulated by tools for Composition and Deployment

117

Parallel Suite >

ProActive Component Definition

» A component is:
O Formed from one (or several) Active Object
O Executing on one (or several) JVM
O Provides a set of server ports: Java Interfaces
0 Uses a set of client ports: Java Attributes
O Point-to-point or Group communication between components

» Hierarchical:
O Primitive component: define with Java code and a

descriptor
0 Composite component:. composition of primitive + composite
4 Parallel component: multicast of calls in composites

» Descriptor:
O XML definition of primitive and composite (ADL)
O Virtual nodes capture the deployment capacities and needs

» Virtual Node:
U a very important abstraction for GRID components

2009 ProAcrive &
Parallel Suite >

118

Components for the GRID
O An activity, a process, ... F@q 1. Primitive component

potentially in its own JVM

2. Composite component

Composite: Hierarchical, and
Distributed over machines

3. Parallel and composite
Parallel : Composite component

+ Broadcast (group)
. ProAcrive @ R
Parallel Suite . &%

E B
Components vs. Activity and

JVMs

O |]

Activity JVM Component

» Components are orthogonal to

activities and JVMs
O They contain activities, span across
several JVMs

» Components are a way to globally
manipulate distributed, and running
activities

120

Parallel Suite >

Agenda

» ProActive and ProActive Parallel Suite

» Programming and Composing
 ProActive Core
 High Level Programming models
d ProActive Components

» Deployment Framework
» Development Tools

ProAcTive &
Parallel Suite >

121

GCM Deployment

Programming & Composing

High-Level Programming Models &
Legacy Code Wrapping

Active Objects
Asynchrony
Fuiures
Mobile Agents Distributed
MOP / AOP Garbage
. | Collector

| Scheduler & |
Infrastructure
Manager

Prowsiin®

| Desktop P2P
Grid

Abstract Deployment Model

Problem
Difficulties and lack of flexibility in deployment
Avoid scripting for configuration, getting nodes, connecting...

A key principle: Virtual Node (VN)

Abstract Away from source code:
Machines names
Creation/Connection Protocols
Lookup and Registry Protocols

Interface with various protocols and infrastructures:

Cluster: LSF, PBS, SGE , OAR and PRUN(custom
protocols)

Intranet P2P, LAN: intranet protocols: rsh, rlogin, ssh
Grid: Globus, Web services, ssh, gsissh

2009 ProAcrive &8
Parallel Suite >

123

Resource Virtualization

/ Deployment Descriptor \

/ Infrastructure b

Acquisition

Connections ==» Creation

Application = \/N P Nodes
:
|
|
|

Runtime structured entities: 1 VN --> n Nodes in m J VMs on k Hosts

ProAcTive
Parallel Suite . &%

124

Resource Virtualization .

JVM
| node
S VN1 node
= GCM XML
8 Deployment IVM
— Descriptor
—~ VN2
& node
<
Host
JVM
node

Parallel Suite >

Virtualization resources Host

JVM
node
c
O VN1 node
=
8 JVM
%- VN2 node
Q.
<<
Host
JVM
node

Parallel Suite >

Multiple Deployments

T

One Host Local Grid Dlstrlbuted Grids

ProAcrive &

Parallel Suite .5

127

N
o
o
O

Rmissh : SSH Tunneling

» A fact . overprotected clusters

O Firewalls prevent incoming connections
O Use of private addresses
O NAT, IP Address filtering, ...

» A consequence :
O Multi clustering is a nightmare

» Context:

L SSH protocol : encrypt network traffic
0 Administrators accept to open SSH port
L SSH provides encryption

128

2009 ProAcrtive &
Parallel Suite >

Rmissh : SSH Tunneling (2)

» Create a communication protocol within
ProActive that allows firewall transversal

» Encapsulates rmi streams within ssh tunnels

» Avoid ssh tunneling costs when possible by first
trying a direct rmi connection then fallbacking
with rmissh

2009 ProAciive &
Parallel Suite . &%

129

HEE B
The ProActive P2P

| Scheduler &
Infrastructure
Manager

Desktop P2P
Grid

AR

The ProActive P2P

» Unstructured P2P

 Easier to deploy/manage
 Only 1 resource : CPU

» Java code
 Each peer Is written in Java and can run any Java
application

» Direct communications
 Peers are reachable using their name (URLS)
d One peer can send/receive a reference on another
peer

ProActive &
Parallel Suite >

131

| . B
The ProActive P2P (2)

Applications
Direct
Resource Management || A.ces
P2P Infrastructure

Infrastructure

» A peer is an Active Object in a JVM

» Each peer knows a limited number of other

peers (bi-directional links)
4 Its acquaintances
O The number is set by a variable (NOA)

» Goal of a peer
A peer will always try to maintain the number of its
acquaintances equals to its NOA

» 2 basic operations
1 Adding an acquaintance
1 Removing an acquaintance

2009 ProAcrive &
Parallel Suite 5%

(K]

Requesting Nodes
» To request a node
 Contact only a Peer (URLS)

» The infrastructure will handle the reservation

» The application has to wait until the nodes are
available

» Using the P2P network

O Programmatically at runtime using the Java API
At Deployment time through the GCMDeployment

2009 ProAciive &
Parallel Suite . &%

134

HEE B
Scheduler and Resource

manager

frolve® I

Scheduler / Resource Manager

=]

ProActive Resource Manager

Fle Window Help File Window
J | B [scheduler
-~ - T = i =
2 Jobs 5 (@ 5 -~ 0O e @ E-O[f FT| 8= 0 - @ %0
Panding (574} < Eeonl7.inria.fr 5 A .
Id State User Priority = User Prioric MName I
b [EPA_JVM204471797 Yy
1996 Pending || Narmal <~ [EPA_|VMB10169833 il Low job_proActive
1997 Pending | Normal @ rmit/feon 17.inria.fr:2500/SchedulerVN429360650 i Low iob_proActive
1 1998 Pendi | N | : i Low j i
e o orma @ rmi/feon17.inria.fr:2500/SchedulerVN420360650) o iob_proActive || a
P 1999 Pending | Normal il Low job_proActive
f . - [EPA_JVM795760154 : : _
2000 Pending || Normal il Low job_proActive
I'x .) Qrmi:ﬂeon1?.inria.fr:25ODfSchedulerVN1535983??l On
e 2001 Pending | Normal I Low |ob_proActive
e, =~
TT=| 2002 Pemding | Norrmal PA_IVMZ114202422 il Low job_proActive L4
2000 Pending | Nermal @ rmiifjeon17.inria.fr:2500/SchedulerVN12 13436452 i LG job_proActive
2004 Pending || Narmal il Low job_proActive
2005 Pending || Naormal v [EPA_IVM2142254126 il Low job_proActive
2006 Pending || Narmal @ rmijfeon12.inria.fr:2500/SchedulerVN2 28546106 userl Normal joh_with_dep
2007 Pending | Normal - [ZPA_JVM535885306 userl Normal job_wizh_dep
2008 Pending |l Narmal rmicjjeon12.inria.fr:2500/SchedulerVN923937998 userl Normal job_wizh_dep
2008 Pending | Normal v [&lPA_JVMO38550174 gdmin Normal Job_with_dep
2010 Pending || Nourrmal Qrmi:ﬁeon12.inria.fr:ESODIScheduIerVNB?BSQ195 gdmin Normal job_wizh_dep o
| < [EPA_JVM244285108 |
8 Qrmi:ﬂeon12.inria.fr:2500,»‘SchedulerVN1918969159
Bl Console | S Tascs 52) Info 52 . El Result Preview} =8
— < Eeonl8&.inria.fr =
v [EPA_JVM1945520612 i, Yl
1d SLSLER (nam S L @ rmi/feon 18 inria.fr:2500/SchedulerVN 1823461300 2008
T 200800 Submitted task4 n <~ EPA_JVM1372728100 Pending
B 7| [200800: submitted task2 i job_with_de
f,.. _,:r - >omited tas 4 @ rmi/feon18.inria.fr:2500/SchedulerVN858002814 Iob_wiTr_fen)
k.~ [700800° Submitted taskf n - by Normal i
- : e PA_JVM 1640928266
-||| 200800 submitted taskl n I—{| |ng tasks numbzr 0
§ . I B i fmnn 1R inria eI ENNISrhadinlard/NRRITATAAS |
L 2008007 Submitted tasks n -' — 'Z'g =5 ng tasks number U
||| 200800 submitted task/ n| | St | |ed Lasks number 0
200800¢ Submilled Lesk3 n| | name value tasks number 8
200800t Submitted tasks n| | # free nodes g5 ictec time 09:40:06 03/12/08
RESOCI # busy nodes 11 ed time Not yet
& 4 dowr rades 0 ed time - I\Inrl\.rm' 5 E

ProAcrtive

Parallel Suite

s —

Agenda

» ProActive and ProActive Parallel Suite

» Programming and Composing
 ProActive Core
 High Level Programming models
d ProActive Components
 Legacy code wrapping

» Deployment Framework
>

2009 ProAcrtive &
Parallel Suite >

137

ProActive Parallel Suite

Developer Tools & Eclipse IDE Plugins

-

Programming & Composing

High-Level Programming Models &
Legacy Code Wrapping

Core API
Active Objects
Asynchrony
Futures
Mobile Agents Distributed
MOP / AOP Garbage

' | Collector

) [(1) (i

_ Deployment & Virtualization

| DesktopP2P |
Grid

T

Scheduler & |
Infrastructure
Manager

AR

%

i | File Transter

[

IC2D

Interactive Control & Debug for Distribution

» Basic Features:
O Graphical visualization
O Textual visualization
d Monitoring and Control

» Extensible through RCP plug-ins
d Timlt
d Chartlt
d P2P view
d DGC view

Parallel Suite >

139

(C2D: Monitor your appl

Monitoring View
b d Monitoring - Eclipse SDK
Eile Edit Bun

Mavigatee Search

|ta~ | e | & | Civ

Project

e

g | = | @

Control

Monitoring Window

W o @

llelp

B
ication

Job Monitoring View

Muonitoring >

Virtual nodes
L] L

Ll Dispatcher L lil

-

PA_IWM1357457629_be. .
((Mode ModeG0562-45E, .

DinnerLayouts2
Table#3

Philosopheri4

FPhilasuple#G
FPhilosopher# 7

Philosopher#s

bebita. inria. fr: L0205 u...

PA_IWM 1672076195 _b...

PA_IWVM 204710007 _be...

e —————

PA_IWM 16310003 4_b. ..

I i |WBE\J-E.E_‘I‘&EUZM. an Mode Rendererl3or...
Philosophor¥ & ‘ C3DUserFl2 C2DRendering...
e ok
= e

E Console ¥

sidonie. inria. fr 109905 ...
r WM-FF2E43451 _si...

de: Renderer-151...

C3DRendering. ..

H =

~ o] DefaultVN (JOB-135745762¢
= [hehita.inria_fr1009-0S un
=~ Hl PA_VM1357457620_

- Node ModeB605624¢

<> DinnerLayout#21
< Tabled3(JOB-13
> Philosopher#t |

Sy

> Philosopher#s(|
> Philosopher#6(|
O Philosopher# (]
€2 Philosopher#8(|

Sy

I~

l:(: Dispatcher (JOB--16720764¢
= =% User (JOB-—-294719007)

~ [/ bebita.inra.fr1099:05 un

sidonie.inra.fr:1099:0% u

~ R PA_VM-294 719007 _t

= Mode Userl602644

O C3DUser#l30C

= I:(: Renderer (_JOB--1672076405

Monitoring

15:09:15 == Nodcabjcct id=Node 155186381 alrv.;:ady monitored, ckeck for new actiwve objccts
%

= 1_: bebita.inra.fr:1000:05% un

8 = il rA_VM-1631900824

[«] s

[+]

L1 T | [*]

ProAcrtive

Parallel Suite

2009

140

Eile Monitoring Search BRun Window Help
| & | i _ |t | Qo Application Level Timer
&4 [2 Monitoring
@ Timit View 52 =] Monitoring#l X 2| @ = M| @ @ |2 T 0|22 Legend 52 =i
Waorker#1 || Virtual nodes Active ohjects
Snapshot time : 18/06/07 15:27:18 A it
| computePi mnkl] 25ms | | o] Etiye ny itee
WaitForRequest = == 2 4.43m o I _ = 1 Serving reques
SendReply [T 28ms amda.inria.fr:1009: Linux
AferSeralization [] Zoms - Waiting for re
e e PA_JVM153I?790?'IE_am...: - g . q
Before Seralization RSl 15| Node matrixNodeld... L] aiting for res
SendRaquest | 4bms (wait by neces
Serve : Worker#d ; -
Tatal g | 4.96m Migrating
1ms 10ms 100ms 15 10s 1.66m 16.56m 5 Secure and Ac
PA_ VM704475267_amd... e =
Worker#2 5 ending Requests
Snapshot time : 18/06/07 15:27:18 Node matrixNodel8... T Pending reques
computePLmnko || 34ms Worker#2 Stk Wy =l
WaitForRequest : | 4.44m — Nodes -
sendrept] 26me PA_JVM1714913173_am... " () RMI Node
sirve [N #ins PA_JVM1122637657_am... D HTTP Nod
: Mode matrixNode57...
: : : = RMI/SSH MNod
10ms Looms 15 105 1.66m 16.66m Worker#l
NMs
Worker#3 : e
Snapshot time : 18/06/07 15:27:18 PA_IWVM2010164699_am... Standard VM
computeP _mnk3] 30ms | | Mode matrixNodel5...
WaitForRequest = = = : 9 4.42m JVM started w
SendReply [T | B0ms Worker#3
AherSeralizaton T 7oms Hosts
Sernalization =% ||
BeforeSerialization .'“s | 9ams | - |~ C) Standard Host
SendRequest < | 177mis Auto Reset Drawing style Topology Not R —7
Serve 1 1.86 =g 2 . - = aspo ng
T T 7 T T 1 - Active Object
1ms 10ms 1OOms s 10s 1.66m 16.66m =
[T = | = -
Worker#a E Console 2 \‘_ Ex BH | i == B | E=3 =) VM
Snapshot time : 18/06/07 15:27:18 Monitoring
computeP _mank2 1 40ims | 15:27:15 => WMObject id=PA_JVMZ2010164699_amda.inria.fr already monitored, check E
WaitFarRequest 2 4.43m 15:27:15 => VMObject id=PA_JVM1530790716_amda.inria.fr already monitored, check
Ahers:fg":::f;: 1 37!"!.5152 | 15:27:45 => Exploring Host amda.inria.fr with EMI on port 1099
Serialization P | 15:27:45 => VMObject id=PA_JVM1714913173 amda.inria.fr already monitored, check
Before Seralization 1 25ms | —1||15:27:45 => VMObject id=PA_JVM1122637657_amda.inria.fr already monitored, check
SendRequest ————— I.EErn:s 15:27:45 => VMObject id=PA_JVM704475267_amda.inria.fr already monitored, check £ =
Sdme - — 1.95s w]/15:27:45 => WMObject id=PA JVM2010164699 amda.inria.fr already monitored, check |~
T T ~||15:27:45 => VMObject id=PA_JVM1530790716_amda.inria.fr already monitored, check [|
Refresh Charts
| Refresh Selected || Refresh All| =]
[e] [*] [«I 2 I [>]
- Z 2€ X-Chat [2.4.0]: vbodnart @ i | @ Terminal No. 2 - Konsole & Eclipse RCP - Paramétre pol |7 Sans nom - KolourPaint . 15:28
4 == Plug-in Development - Timlt" |&% Inbox - Mozilla Thunderbird | @ 12D ¥ A beugFedoral.png - KSnap T o708

ProAcrtive

Parallel Suite

141

Fle Monitoring Window Help

| & & 8 e

= : Monitoring

=g Legend & B
-Active objects
Active by itself

- Serving request

Waiting for request

Waiting for result
(wait by necessity)

- Migrating

S Secure and Active

= Monitoring#1 5 .

[A

¢ eml@e|ls =0

i E Timlt Main View 83\

+f Qa

~Virtual nod

-Pending Requests

192.168.1.62:1099:Linux(0...
PA_JVM1518681894

(Node Nodedd7269437|

Domain#4
Last Refresh: 15/01/08 17:20:25
WaitForRequest | 3.09m
WaitByNecessity
SendReply
SendRequest | 0] 8.33m

’ Pending requests :
=l =5 50
\(Node Workers27308.) Total | 11.57n
-Nodes : i
C) A 1ms 10ms 100ms 15 10s 1.66m 1666m | +
Refresh Charts
@ HTTP Node :
i Refresh Selected l Refresh All I Switch to Detaliedl
D RMI/SSH Node
IVMs \ =] Cnnsole| # | EH & B
Standard JVM Name | Time [ms]l Total [%] |Jnvucatiuns! Parent [%] o
VM started with Globus = Domain#l
A
T = Total B90571.55 100.00 1 0.00
(:) WaitForRequest 173827.74 2517 47960 25.17
Standard Host =
rAuto Reset-il Drawing style Topology I Serve 51598632 7472 228722 7472
1 [4 | | = £ A e
i—Not Responc?mg.—i I Enable | 7 |-;|53C0ﬂd5! O Proportional O Ratio (& Fixed ‘ “ Display Resetl ~ Maestro#5
Q Active Object L‘ —————— —— Total fAN108 38 10000 1 n.on =
= ==

X Domain#4 - Total ?X."\ :

Serve(73,16 %)

Domain#4 - Total: 00 h11 m 345 760 ms

WaitFarRequest(26.72 %)

X Maestro#5 - Total 3

Maestro#5 - Total: 00 h02m 405 79 ms

WaitForRequest(98,35 %)

E Domain#l - SendRequest ¥

D #1 - SendReq

[AfterSerialization(88,34 %)

[Serve(1,48 %]

t: 00 h 01 m 51 5 416 ms

LocalCopy(5,30 %)

2009

FroACTive

Parallel Suite

142

M/W Success Story:
Artificial Life Generation

Sylvain Cussat-Blanc, Yves Duthen — IRIT TOULOUSE

| %
18 255
" ’ 300 CPUs
Application | Dy+1 Dyt5 Dyt6 Dyt7 > 2.8 B
Development of il !
artificial creatures ! ! ’
. . | X N
[ProActlve Version }
Initial Application _
(C+4) 1 PC 56h52 => Crashed
ProActive Version 300 CPUs 19 minutes

2009 ProAcrtive &
Parallel Suite >

143

A B
Price-It workload distribution

with ProActive

» Low level parallelism : shared memory
» \Written in c++

» Originally written for microsoft compiler
» JNI, Com interface

» No thread safe

» Upgrading the code base to thread safe code
might be costly

» Is there any easier and cheaper alternative to
extract parallelism from Price-it Library ?

2088 ProAciive &
Parallel Suite .

144

mE B
CPS : C++ API Client for ProActive

Scheduler

» CPS: Client for ProActive Scheduler
» Shipped as .so/.dll

» A set of C++ methods to submit jobs to the

Scheduler

 SchedulerClient::init() and dispose()
 SchedulerClient::submitJob(Job* jobPtr)
 SchedulerClient::.getJobResult(int jobld)

» Internally uses JNI

2009 ProAciive &
Parallel Suite . &%

145

B
Using CPS in Price-It

Price-It
(Master)
C++

spawned

NCPS
C++ / Java
JNI bridge

by CPS

Classical

Java Scheduler
Client

ProActive
Scheduler
NEVE]

Price-It

(Worker)
C++ .dIl

Price-It
(Worker)
C++ .dll

\

Price-It

(Worker)
C++ .dll

}

Workers are shipped as .dll then loaded by JVMS and exec

oe

ProAcrtive

Parallel Suite

uted throuih JNI

Conclusion

» Simple and Uniform programming model
» Rich High Level API
» Write once, deploy everywhere (GCMD)

» Let the developer concentrate on his code, not
on the code distribution

» Easy to install, test, validate on any network

147

2009 ProAciive &
Parallel Suite >

E B
Now, let’s play with ProActive...

» Start and monitor with 1C2D the ProActive
examples, and have a look at the source code

org.objectweb.proactive.examples.*

Applications

Basics, Synchronization Doctors problem (doctors.bat), Reader/Writer
problem (readers.bat),...

Futures, Automatic Binary Search Tree (bintree.bat)
Continuation

Migration Migrating Agent (/migration/penguin.bat)
Group Chat (/group/chat.bat)

Fault-Tolerance N-body problem (/FT/nbodyFT.bat)

All Distributed 3D renderer (c3d*.bat)

148

Parallel Suite >

