
Denis Caromel Arnaud Contes et al.

Univ. Nice/INRIA/CNRS ActiveEon

January 2009

12009

Agenda

► ProActive and ProActive Parallel Suite
► Programming and Composing

� ProActive Core
� High Level Programming models
� ProActive Components

► Deployment Framework
► Development Tools

22009

ProActive

► ProActive is a JAVA middleware for parallel,
distributed and multi-threaded computing.

► ProActive features:
� A programming model
� A comprehensive framework

3

To simplify the programming and execution of parallel applications within
multi-core processors, distributed on Local Area Network (LAN), on clusters
and data centers, on intranet and Internet Grids.

2009

Current Open Source
Tools:

Acceleration Toolkit :

Concurrency+Parallelism
+Distributed

Unification of Multi-Threading
and Multi-Processing

Multi-Threading

Multi-Core Programming

► SMP
� Symmetric Multi-

Processing
� Shared-Memory

Parallelism

► Solutions : OpenMP,
pThreads, Java Threads...

Multi-Processing

Distributed programming,
Grid Computing

► MPP
� Massively Parallel

Programming or
� Message Passing

Parallelism

► Solutions: PVM, MPI,
RMI, sockets ,…

52009

Unification of Multi-threading
and Multi-processing

6

► Most of the time, activities and distribution are not known at
the beginning, and change over time

► Seamless implies reuse, smooth and incremental transitions

Sequential Multithreaded Distributed

Seamless

2009

ProActive Parallel Suite

►ProActive Parallel Suite includes:
� The ProActive middleware featuring services like:

� Fault tolerance, Load balancing, Distributed GC, Security, WS
� A set of parallel programming frameworks
� A framework for deploying applications on distributed infrastructures

� Software for scheduling applications and resource
management

� Software for monitoring and profiling of distributed
applications

� Online documentation
� Full set of demos and examples

72009

ProActive Parallel Suite

8

ProActive Parallel SuiteProActive Parallel Suite

Physical InfrastructurePhysical Infrastructure

2009

ProActive Parallel Suite

92009

Ways of using
Proactive Parallel Suite?

► To easily develop parallel/distributed applications from
scratch

► Develop applications using well-known programming
paradigms thanks to our high-level programming
frameworks (master-worker, Branch&Bound, SPMD,
Skeletons)

► To transform your sequential mono-threaded application
into a multi-threaded one (with minimum modification of
code) and distribute it over the infrastructure.

102009

Ways of using
Proactive Parallel Suite?

► To wrap your native application with ProActive in order
to distribute it

► Define jobs containing your native-applications and use
ProActive to schedule them on the infrastructure

112009

Agenda

► ProActive and ProActive Parallel Suite
► Programming and Composing

� ProActive Core
� High Level Programming models
� ProActive Components

► Deployment Framework
► Development Tools

122009

ProActive Parallel Suite

132009

ACTIVE OBJECTS

ProActive Core

142009

ProActive

A 100% Java API + Tools for
Parallel, Distributed Computing

► A programming model: Active Objects
� Asynchronous Communications, Wait-By-Necessity,

Groups, Mobility, Components, Security, Fault-
Tolerance

► A formal model behind: Determinism (POPL’04)
� Insensitive to application deployment

► A uniform Resource framework
� Resource Virtualization to simplify the programming

152009

Active Objects

16

AA
Developer writes

Object A
User

With ProActive, he gets …

new A(...) newActive(A,..)

2009

ProActive model : Basis

17

► Active objects
� coarse-grained structuring entities (subsystems)
� has exactly one thread.
� owns many passive objects (Standard Java Objects, no

thead)
� No shared passive objects -- Parameters are deep-copy

► Remote Method Invocation
� Asynchronous Communication between active objects

► Full control to serve incoming requests JVM

2009

Active objects

18

A

Proxy

Java Object

A ag = newActive (“A”, […], Node)
V v1 = ag.foo (param);
V v2 = ag.bar (param);
...
v1.bar(); //Wait-By-Necessity

V

Wait-By-Necessity
provides
Dataflow

Synchronization

JVM

A

JVM

Active Object

Future Object Request

Req. Queue

Thread

v1v2 ag

WBN!

2009

19

� An object created with A a = new A (obj, 7);

� can be turned into an active and remote object:

� Instantiation-based: The most general case.
� A a = (A)ProActive. newActive («A», params, node);

� Class-based: In combination with a static method as a factory

To get a non-FIFO behavior (Class-based) :
� class pA extends A implements RunActive { … };

� Object-based:
A a = new A (obj, 7);...
...
a = (A)ProActive. turnActive (a, node);

ProActive : Creating active objects

20

Wait by necessity
►A call on an active object consists in 2 steps

�A query : name of the method, parameters…
�A Reply : the result of the method call

►A query returns a Future object which is a placeholder for
the result

►The callee will update the Future when the result is
available

►The caller can continue its execution event if the Future
has not been updated

foo ()
{

Result r = a.process();
//do other things

...
r.toString();

}

Result process()
{

//perform long
//calculation

return result;
}

will block if
not available

21

ProActive : Explicit Synchronizations

► Explicit Synchronization:
� - ProActive. isAwaited (v); // Test if vailable

� - . waitFor (v); // Wait until availab.

► Vectors of Futures:
� - . waitForAll (Vector); // Wait All

� - . waitForAny (Vector); // Get First

A ag = newActive (“A”, […], VirtualNode)
V v = ag.foo(param);
...
v.bar(); //Wait-by-necessity

22

ProActive : Active object

3

Proxy

Body

Object

Active object

Objet

Standard object

An active object is composed of several
objects :

• The object being activated: Active
Object (1)

• A set of standard Java objects

• A single thread (2)

• The queue of pending requests (3)

2

1

1

23

ProActive : Reuse and seamless
►Two key features:

►Polymorphism between standard and active objects
�- Type compatibility for classes (and not only
interfaces)
�- Needed and done for the future objects also
�- Dynamic mechanism (dynamically achieved if
needed)

►Wait-by-necessity : inter-object synchronization
�- Systematic, implicit and transparent futures
�- Ease the programming of synchronizations, and the
reuse of routines

"A"

“A"

a
ra

foo (A a)
{
a.g (...);
v = a.f (...);
...
v.bar (...);

}

24

ProActive : Reuse and seamless

"A"

“A"

a
ra

foo (A a)
{
a.g (...);
v = a.f (...);
...
v.bar (...);

}

O.foo(a) :
a.g() and a.f()
are « local »

O.foo(ra):
a.g() and
a.f()are
«remote +
Async.»

O

►Two key features:

►Polymorphism between standard and active objects
�- Type compatibility for classes (and not only interfaces)
�- Needed and done for the future objects also
�- Dynamic mechanism (dynamically achieved if needed)

►Wait-by-necessity : inter-object synchronization
�- Systematic, implicit and transparent futures
�- Ease the programming of synchronizations, and the reuse of routines

ProActive : Reuse and seamless

►Polymorphism between standard and active
objects
�Type compatibility for classes (and not only

interfaces)
�Needed and done for the future objects also

►Wait-by-necessity : inter-object synchronization
�Systematic, implicit and transparent futures
�Ease the programming of synchronizations, and the

reuse of routines

252009

26

Intra Active
Object

Synchronizations

27

ProActive:

Inter- to Intra- Synchronization

Sequential Multithreaded Distributed

Inter-Synchro: mainly Data-Flow

Synchronizations do not dependent upon

the physical location (mapping of activities)

28

ProActive : Intra-object synchronization

► Explicit control:
► Library of service

routines:
� Non-blocking services,...

� serveOldest ();
� serveOldest (f);

� Blocking services, timed,
etc.
� serveOldestBl

();
� serveOldestTm

(ms);
� Waiting primitives

� waitARequest();
� etc.

class BoundedBuffer extends FixedBuffer
implements RunActive {

// Programming Non FIFO behavior

runActivity (ExplicitBody myBody) {

while (...) {
if (this. isFull ())

serveOldest(" get ");
else if (this. isEmpty ())

serveOldest (" put ");
else serveOldest ();

// Non-active wait
waitArequest ();

}

}}

Implicit (declarative) control: library classes
e.g. : Blocking Condition Abstraction for concurren cy control:

doNotServe ("put", "isFull");

29

First-Class
Futures
Update

30

Wait-By-Necessity: First Class Futures

ba

Futures are Global Single-Assignment Variables

V= b.bar ()

c

c

c.gee (V)

v

v

b

31

Wait-By-Necessity: Eager Forward Based

ba

AO forwarding a future: will have to forward its va lue

V= b.bar ()

c

c

c.gee (V)

v

v

b

32

Wait-By-Necessity: Eager Message Based

ba

AO receiving a future: send a message

V= b.bar ()

c

c

c.gee (V)

v

v

b

33

Standard system at Runtime:
No Sharing

NoC: Network On Chip
Proofs of Determinism

34

Proofs in GREEK

2009

PROACTIVE GROUPS

ProActive Core

352009

ProActive Groups

36

Typed and polymorphic Groups of local and remote objects
Dynamic generation of group of results
Language centric, Dot notation

� Manipulate groups of Active Objects, in a simple and typed manner:

� Be able to express high-level collective communications (like in MPI):
• broadcast,
• scatter, gather,
• all to all

A ag=(A)ProActiveGroup. newGroup («A»,{{p1},...},{Nodes,..});
V v = ag.foo(param);
v.bar();

2009

ProActive Groups

► Group Members
� Active Objects
� POJO
� Group Objects

► Hierarchical Groups
► Based on the ProActive communication

mechanism
� Replication of N ‘ single ’ communications
� Parallel calls within a group (latency hiding)

► Polymorphism
� Group typed with member’s type

372009

Two Representations Scheme

38

Group of objects

‘ Group ’
Typed group

‘ A’

getGroupByType
static method of class

ProActive

getGroup
method of class

Group

Management
of the group

Functional use
of the group

2009

Creating AO and Groups

39

A

Typed Group Java or Active Object

A ag = newGroup (“A”, […], Node[])
V v = ag.foo(param);
...
v.bar(); //Wait-by-necessity

V

JVM

2009

Typed Group as Result of Group
Communication

► Ranking Property:
� Dynamically built and updated

� B groupB = groupA.foo();
� Ranking property: order of result group members =

order of called group members

► Explicit Group Synchronization Primitive:
� Explicit wait

� ProActiveGroup.waitOne(groupB);
� ProActiveGroup.waitAll(groupB);

� Predicates
� noneArrived
� kArrived
� allArrived, ...

402009

41

Broadcast and Scatter

JVM

JVM

JVM

JVM

agcg

ag.bar(cg); // broadcast cg
ProActive.setScatterGroup(cg) ;

ag.bar(cg); // scatter cg

c1 c2
c3c1 c2
c3

c1 c2
c3c1 c2
c3

c1 c2
c3

c1 c2
c3

s

c1 c2
c3

s

Broadcast is the default behavior
Use a group as parameter, Scattered depends on rankings

42

Static Dispatch Group

JVM

JVM

JVM

JVM

agcg

c1

c2

c3

c4

c5

c6

c7

c8c0

c9c1

c2

c3

c4

c5

c6

c7

c8c0

c9

c1

c2

c3

c4

c5

c6

c7

c8c0

c9

Slowest

Fastest
empty
queue

ag.bar(cg);

43

Dynamic Dispatch Group

JVM

JVM

JVM

JVM

agcg

c1

c2

c3

c4

c5

c6

c7

c8c0

c9c1

c2

c3

c4

c5

c6

c7

c8c0

c9

c1

c2

c3

c4

c5

c6

c7

c8c0

c9

Slowest

Fastest

ag.bar(cg);

44

Handling Group Failures (2)

JVM

JVM

JVM

JVM

agvg

V vg = ag.foo (param) ;
Group groupV = PAG.getGroup(vg);
el = groupV.getExceptionList();
...
vg.gee();

failure

Except.

Except.
List

MIGRATION: MOBILE AGENTS

ProActive Core

452009

Mobile Agents: Migration

► The active object migrates with:
� its state
� all pending requests
� all its passive objects
� all its future objects

► Automatic management of references:
� Remote references remain valid: Requests to new location
� Previous queries will be fulfilled: Replies to new location

► Migration is initiated by the active object itself
► API: static migrateTo

► Can be initiated from outside through any public
method

462009

Migration: Localization Strategies

► Forwarders
� Migration creates a chain of forwarders
� A forwarder is left at the old location to forward

requests to the new location
� Tensioning: shortcut the forwarder chains by

notifying the sender of the new location of the target
(transparently)

► Location Server
� A server (or a set of servers) keeps track of the

location of all active objects
� Migration updates the location on the server

► Mixed (Forwarders / Local Server)
� Limit the size of the chain up to a fixed size

472009

48

Migration of AO with Forwarders

Proxy
Body

Object
Calling
Object F

o
r
w
a
r
d
e
r

49

Principles and optimizations

► Same semantics guaranteed (RDV, FIFO order point to
point, asynchronous)

► Safe migration (no agent in the air!)
► Local references if possible when arriving within a VM
► Tensionning (removal of forwarder)

50

Principles and optimizations

► Same semantics guaranteed (RDV, FIFO order point to
point, asynchronous)

► Safe migration (no agent in the air!)
► Local references if possible when arriving within a VM
► Tensionning (removal of forwarder)

51

Principles and optimizations

► Same semantics guaranteed (RDV, FIFO order point to
point, asynchronous)

► Safe migration (no agent in the air!)
► Local references if possible when arriving within a VM
► Tensionning (removal of forwarder)

direct

52

Principles and optimizations

► Same semantics guaranteed (RDV, FIFO order point to
point, asynchronous)

► Safe migration (no agent in the air!)
► Local references if possible when arriving within a VM
► Tensionning (removal of forwarder)

direct

direct

53

Principles and optimizations

► Same semantics guaranteed (RDV, FIFO order point to
point, asynchronous)

► Safe migration (no agent in the air!)
► Local references if possible when arriving within a VM
► Tensionning (removal of forwarder)

direct

direct

forwarder

54

Principles and optimizations

► Same semantics guaranteed (RDV, FIFO order point to
point, asynchronous)

► Safe migration (no agent in the air!)
► Local references if possible when arriving within a VM
► Tensionning (removal of forwarder)

direct

direct

forwarder

55

Principles and optimizations

► Same semantics guaranteed (RDV, FIFO order point to
point, asynchronous)

► Safe migration (no agent in the air!)
► Local references if possible when arriving within a VM
► Tensionning (removal of forwarder)

direct

direct

forwarder

56

Principles and optimizations

► Same semantics guaranteed (RDV, FIFO order point to
point, asynchronous)

► Safe migration (no agent in the air!)
► Local references if possible when arriving within a VM
► Tensionning (removal of forwarder)

direct

direct

forwarder

57

ProActive : API for Mobile

Agents
► Mobile agents (active objects) that

communicate

► Basic primitive: migrateTo
� public static void migrateTo (String u)

// string to specify the node (VM)

� public static void migrateTo (Object o)
// joinning another active object

� public static void migrateTo (Node n)
// ProActive node (VM)

� public static void migrateTo (JiniNode n)
// ProActive node (VM)

58

API for Mobile Agents
► Mobile agents (active objects) that communicate
► // A simple agent
► class SimpleAgent implements runActive , Serializable {
► public SimpleAgent () {}

► public void moveTo (String t){ // Move upon request
► ProActive.migrateTo (t);

► }

► public String whereAreYou (){ // Repplies to queries

► return (“ I am at ” + InetAddress.getLocalHost ());

► }

► public runActivity (Body myBody){

► while (… not end of itinerary …){
► res = myFriend. whatDidYouFind () // Query other agents
► …
► }
► myBody.fifoPolicy(); // Serves request, potentially

moveTo
► }
► }

59

API for Mobile Agents
Mobile agents that communicate

Primitive to automatically execute action upon migration
public static void onArrival (String r)

// Automatically executes the routine r upon arrival

// in a new VM after migration

public static void onDeparture (String r)

// Automatically executes the routine r upon migration

// to a new VM, guaranted safe arrival

public static void beforeDeparture (String r)

// Automatically executes the routine r before trying a

migration

// to a new VM

60

API for Mobile Agents
Itinerary abstraction

► Itinerary : VMs to visit
� specification of an itinerary as a list of (site, method)
� automatic migration from one to another
� dynamic itinerary management (start, pause, resume, stop,

modification, …)

► API:
� myItinerary.add (“machine1’’, “routineX”); ...
� itinerarySetCurrent, itineraryTravel, itineraryStop , itineraryResume, …

► Still communicating, serving requests:
� itineraryMigrationFirst ();

// Do all migration first, then services, Default behavior
� itineraryRequestFirst ();

// Serving the pending requests upon arrival before
migrating again

61

Host 1 Host 2

Host 3

A

Home

Destination Methods

Host 1 echo

Host 2 callhome

Host 3 processData

Migration

Dynamic itineraries

Migration

Host 4 foo

Host 4

Migration

Migration

A A

A

A

62

Communicating with mobile
objects

► Ensuring communication in presence of migration

► Should be transparent (i.e. nothing in the application code)

► Impact on performance should be limited or well known

► ProActive provides 2 solutions to choose from at object
creation

►

� Location Server
� Forwarders

► also, it is easy to add new ones!

63

Forwarders

► Migrating object leaves forwarder on current site

► Forwarder is linked to object on remote site
� Possibly the mobile object
� Possibly another forwarder => a forwarding chain is built

► When receiving message, forwarder sends it to next
hop

► Upon successful communication, a tensioning takes
place

64

Other Strategy:
Centralized (location Server)

S

Host A

A

Host B Host C Host D

S : Source
A : Agent

referenceServer

65

Centralized Strategy (2)

S

Host A

Host B

A

Host C Host D

S : Source
A : Agent

reference

Migration

Server

Server Update

A migrating object updates the server

66

Centralized Strategy (3)

S

Host A

Host B Host C Host D

S : Source
A : Agent

reference

Message

Migration
A

Server

UpdateFailed

A migrating object updates the server

67

Centralized Strategy (4)

S

Host A

Host B Host C Host D

S : Source
A : Agent

référence

A

Server
Ask for a new
reference

Response

Message

But the AO might
have moved again
in the meantime
… just play again.

!

The source get a new reference from the server

Request

68

Location Server vs Forwarder

► Server
� No fault tolerance if single server
� Scaling is not straightforward
� Added work for the mobile object
� The agent can run away from messages

► Forwarders
� Use resources even if not needed
� The forwarding chain is not fault tolerant
� An agent can be lost

► What about performance?

69

On the cost of the communication

► Server:
� The agent must call the server => the migration is longer
� Cost for the source:

� Call to site where the agent was
� Call to the server and wait for the reply
� Call to the (maybe) correct location of the agent

► Forwarder:
� The agent must create a forwarder (< to calling server)
� Cost for the source:

� Follow the forwarding chain
� Cost of the tensioning (1 communication)

70

Conclusion

► Weak Migration of any active object

► Communications using two schemes: server and
forwarders

► Current applications:
� Network Administration
� Desktop to Laptop

► Perspective: Taking the best of the forwarders and the
server
� Forwarder with limited lifetime
� Server as a backup solution

71

TTL-TTU mixed parameterized
protocol

► TTL: Time To Live + Updating Forwarder:
� After TTL, a forwarder is subject to self destruction
� Before terminating, it updates server(s) with last agent known location

► TTU: Time To Update mobile AO:
� After TTU, AO will inform a localization server(s) of its current location

► Dual TTU: first of two events:
� maxMigrationNb: the number of migrations without server update
� maxTimeOnSite: the time already spent on the current site

5 s.

10

5 s.

72

TTL-TTU mixed parameterized
protocol

S

Host A

A

Host B Host C Host D

S : Source
A : Agent

referenceServer

73

TTL-TTU mixed parameterized
protocol

S

Host A

Host B

A

Host C Host D

S : Source
A : Agent

reference

Migration

Server

Server Update

FTTL

TTU

74

Conclusion on Mobile Active Objects

► AO = a good unit of Computational Mobility
► Weak Migration OK (even for Load Balancing)
► Both Actors and Servers

► Ensuring communications: several
implementation to choose from:
� Location Server
� Forwarders
� Mixed: based on TTL-TTU

► Primitive + Higher-Level abstractions:
� migrateTo (location)
� onArrival, onDeparture
� Itinerary, etc.

75

Formal Performance Evaluation of
Mobile Agents: Markov Chains

►Objectives:
� Formally study the performance of Mobile Agent

localization mechanism
� Investigate various strategies (forwarder, server, etc.)
� Define adaptative strategies

Forwarder Strategy

76

Modeling of Server Strategy

FAULT TOLERANCE SERVICE

ProActive Core

772009

Fault-tolerance in ProActive

►Restart an application from latest
valid checkpoint
�Avoid cost of restarting from scratch

►Fault-tolerance is non intrusive
�set in a deployment descriptor file
�Fault-tolerance service attached to

resources
�No source code alteration

� Protocol selection , Server(s) location, Checkpoint
period

782009

Fault-tolerance in ProActive

► Rollback-Recovery fault-tolerance
� After a failure, revert the system state back to some

earlier and correct version
� Based on periodical checkpoints of the active

objects
� Stored on a stable server

► Two protocols are implemented
� Communication Induced Checkpointing (CIC)

+ Lower failure free overhead
– Slower recovery

� Pessimistic Message Logging (PML)
– Higher failure free overhead
+ Faster recovery

► Transparent and non intrusive
792009

Built-in Fault-tolerance Server

► Fault-tolerance is based on a global server
► This server is provided by the library, with

� Checkpoint storage
� Failure detection

� Detects fail-stop failures
� Localization service

� Returns the new location of a failed object
� Resource management service

� Manages a set of nodes on which restart failed objects

802009

SECURITY SERVICE

ProActive Core

812009

ProActive Security Framework

► Unique features
� SPKI: Hierarchy of certificates
� No security related code in the application source

code
� Declarative security language
� Security at user- and administrator-level
� Security context dynamic propagation

► Configured within deployment descriptors
� Easy to adapt according the actual deployment

822009

Issue
Access control, communication privacy and integrity

WEB SERVICES

ProActive Core

832009

Web Service Integration

►Aim
�Turn active objects and components interfaces into

Web Services

� interoperability with any foreign language or any
foreign technology.

►API
�Expose an active object as a web Service (the user

can choose the methods he wants to expose)
� exposeAsWebService(Object o, String url,

String urn, String [] methods);

�Expose component’s interfaces as web services
� exposeComponentAsWebService(Component

component, String url, String componentName
);

842009

ProviderProvider

Web application
server

ProActive

ProActive.
exposeAsWebService

(………)

.NET
C#

-WSDL
file

Urn=
‘piComputation’

1. 1. ProActive.exposeAsWebServiceProActive.exposeAsWebService ()()2. 2. DeploymentDeployment

ProActive Comm.

3. Client Call3. Client Call
852009

Agenda

► ProActive and ProActive Parallel Suite
► Programming and Composing

� ProActive Core
� High Level Programming models
� ProActive Components

► Deployment Framework
► Development Tools

862009

ProActive Parallel Suite

872009

Master-Worker Framework

High Level Programming models

882009

Motivations

► Embarrassingly parallel problems : simple and
frequent model

► Write embarrassingly parallel applications with
ProActive :

� May require a sensible amount of code (fault-
tolerance, load-balancing, …).

� Requires understanding of ProActive concepts (
Futures, Stubs, Group Communication)

892009

Goals of the M/W API

► Provide a easy-to use framework for solving
embarrassingly parallel problems:
� Simple Task definition
� Simple API interface (few methods)
� Simple & efficient solution gathering mechanism

► Provide automatic fault-tolerance and load-
balancing mechanism

► Hide ProActive concepts from the user
902009

How does it work?

User

Deployment Descriptor

add Resource

Master

Slave1 Slave2 Slave3 Slave n

Create

Slave1

Create

Slave2

Create

Slave3

Create

Slaven

Solve

Task1 ... TaskM

public class MyTask implements Task<String>

{

public String run() {

return "Hello World!" ;

}

}

Task Definition

Schedule

Task1

Schedule

Task2

Schedule

Task3

Schedule

Taskn

Send

Result1

Send

Result2

Send

Result3

Send

Resultn

Results

1 Result1

2 Result2

3 Result3

4 Result4

...

n Resultn

...

MSchedule

Task n+1

Result1 ... ResultM

912009

Comparison between specific
implementation and M/W

► Experiments with nQueens problem
► Runs up to 25 nodes

92

NQueensOpt vs MasterWorker

00:00:00

00:14:24

00:28:48

00:43:12

00:57:36

01:12:00

01:26:24

20 40 60 80 100

number of nodes used

co
m

pu
ta

tio
n

tim
e

Nqueens Opt

MasterWorker

2009

Skeletons Framework

High Level Programming models

932009

Algorithmic Skeletons

► High Level Programming Model
► Hides the complexity of parallel/distributed

programming.
► Exploits nestable parallelism patterns

942009

Skeletons Big Picture

►Parameters/Results are passed through streams
►Streams are used to connect skeletons (CODE)

95

Input Stream

Parameter
(Data)

Skeleton Code

Output Stream

Solved: Results

2009

Pipe Skeleton

►Represents computation by stages.
►Stages are computed in parallel for different

parameters.

96

R1P2

R1P2
P3

P3P4P5

P4P5

T
im

e

Skeleton 1 Skeleton 2

Input Stream Output StreamExecute Skeleton

2009

Simple use of Pipe skeleton

972009

Branch-and-Bound Framework

High Level Programming models

982009

Branch & Bound API (BnB)

► Provide a high level programming model for
solving BnB problems:
� manages task distribution and provides task

communications

► Features:
� Dynamic task split
� Automatic result gather
� Broadcasting best current result
� Automatic backup (configurable)

992009

Global Architecture :
M/W + Full connectivity

100

JVM

JVM
Task

Worker

JVM
Task

Worker

JVM
Task

Worker

JVM
Task

Worker

Task Queue

Manager

2009

OO SPMD

High Level Programming models

1012009

102

Object-Oriented
Single Program Multiple Data

►Motivation
� Cluster / GRID computing
� SPMD programming for many numerical simulations
� Use enterprise technology (Java, Eclipse, etc.) for

Parallel Computing

►Able to express most of MPI’s
� Collective Communications (broadcast, gathercast,

scattercast,..)
� Barriers
� Topologies

2009

103

ProActive OO SPMD

► A simple communication model

� Small API
� No “Receive” but data flow synchronization
� No message passing but RPC (RMI)
� User defined data structure (Objects)
� SPMD groups are dynamics
� Efficient and dedicated barriers

104

Execution example
A ag = newSPMDGroup (“A”, […], VirtualNode)

// In each member
myGroup.barrier (“2D”); // Global Barrier
myGroup.barrier (“vertical”); // Any Barrier
myGroup.barrier (“north”,”south”,“east”,“west”);

A

2009

105

Topologies

► Topologies are typed groups
► Customizable
► Define neighborhood

Plan plan = new Plan(groupA, Dimensions);
Line line = plan.getLine(0);

2009

106

MPI Communication primitives
► For some (historical) reasons, MPI has many com. Primitives:
► MPI_Send Std MPI_Recv Receive
► MPI_Ssend Synchronous MPI_Irecv Immediate
► MPI_Bsend Buffer … (any) source, (any) tag,
► MPI_Rsend Ready
► MPI_Isend Immediate, async/future
► MPI_Ibsend, …
► I’d rather put the burden on the implementation , not the Programmers !

► How to do adaptive implementation in that context ?
► Not talking about:

� the combinatory that occurs between send and receive
� the semantic problems that occur in distributed implementations

► Is Recv at all needed ? (Dynamic Control of Message Asynchrony)

107

MPI and Threads

► MPI was designed at a different time

► When OS, languages (e.g. Fortran) were single-threaded

► No longer the case.

► Programmers can write more simple, ”sequential” code,

► the implementation, the middleware, can execute things in parallel.

108

Main MPI problems for the GRID

► Too static in design

► Too complex in Interface (API)

► Too many specific primitives to be adaptive

► Type Less

► … and you do not ’’lamboot’’ / ’’lamhalt’’ the
GRID !

109

Performance & Productivity

► HPC vs. HPC:

High Performance Computing

vs.

High Productivity Computing

110

Sum up: MPI vs. ProActive OO SPMD

► A simple communication model, with simple
communication primitive(s):

� No RECEIVE but data flow synchronization
� Adaptive implementations are possible for:

» // machines, Cluster, Desktop, etc.,

» Physical network, LAN, WAN, and network conditions

» Application behavior

► Typed Method Calls:
� ==> Towards Components

► Reuse and composition:
� No main loop, but asynchronous calls to myself

Scheduling

High Level Programming models

1112009

Programming with flows of
tasks

► Program an application as an ordered tasks set
� Logical flow : Tasks execution are orchestrated
� Data flow : Results are forwarded from ancestor tasks to their children

as parameter

► The task is the smallest execution unit
► Two types of tasks:

� Standard Java
� Native, i.e. any third party application

112

Task 1(input 1) Task 2(input 2)

Task 3(res1,res2)

res1 res2

2009

Defining and running jobs with
ProActive

► A workflow application is a job
� a set of tasks which can be executed according to a

dependency tree

► Rely on ProActive Scheduler only

► Java or XML interface
� Dynamic job creation in Java
� Static description in XML

► Task failures are handled by the ProActive Scheduler
� A task can be automatically re-started or not (with a user-defined

bound)
� Dependant tasks can be aborted or not
� The finished job contains the cause exceptions as results if any

1132009

Agenda

► ProActive and ProActive Parallel Suite
► Programming and Composing

� ProActive Core
� High Level Programming models
� ProActive Components

► Deployment Framework
► Development Tools

1142009

ProActive Parallel Suite

1152009

A framework for Grid
components

► Facilitating the design and implementation of
complex distributed systems

► Leveraging the ProActive library
ProActive components benefit from underlying features

► Allowing reuse of legacy components (e.g. MPI)

► Providing tools for defining, assembling and
monitoring distributed components

1162009

Component - What is it ?

► A component in a given infrastructure is:

a software module ,
with a standardized description of what it needs and provides ,
to be manipulated by tools for Composition and Deployment

117

C

2009

ProActive Component Definition

► A component is:
� Formed from one (or several) Active Object
� Executing on one (or several) JVM
� Provides a set of server ports: Java Interfaces
� Uses a set of client ports: Java Attributes
� Point-to-point or Group communication between components

► Hierarchical:
� Primitive component: define with Java code and a

descriptor
� Composite component: composition of primitive + composite
� Parallel component: multicast of calls in composites

► Descriptor:
� XML definition of primitive and composite (ADL)
� Virtual nodes capture the deployment capacities and needs

► Virtual Node:
� a very important abstraction for GRID components

1182009

Components for the GRID

119

3. Parallel and composite
component

1. Primitive component

2. Composite component

An activity, a process, …
potentially in its own JVM

C D

Composite: Hierarchical, and
Distributed over machines

Parallel : Composite
+ Broadcast (group)

2009

Components vs. Activity and
JVMs

120

► Components are orthogonal to
activities and JVMs
� They contain activities, span across

several JVMs

► Components are a way to globally
manipulate distributed, and running
activities

Activity JVM Component

A B1

C

B2

B3

2009

Agenda

► ProActive and ProActive Parallel Suite
► Programming and Composing

� ProActive Core
� High Level Programming models
� ProActive Components

► Deployment Framework
► Development Tools

1212009

GCM Deployment

1222009

Abstract Deployment Model

Problem
Difficulties and lack of flexibility in deployment
Avoid scripting for configuration, getting nodes, connecting…

1232009

A key principle: Virtual Node (VN)

Abstract Away from source code:
Machines names
Creation/Connection Protocols
Lookup and Registry Protocols

Interface with various protocols and infrastructures:
Cluster: LSF, PBS, SGE , OAR and PRUN(custom

protocols)
Intranet P2P, LAN: intranet protocols: rsh, rlogin, ssh

Grid: Globus, Web services, ssh, gsissh

Resource Virtualization

124

ApplicationApplication

Deployment DescriptorDeployment Descriptor

Mapping

ConnectionsConnections

NodesNodes

AcquisitionAcquisition

CreationCreation

Infrastructure

VN

Runtime structured entities: 1 VN --> n Nodes in m J VMs on k Hosts

2009

Resource Virtualization

125

VN1

VN2

GCM XML
Deployment
Descriptor

node

node

Host
JVM

node

JVM

Host

node

JVM

2009

Virtualization resources

126

VN1

VN2

node

node

Host
JVM

node

JVM

Host

node

JVM

2009

Multiple Deployments

127

One Host Local Grid Distributed Grids

Internet

2009

Rmissh : SSH Tunneling

► A fact : overprotected clusters
� Firewalls prevent incoming connections
� Use of private addresses
� NAT, IP Address filtering, …

► A consequence :
� Multi clustering is a nightmare

► Context :
� SSH protocol : encrypt network traffic
� Administrators accept to open SSH port
� SSH provides encryption

1282009

Rmissh : SSH Tunneling (2)

► Create a communication protocol within
ProActive that allows firewall transversal

► Encapsulates rmi streams within ssh tunnels

► Avoid ssh tunneling costs when possible by first
trying a direct rmi connection then fallbacking
with rmissh

1292009

The ProActive P2P

1302009

The ProActive P2P

► Unstructured P2P
� Easier to deploy/manage
� Only 1 resource : CPU

► Java code
� Each peer is written in Java and can run any Java

application

► Direct communications
� Peers are reachable using their name (URLs)
� One peer can send/receive a reference on another

peer

1312009

The ProActive P2P (2)

132

P2P Infrastructure

Resource Management Direct
Access

Applications

2009

Infrastructure

► A peer is an Active Object in a JVM
► Each peer knows a limited number of other

peers (bi-directional links)
� Its acquaintances
� The number is set by a variable (NOA)

► Goal of a peer
� A peer will always try to maintain the number of its

acquaintances equals to its NOA
► 2 basic operations

� Adding an acquaintance
� Removing an acquaintance

1332009

Requesting Nodes

► To request a node
� Contact only a Peer (URLs)

► The infrastructure will handle the reservation

► The application has to wait until the nodes are
available

► Using the P2P network
� Programmatically at runtime using the Java API
� At Deployment time through the GCMDeployment

1342009

Scheduler and Resource
manager

1352009

Scheduler / Resource Manager
Overview

136

• Multi-platform Graphical Client (RCP)

• File-based or LDAP authentication

• Static Workflow Job Scheduling, Native and Java
tasks, Retry on Error, Priority Policy, Configurati on
Scripts,…

• Dynamic and Static node sources, Resource
Selection by script, Monitoring and Control GUI,…

• ProActive Deployment capabilities : Desktops,
Clusters, ProActive P2P,…

2009

Agenda

► ProActive and ProActive Parallel Suite
► Programming and Composing

� ProActive Core
� High Level Programming models
� ProActive Components
� Legacy code wrapping

► Deployment Framework
► Development Tools

1372009

ProActive Parallel Suite

1382009

IC2D
Interactive Control & Debug for Distribution

► Basic Features:
� Graphical visualization
� Textual visualization
� Monitoring and Control

► Extensible through RCP plug-ins
� TimIt
� ChartIt
� P2P view
� DGC view

1392009

IC2D: Monitor your application
in real-time

1402009

TimIt: Automatic Timers in IC2D

1412009

Analysis and Optimization

1422009

M/W Success Story:
Artificial Life Generation

143

Initial Application
(C++) 1 PC 56h52 => Crashed

ProActive Version 300 CPUs 19 minutes

Sylvain Cussat-Blanc, Yves Duthen – IRIT TOULOUSE

Application D0+1 D0+5 D0+6 D0+7

ProActive Version

251
300 CPUs

Development of
artificial creatures

2009

Price-It workload distribution
with ProActive

► Low level parallelism : shared memory
► Written in c++
► Originally written for microsoft compiler
► JNI, Com interface
► No thread safe

► Upgrading the code base to thread safe code
might be costly

► Is there any easier and cheaper alternative to
extract parallelism from Price-it Library ?

1442009

CPS : C++ API Client for ProActive
Scheduler

► CPS : Client for ProActive Scheduler
► Shipped as .so/.dll
► A set of C++ methods to submit jobs to the

Scheduler
� SchedulerClient::init() and dispose()
� SchedulerClient::submitJob(Job* jobPtr)
� SchedulerClient::getJobResult(int jobId)

► Internally uses JNI

1452009

Price-It
(Worker)

C++

Price-It
(Worker)

C++

Classical
Java Scheduler

Client

Classical
Java Scheduler

Client

Price-It
(Worker)

C++

Price-It
(Worker)

C++

Price-It
(Worker)

C++

Price-It
(Worker)

C++

Price-It
(Worker)

C++

Price-It
(Worker)

C++

Using CPS in Price-It

Price-It
(Master)

C++

Price-It
(Worker)
C++ .dll

Price-It
(Worker)
C++ .dll

ProActive
Scheduler

Java

Price-It
(Worker)
C++ .dll

NCPS
C++ / Java
JNI bridge

NCPS
C++ / Java
JNI bridge

Workers are shipped as .dll then loaded by JVMS and executed through JNI

JVM
spawned
by CPS

1462009

Conclusion

► Simple and Uniform programming model
► Rich High Level API
► Write once, deploy everywhere (GCMD)

► Let the developer concentrate on his code, not
on the code distribution

► Easy to install, test, validate on any network

1472009

Now, let’s play with ProActive…

148

� Start and monitor with IC2D the ProActive
examples, and have a look at the source code
org.objectweb.proactive.examples.*

�Features Applications
Basics, Synchronization Doctors problem (doctors.bat), Reader/Writer

problem (readers.bat),…

Futures, Automatic
Continuation

Binary Search Tree (bintree.bat)

Migration Migrating Agent (/migration/penguin.bat)

Group Chat (/group/chat.bat)

Fault-Tolerance N-body problem (/FT/nbodyFT.bat)

All Distributed 3D renderer (c3d*.bat)

2009

