
FraSCAtiFraSCAti
««Open SCA PlatformOpen SCA Platform»»

Outline

• From SOA to SCA

• FraSCAti

• SCOrWare

2

2

• SCOrWare

• Conclusion

From SOA to SCA

From SOA challenges…

• IT architectures

• Complexity

• Managing 10n lines of code

• Monolithic
• Breaking application «silos»

4

4

• Breaking application «silos»

• Seldom evolvable

• Freeing systems from
immutable dependencies

Source: oasis-open.org

…to existing SOA, but…

SOA leverages complexity and promotes flexibility

• Loose coupling

• Service composition and orchestration

• Well defined and contractualized interfaces

• Standard tools and technologies

5

5

• Standard tools and technologies

Source: oasis-open.org

…Still a partial solution

Today's SOA need to be…
• Deployable in different environments

• Ensure security and reliability

• Adaptable to changing business needs

…and thus, SOA lack…

6

6

…and thus, SOA lack…
• Structured architectures

– What is behind the scene?

• Reuse capabilities

– Reuse the wheel when possible…

• Flexibility support

– …Or tune it if not!
You want SCA!
for your business

SCA in a Nutshell

SCA (Service Component Architecture)
• Aka a «Component Model for SOA»

• Since 11/2005

Hosted by the Open SOA consortium
• http://www.osoa.org

Community connected to OASIS

7

7

Community connected to OASIS
• http://www.oasis-opencsa.org

Existing platform providers
• Open Source (4): Apache Tuscany, Newton, Fabric3, FraSCAti

• Vendors (7): IBM WebSphere FP for SOA, TIBCO ActiveMatrix,
Covansys SCA Framework, Paremus, Rogue Wave HydraSCA,
Oracle Fusion Middleware

SCA in a Nutshell
15 focused specifications (09/2008) + SDO to access data sources

Assembly model specification (structured architectures ☺)
• How to structure composite systems?

Component implementation specifications (flexibility support ☺)
• How to develop IT services in specific programming languages?

– Java, C++, PHP, Spring, BPEL, EJB, SLSB, COBOL, C…

Binding specifications (flexibility support ☺)

8

8

Binding specifications (flexibility support ☺)
• How to access remote services?

– Web services, JMS, JCA, RMI-IIOP…

Policy framework specification (flexibility support ☺)
• How to integrate infrastructure services?

– Logging, security, transaction, reliable messaging…

Integration specifications (structured architectures ☺)
• SCA Java EE Integration

• SCA OSGi/Spring (draft)

SCA in a Nutshell (cont’d)

Component implements the
business logic

Concepts

• Service(s)

– Interface type: Java , WSDL

9

9

– Interface type: Java , WSDL

• Reference(s)

• Property(s)

• Implementation

• Non functional property(s)

– Intent & policy

SCA in a Nutshell (cont’d)

Assembly: ”Process of composing business applications by
configuring and connecting components that provide service
implementations”[SCA Whitepaper]

2 Levels:

10

10

•Module assembly
• Closely coupled

• See figure

•System assembly
• Loosely Coupled

Order
Processing
Service

OrderProcessing
Component

Payments
Component

Payment

Service

AccountsComposite
External

Banking

Reference

Accounts
Ledger

ComponentBPEL

Java EE

SOAP/HTTP

RMI/IIOP

MultiMultiMultiMulti----levellevellevellevel
compositioncompositioncompositioncomposition

SCA in a Nutshell (cont’d)

Loosely coupled

Loosely coupled

Closely coupled

Entry Points

External Services
Binding

11

11

Warehouse

Service

WarehouseComposite

Warehouse

Broker

Component

Warehouse

Component

Shipping

Reference

External

Warehouse

Reference

C++

JMS

Mixed:Mixed:Mixed:Mixed:
---- technologiestechnologiestechnologiestechnologies
---- app locationsapp locationsapp locationsapp locations

Entry Points

External Service

External Service

Wire

Wire

SCA in a Nutshell (cont’d)

12

12

© SAP 2007

Simple SCA Assembly

Composite bank.account

Reference
StockQuote

13

13

[Mike Edwards]

IBM Hursley Lab, England

Component

AccountData

Component

AccountFacade

Service
Account

Composite bank.account

Component

AccountFacade

Service
Account

Reference
StockQuote

<service name="Account" promote="AccountFacade">

<interface.java interface="services.account.Account"/>

<binding.ws port="http://www.example.org/Account#

wsdl.endpoint(Account/AccountSOAP)"/>

</service>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

name="bank.account" >

<component name="AccountFacade">

<implementation.java class="services.account.AccountFacadeImpl"/>

<reference name="StockQuote"/>

<reference name="AccountData"

target="AccountData/Data"/>

<property name="currency">EURO</property>

</component>

14

14

Component

AccountData

AccountFacade
Account

<reference name="StockQuote" promote="AccountFacade/StockQuote">

<interface.java interface="services.stockquote.StockQuote"/>

<binding.ws port="http://example.org/StockQuote#

wsdl.endpoint(StockQuote/StockQuoteSOAP)"/>

</reference>
</composite>

<component name="AccountData">

<implementation.bpel process=“QName"/>

<service name="Data">

<interface.java interface="services.account.Data"/>

</service>

</component>

package services.account;

@Remotable

public interface Account {

Interface is available

remotely, e.g. as a

Web Service

Java Implementation

Example: Service
Service
Account

15

15

AccountReport getAccountReport(String customerID);

}

Java Implementation

Example: Component
package services.account;

import org.osoa.sca.annotations.*;

@Service(interfaces = Account.class)

public class AccountFacadeImpl implements Account {

private String currency = "USD";

private Data accountDataService;

Annotation for the

service offered by

this class

Component

AccountFacade

16

16

private Data accountDataService;

private StockQuote stockQuoteService;

public AccountServiceImpl(

@Property("currency") String currency,

@Reference("accountData") Data dataService,

@Reference("stockQuote") StockQuote stockService) {

this.currency = currency;

this.accountDataService = dataService;

this.stockQuoteService = stockService;

} }

Annotated

Constructor to

inject property

and references

SCA Benefits
A Component Model…
• Hierarchic compositions

• Reconfigurable properties

• Provided/required ports

• Synchronous/asynchronous invocations

• Communication bindings

• Intent and policy supports

17

17

• Intent and policy supports

…for SOA
• Future OASIS standard

• Industry acceptance (Apache Tuscany, IBM…)

4 degrees of flexibility / adaptability
• Implementation language (Java, C++, BPEL, etc.)

• Interface description language (Java, WSDL, etc.)

• Communication protocol (SOAP, IIOP, etc.)

• Non-functional properties (security, transactions, etc.)

SCA Benefits
Use Case Benefit of using SCA Standard

SOA does not always mean WS

• Neutral to communication technologies

• Supports WS, JMS, JCA bindings

• Wires internal to SCA domain use proprietary technology

Bridging QoS Models of heterogeneous
platforms

• Modeling and configuring QoS aspects is handled by the platform
neutral SCA Assembly layer

•SCA defines QoS aspects in abstract terms (‘intents’) and allows their
mapping to individual platform environments

18

18

Managing changes to service
provider/location

• SCA component implementations are programmed to interfaces

• Service endpoint information is not hardwired into client code

• Wiring of components is a first class concept with elaborate support for
common scenarios (internal, external, redeployment)

Support for testing, management

• By providing a holistic view of the solution, it becomes possible for
management tools to capture service dependency information

•Service testing tools can be more effective

Tolerance to new application runtimes and
communication technologies

• Framework for bindings to different technologies makes it possible for
developers to apply a consistent programming model

SCA Limitations

Static configuration & deployment

• XML file for describing composite components

• Lack of deployment API

No runtime adaptation & reconfiguration

19

19

No runtime adaptation & reconfiguration

• Lack of introspection API

• Lack of reconfiguration API

SCA is not a reflective component model

FraSCAti

FraSCAti = SCA++

Dynamic deployment & configuration

• Distributed deployment with FDF/Deployware

Runtime adaptation & reconfiguration

• Introspection & reconfiguration support via Fractal

21

21

• Introspection & reconfiguration support via Fractal

• Reconfiguration of SCA components & FraSCAti itself

Reflective SCA platform

• Lightweight, efficient, predictable, scalable

FraSCAti:

Mixing SCA & Fractal

SCASCA
The standard component model for SOA

FractalFractal
A modular and reflective component modelFraSCAti

22

22

Reconfigurable SCA Applications SOA for Fractal

FraSCAti
An open SCA runtime platform

built on top of OW2 Fractal

FraSCAti Principles
Designed with adaptability/extensibility/flexibility in mind

Component-based architecture to support protocols and implementations
• Communication protocols plugged within a binding factory

• Component implementation languages encapsulated as platform components

AOP-based mechanism to integrate intents and policies
• Non-functional services developed as regular SCA components

• Non-functional policies dynamically woven into the base architecture

23

23

• Non-functional policies dynamically woven into the base architecture

Fractal-based runtime substrate (cf. http://fractal.ow2.org)
• Dynamic reconfiguration capabilities

• Java 5 @-based development style (dependency injection)

• XML-based architecture descriptors

• Structuring concepts (component personality, membrane, control interface, etc.)

2 execution modes for the FraSCAti platform
• Standalone application server (support for 2 backends)

• Integrated in the PEtALS JBI ESB (cf. http://petals.ow2.org)

FraSCAti Features

SCA component implementation
• Java POJO and SCA annotations

• Spring

• Fractal

SCA binding

24

24

SCA binding
• Web Services via Apache CXF

• Java RMI

Under development
• OSGi implementation and binding

• JMS, JSONRPC

SCA Specification
FraSCAti

State Component

SCA Assembly Model (v1.0) ☺ Assembly Factory

SCA Policy Framework (v1.0) ☺ / � Assembly Factory

SCA Transaction Policy (v1.0) ☺ Transaction Service

FraSCAti and SCA Spec.

25

25

SCA Transaction Policy (v1.0) ☺ Transaction Service

SCA Java Common Annotations & APIs (v1.0) ☺ Tinfi

SCA Java Component Implementation (v1.0) ☺ Tinfi

SCA Web Services Binding (v1.0) ☺ Binding Factory

☺ = supported ☺ / � = under development

FraSCAti and SCA Spec.

SCA Specification
FraSCAti

State Components

SCA Spring Component Implementation

(v1.0)
☺ / � Plug-in Assembly Factory

SCA BPEL Client & Implementation (v1.0) � � Plug-in Assembly Factory

SCA C++ Client & Implementation (v1.0) � � �

26

26

SCA C++ Client & Implementation (v1.0) � � �

SCA C Client & Implementation (v1.0) � � �

SCA COBOL Client & Implementation (v1.0) � � �

SCA JMS Binding (v1.0) � � Plug-in Binding Factory

SCA EJB Session Bean Binding (v1.0) � � Plug-in Binding Factory

SCA JCA Binding (v1.0) � � � Plug-in Binding Factory

SCA Java EE Integration (v0.9) � � �

FraSCAti Architecture

•Tinfi generates the SCA
components’ glue code and
create component instances

• Binding Factory imports &
exports the SCA components via
specific communication
protocols

27

27

protocols

• Transaction controls local &
distributed transactions between
the SCA components

•Assembly Factory processes
and deploys SCA assembly
models

FraSCAti Architecture

28

28

FraSCAti Assembly Factory

•Manager loads resources and

invokes sub components

•Parser creates a model instance

from composite definition and

implementation.

Use Eclipse STP SCA model

29

29

•Validation Engine validates

additional model constraints.

Implementation in progress

•Instantiation creates new

component instances.

Use Tinfi & Binding Factory

Tinfi Is Not a Fractal
Implementation

• Builds membranes which provides a control semantics to

achieve a SCA personality for a component

• A scaPrimitive component
• is a Fractal component

• can be assembled with other Fractal components

• OSOA 1.0 API coverage by Tinfi Implemented

30

• OSOA 1.0 API coverage by Tinfi Implemented
• 5 interfaces (+ 1 for constants) 5/5

• 4 exceptions

• 25 annotations

• 17 general-purpose 17/17

• 2 remote communications 0/2

• 6 policy intent sets 2/6

• To be done : @Remotable, @AllowsPassByReference,
@Authentication, @Confidentiality, @Integrity, @Qualifier

30

Tinfi

6 controllers
• SCAComponent : component identity dedicated interface

(ComponentContext) and implementation

• SCAContentController : component instantiation policy

dedicated implementation, private interface (no need to export it)

• SCAIntentController : intent handlers management

• SCAPropertyController : component properties management

31

• SCAPropertyController : component properties management

• SCALifeCycleController : component initialization (@EagerInit)

same interface as Fractal LC, dedicated implementation

• SCABindingController : component bindings

same interface as Fractal BC, dedicated implementation

Interceptors
• lifecycle management

• component instantiation policy

• intent dispatch

31

Tinfi architecture

32

32

Tinfi

> weaving intents & policies

33

33

FraSCAti Vs.

� Less SCA features supported

• Less implementation languages and binding protocols

� Smaller ecosystem

• Less sponsoring companies, developers, and users

☺ Better continuum from SCA tooling to runtime platform

34

34

☺ Better continuum from SCA tooling to runtime platform

• Share the same SCA metamodel with Eclipse STP SCA project

☺ Better footprint to target embedded systems

• Smaller disk and memory footprints

☺ Ready for dynamic runtime reconfiguration

• Based on OW2 Fractal component model and associated tools

FraSCAti Vs.

Deployment performance evaluation

25000

30000

35000

35

35

0

5000

10000

15000

20000

0 2000 4000 6000 8000 10000 12000 14000 16000

FraSCAti (AF)

Tuscany

FraSCAti Vs.

Runtime performance evaluation

60

70

80

90

100

36

36

0

10

20

30

40

50

60

0 200 400 600 800 1000 1200

FraSCAti (AF)

Tuscany

Other OSS Competitors

• Fabric3
�/☺ Fork from the Apache Tuscany project

� Developed by fewer contributors

• The Newton Project
☺ Distributed runtime framework based on OSGi, Jini, and SCA

☺ SCA bindings for OSGi and Jini

37

37

☺ SCA bindings for OSGi and Jini

� Does not target a fully-compliant SCA framework

� No support for SCA Java annotations

� No Web Service binding

• The Mule Project - MuleSCA activity
☺ Some Web pages

� No open source code currently available

FraSCAti Perspectives
• INRIA ADT galaxy – Agile SOA Platform

• SCA management at runtime

– FraSCAti Explorer

– Eclipse STP/SCA Composite Designer

• SCA scripting with FScript

• SCA monitoring with WildCat

• SCA BPEL Client and Implementation (v1.0)

• CAPPUCINO – eCommerce

38

38

• CAPPUCINO – eCommerce
• FraSCAti in mobile devices (PDA & smart phones)

• ANR ITEmIS – Marriage of IT and embedded systems
• PEtALS/FraSCAti & OSGi

• FraSCAti & JMS/JORAM

• Formal specification of SCA

• IST SOA4All – A Web of billions of services
• Large-scale PEtALS/FraSCAti deployment

• SCA binding for SOA4All Semantic Spaces

FraSCAti Explorer

Load SCA composites

Visualize, introspect, navigate within SCA composites

• Components

• Services / References / Bindings / Wires

• Properties

• Intents

39

39

• Intents

Reconfiguration actions

• Start/stop SCA components

• Add/remove SCA components / wires / bindings / intents

• Update SCA properties / intents

• Update SCA bindings

– Web service address

– Java RMI port and exported name

FraSCAti Explorer

40

40

Reflective SCA Systems

41

41

SCOrWare

FraSCAti Ecosystem

FraSCAti platform
• Open-source implementation of the SCA specifications

• Developed in the context of the ANR SCOrWare project

– 2-year "precompetitive" project

•Academic partners•Industrial partners
ADAM

43

43

Project leader: Philippe Merle (INRIA ADAM)

ADAM
OW2
SARDES

ANR SCOrWare Objectives

• Promote the development of SCA-based
applications

• Provide an integrated development environment for
SCA-based development

• Provide an open and flexible platform for SCA

44

44

• Provide an open and flexible platform for SCA

• Bring dynamicity and reconfiguration to SCA
applications

• Leverage the integration of JBI and SCA

• Contribute to the open-source ecosystem

ANR SCOrWare Keystones

Applications

Modeling tools for
• Eclipse STP SCA

assembly definition
• TUNe / DeployWare

Software

Architect

Software
Developer

45

45

• TUNe / DeployWare

Deployment
• TUNe (autonomy)
• DeployWare

Runtime support : FraSCAti
• Assembly Factory + Binding

Factory + Tinfi + Transaction

Architect

System
Admin

Platform
Provider

Modelling with Eclipse STP

SCA tooling

46

46

ANR SCOrWare Use Case

(Artenum)
•Trend: Service-oriented scientific computing (Computing
On Demand)

47

47

•Defining SCA-based interoperable scientific components

ANR SCOrWare Use Case

(INRIA OW2)
New generation source forge

• Service-oriented components for content management,

continuous build, release management…

48

48

ANR SCOrWare Use

Case(Edifixio)
e-Business integration with SCA

49

49

Conclusion

FraSCAti

• an open and extensible implementation of the SCA

specifications

– continuum from tooling to runtime (common SCA

metamodel shared with STP)

50

50

– reconfigurable SCA applications

– lightweight version for embedded devices currently

being developed

• based on OW2 code blocks

• developed by the ANR SCOrWare project (ending

04/2009)

FraSCAti Contact
Website

• http://frascati.ow2.org

• http://www.scorware.org

Project heads
• Philippe Merle: Philippe.Merle@inria.fr

• Lionel Seinturier: Lionel.Seinturier@univ-lille1.fr

Development team (core)

51

51

Development team (core)
• INRIA ADAM & SARDES

Acknowledgements
• Damien Fournier, Valerio Schiavoni, Nicolas Dolet, Vivien Quéma, Jean-Bernard Stefani, Alain Boulze,

Adrian Mos, Christophe Demarey, Adrien Louis, Stéphane Bagnier, Daniel Hagimont, Etienne Juliot, Gaël
Blondelle, Jean-Pierre Lorre, Marc Dutoo, Marc Pantel, Mickael Istria, Mohammed Eljai, Nicolas Salatge,
Samir Tata, Roland Naudin, Samuel Quaireau, Stéphane Drapeau, Thomas Darbois

• and all SCOrWare project members (past and present) that I may have
forgotten…

SCA References
SCA Specifications

• OpenSOA http://www.osoa.org

• OASIS OpenSCA http://www.oasis-opencsa.org

OSS Implementations
• Tuscany http://tuscany.apache.org

• Newton http://newton.codecauldron.org/site/index.html

• Fabric3 http://xircles.codehaus.org/projects/fabric3

• FraSCAti http://www.scorware.org

52

52

• FraSCAti http://www.scorware.org

SCA Resources
• http://www.osoa.org/display/Main/SCA+Resources

• http://www-128.ibm.com/developerworks/library/specification/ws-sca

• http://www.davidchappell.com/articles/Introducing_SCA.pdf

• http://www-
128.ibm.com/developerworks/websphere/techjournal/0510_brent/0509_brent.html

• http://events.oasis-open.org/home/sites/events.oasis-
open.org.home/files/Flexible_Agile_Composition_01.ppt [Mike Edwards]

• http://www.osoa.org/download/attachments/250/Power_Combination_SCA_Spring_OS
Gi.pdf?version=3

