
Parallel Processing

Denis Caromel, Arnaud Contes

Univ. Nice, ActiveEon

Traditional Parallel Computing &
HPC Solutions

► Parallel Computing
� Principles
� Parallel Computer Architectures
� Parallel Programming Models
� Parallel Programming Languages

► Grid Computing
� Multiple Infrastructures
� Using Grids
� P2P
� Clouds

► Conclusion

22009

Parallel (Computing)

► Execution of several activities at the same time.
� 2 multiplications at the same time on 2 different pr ocesses,
� Printing a file on two printers at the same time.

32009

Why Parallel Computing ?

► Save time - wall clock time
► Solve larger problems
► Parallel nature of the problem, so parallel

models fit it best
► Provide concurrency (do multiple things at the

same time)
► Taking advantage of non-local resources
► Cost savings
► Overcoming memory constraints
► Can be made highly fault-tolerant (replication)

42009

What application ?

Traditional HPC

� Nuclear physics
� Fluid dynamics
� Weather forecast
� Image processing,

Image synthesis,
Virtual reality

� Petroleum
� Virtual prototyping
� Biology and genomics

Enterprise App.

� J2EE and Web servers
� Business Intelligence
� Banking, Finance,

Insurance, Risk
Analysis

� Regression tests for
large software

� Storage and Access to
large logs

� Security: Finger Print
matching, Image
behavior recognition

52009

How to parallelize ?

► 3 steps :

1. Breaking up the task into smaller tasks
2. Assigning the smaller tasks to multiple workers

to work on simultaneously
3. Coordinating the workers

► Seems simple, isn’t it ?

62009

Additional definitions

Concurrency

Simultaneous access to a resource, physical or
logical

Concurrent access to variables, resources, remote
data

Distribution Several address spaces

72009

Locality Data located on several hard disks

Parallelism vs Distribution vs
Concurrency

► Parallelism sometimes proceeds from
distribution:
� Problem domain parallelism
� E.g: Collaborative Computing

► Distribution sometimes proceeds from
parallelism:
� Solution domain parallelism
� E.G.: Parallel Computing on Clusters

► Parallelism leads naturally to Concurrency:
� Several processes trying to print a file on a single

printer

82009

Levels of Parallelism
HardWare

► Bit-level parallelism
� Hardware solution
� based on increasing processor word size

� 4 bits in the ‘70s, 64 bits nowadays

► Instruction-level parallelism
� A goal of compiler and processor designers
� Micro-architectural techniques

� Instruction pipelining, Superscalar, out-of-order execution,
register renamming

Focus on hardware capabilities for structuringFocus on hardware capabilities for structuring

Focus on program instructions for structuringFocus on program instructions for structuring

92009

Levels of Parallelism
SoftWare

► Data parallelism (loop-level)
� Distribution of data (Lines, Records, Data-

structures, …) on several computing entities
� Working on local structure or architecture to work in

parallel on the original

► Task Parallelism
� Task decomposition into sub-tasks
� Shared memory between tasks or
� Communication between tasks through messages

Focus on tasks (activities, threads) for structurin gFocus on tasks (activities, threads) for structurin g

Focus on the data for structuringFocus on the data for structuring

102009

Performance ?

► Performance as Time
� Time spent between the start and the end of a

computation

► Performance as rate
� MIPS (Millions of Instructions / sec)

� Not equivalent on all architectures

► Peak Performance
� Maximal Performance of a Resource (theoretical)
� Real code achieves only a fraction of the peak

performance

112009

Code Performance

► how to make code go fast : “High Performance”
► Performance conflicts with

� Correctness
� By trying to write fast code, one can breaks it

� Readability
� Multiplication/division by 2 versus bit shifting
� Fast code requires more lines
� Modularity can hurt performance

– Abstract design
� Portability

� Code that is fast on machine A can be slow on machine B
� At the extreme, highly optimized code is not portable at all,

and in fact is done in hardware.

122009

Speedup

sp
e
e
d
u
p

number of processors

linear speedup

sub-linear speedupsu
pe
rli
ne
ar
sp
ee
du
p

132009

Super Linear Speedup

► Rare
► Some reasons for speedup > p (efficiency > 1)

� Parallel computer has p times as much RAM so
higher fraction of program memory in RAM instead
of disk
� An important reason for using parallel computers

� Parallel computer is solving slightly different, easier
problem, or providing slightly different answer

� In developing parallel program a better algorithm
was discovered, older serial algorithm was not best
possible

142009

Amdahl’s Law

► Amdahl [1967] noted: given a program,
� let f be fraction of time spent on operations that must

be performed serially.

► Then for p processors,
� Speedup(p) ≤ 1/(f + (1 − f)/p)

► Thus no matter how many processors are used
� Speedup ≤ 1/f

► Unfortunately, typically f was 10 –20%
► Useful rule of thumb :

� If maximal possible speedup is S, then S processors
run at about 50% efficiency.

152009

Maximal Possible Speedup

162009

Another View of Amdahl’s Law

► If a significant fraction of the code (in terms of
time spent in it) is not parallelizable, then
parallelization is not going to be good

172009

Scalability

► Measure of the “effort” needed to maintain
efficiency while adding processors

► For a given problem size, plot Efd(p) for
increasing values of p
� It should stay close to a flat line

► Isoefficiency: At which rate does the problem
size need to be increased to maintain efficiency
� By making a problem ridiculously large, one can

typically achieve good efficiency
� Problem: is it how the machine/code will be used?

182009

Traditional Parallel Computing &
HPC Solutions

► Parallel Computing
� Principles
� Parallel Computer Architectures
� Parallel Programming Models
� Parallel Programming Languages

► Grid Computing
� Multiple Infrastructures
� Using Grids
� P2P
� Clouds

► Conclusion

192009

Michael Flynn’s Taxonomy
classification of computer architectures

Data & Operand (instructions)

Single Instruction
(SI)

Multiple Instruction
(MD)

Single Data
(SD)

SISD

Single-threaded
process

MISD

Pipeline architecture

Multiple Data
(MD)

SIMD

Vector processing

MIMD

Multi-threaded
programming

Instructions

Data streams

202009

Single Instruction Single Data
Stream

� A single processor executes a single instruction
stream

� Data stored in a single memory
� Corresponds to the Von Neumann architecture

DD

Computing Unit

Instructions

DD DD DD DD DDDD

212009

Single Instruction Multiple Data
Streams

► Vector processors
� Instructions executed over vectors of data

► Parallel SIMD
� Synchronous execution of the same instruction

Computing Unit

Instructions

D1D1 D1D1 D1D1 D1D1 D1D1

D2D2 D2D2 D2D2 D2D2 D2D2

D…D… D…D… D…D… D…D… D…D…

DnDn DnDn DnDn DnDn DnDn

222009

Cray 1 Vector machine, 70s,

CPU 64bits, 8Mo RAM, 166 MFlops weighed 5.5 tons

232009

Cray X1E - 2005
CPUs 1020* 1GHz, 4080 Go RAM,18 Tflops,

rank 72

242009

Multiple Instructions Single Data
Streams

Few examples of this
architecture in this class
(systolic arrays)

� Cryptography algo.
� 3D – Raytracing

engines

Computing Units

DD DDDD

DD DDDD

DD DDDD

DD DD DD

DD

DD

252009

Multiple Instructions Multiple
Data Streams

DD

Computing Unit

Instructions

DD DD DD DD DDDD

DD

Computing Unit

Instructions

DD DD DD DD DDDD

► Distributed systems are MIMD architectures
► Either exploiting a single shared memory space

or a distributed memory space.

MemoryMemory

262009

Sharing Memory or not

► Shared memory systems :
Shared memory systems have multiple CPUs all of

which share the same address space (SMP)
� Uniform Memory Access
� Non Uniform Memory Access

► Distributed memory systems :
In this case each CPU has its own associated memory,

interconnected computers

272009

Multiple Instructions Multiple
Data Streams

Shared-memory Multiple CPUs with a shared Memory

DD

Computing Unit

Instructions

DD DD DD DD DDDD

DD

Computing Unit

Instructions

DD DD DD DD DDDD

Shared
Memory
Shared
Memory

M
em

or
y

B
us

282009

Symmetric Multi Processing
System

► SMP machine
� Multiple CPUs
� A single memory control
� Uniform Memory Access

► Usually Entry-Level Servers
� Easy and cheap with few processors
� Hard & very expensive to design with 8+ CPUs

► Multicores CPUs are SMP
� Your laptop is probably an SMP machine (dual

core), mine is …

292009

IBM Blue Gene/L SuperComputer

► System-level design

One Cabinet
•1024 PowerPC 700Mhz
•256 Go RAM (up to 2Go) /
•5.7 teraflops of processing power
•IBM version of a Linux Kernel on
processing nodes
•Novell Linux on Management Nodes

302009

IBM Blue Gene/L SuperComputer

► Maximum size of 65,536 compute nodes
� 2007 : up to 1000 Tflops/s

► 1000 Tflops/s cost (only) 200 M$
► 5 MW of power for 1000 Tflop/s
► ~300 tons of cooling
► 4,000 sq ft of floor space

312009

Shared Memory, Conclusion

► Advantages
� Memory scalable to number of processors. Increase

number of processors, size of memory and
bandwidth increases.

� Each processor can rapidly access its own memory
without interference

► Disadvantages
� Difficult to map existing data structures to this

memory organization
� User responsible for sending and receiving data

among processors
� To minimize overhead and latency, data should be

blocked up in large chunks and shipped before
receiving node needs it

322009

MIMD, Distributed Memory

DD

Computing Unit

Instructions

DD DD DD DD DDDD

DD

Computing Unit

Instructions

DD DD DD DD DDDD

► Require a communication network to connect
inter-processor memory

MemoryMemory

332009

MemoryMemory

N
et

w
or

k

Distributed Memory, Conclusion

► Advantages:
� Memory is scalable with number of processors. Increase

the number of processors and the size of memory
increases proportionately.

� Each processor can rapidly access its own memory
without interference and without the overhead incurred
with trying to maintain cache coherency.

� Cost effectiveness: can use commodity, off-the-shelf
processors and networking.

► Disadvantages:
� The programmer is responsible for many of the details

associated with data communication between
processors.

� It may be difficult to map existing data structures, based
on global memo

342009

Traditional Parallel Computing &
HPC Solutions

► Parallel Computing
� Principles
� Parallel Computer Architectures
� Parallel Programming Models
� Parallel Programming Languages

► Grid Computing
� Multiple Infrastructures
� Grids
� P2P
� Clouds

► Conclusion

352009

Parallel Programming Models

► several parallel programming models in
common use:
� Threads (Posix)
� Shared Memory (OpenMP)
� Message Passing (MPI)
� Data Parallel (Fortan)
� Hybrid (MPI + Posix)

362009

Issues When Parallelizing

►Common issue: Partitioning
� Data decomposition
� Functional decomposition

►2 possible outputs
� Embarrassingly Parallel

� Solving many similar, but independent, tasks :
parameter sweeps.

� Communicating Parallel Computing
� Solving a task by simultaneous use of multiple

processors, all elements (intensively)
communicating

372009

Communicating Tasks

► Cost of communications
► Latency vs. Bandwidth
► Visibility of communications
► Synchronous vs. asynchronous

communications
► Scope of communications

� Point-to-point
� Collective

► Efficiency of communications

382009

Data Dependencies

► A dependence exists between program statements
when the order of statement execution affects the
results of the program.

► A data dependence results from multiple uses of
the same location(s) in storage by different tasks.

► Dependencies are one of the primary inhibitors to
parallelism.

► Handle Data Dependencies:
� Distributed memory - communicate required data at

synchronization points.
� Shared memory -synchronize read/write operations

between tasks.

392009

The Memory Bottleneck

► The memory is a very common bottleneck that
programmers often don’t think about
� When you look at code, you often pay more attention to

computation
� a[i] = b[j] + c[k]

� The access to the 3 arrays take more time than doing an addition
� For the code above, the memory is the bottleneck for most machines!

► In the 70’s, everything was balanced
� The memory kept pace with the CPU

� n cycles to execute an instruction, n cycles to bring in a word from
memory

► No longer true
� Memories have gotten 100x larger
� CPUs have gotten 1,000x faster
� Data have gotten 1,000,000x larger

Flops are free and bandwidth is expensive and processors
are STARVED for data

402009

Memory and parallel programs

► Principle of locality: make sure that concurrent
processes spend most of their time working on
their own data in their own memory
� Place data near computation
� Avoid modifying shared data
� Access data in order and reuse
� Avoid indirection and linked data-structures
� Partition program into independent, balanced

computations
� Avoid adaptive and dynamic computations
� Avoid synchronization and minimize inter-process

communications
► Locality is what makes efficient parallel

programming painful
� As a programmer you must constantly have a mental

picture of where all the data is with respect to where the
computation is taking place

412009

Duality: Copying vs. Sharing

► Shared memory does not allow scalability
► (Raw) Message Passing is too Complex

422009

Classification Extension

► Single Program, Multiple Data streams (SPMD)
� Multiple autonomous processors simultaneously

executing the same program on different data , but
at independent points, rather than in the lockstep
that SIMD imposes
� Typical MPI like weather forecast

► Multiple Program Multiple Data Streams
(MPMD)
� Multiple autonomous processors simultaneously

operating at least 2 independent programs.
� Master Workers,
� SPMD Numerical + Parallel Visualization

432009

Architecture to Languages

SMP:
► Shared-Memory Processing
► Symmetric Multi Processing

MPP:
► Message Passing Processing
► Massively Parallel Processing

442009

Parallel Programming Models

► Implicit

� Sequential Model and automatic parallelization:
� Analysis of data dependencies by a parallelizing compiler
� Coming back with Multicores, but … has been hard, still will

be

� Parallel Runtime (hidden language)

� No user specification nor control over the scheduling
of calculation or the placement of data

452009

Parallel Programming Models

► Explicit
� Programmer is responsible for the parallelization

work:
� Task and Data decomposition
� Mapping Tasks and Data to resources
� Communication or synchronization management

► Several classes:
� Control (loops and parallel regions) directives

(Fortran-S, KSR-Fortran, OpenMP)
� Data distribution: HPF (historical)

� Distributed models: PVM , MPI, ProActive

462009

Parallel Programming Models
Strategy 1: Automatic parallelization

472009

► Parallelization made by the compiler
► No control by the programmer
► Difficult to achieve

Existing
Source Code

Minor
Code
Modification

Automatic
Parallelization

Parallel
Application

Parallel Programming Models

► Writing of the parallel application from scratch
► Low code reusability
► Usually limited to data distribution and

placement

Strategy 2: Major Recoding

Existing
Source
Code

Major
Recoding

Compiler
Assisted
Parallelization

Parallel
Application

MPI, OpenMP, PVM

482009

Parallel Programming Models

► Efficient implementation with libraries of code
which help managing the parallelization

ProActive, GridGain, Hadoop

Strategy 3: Parallel Libraries (ProActive)

Existing
Source
Code

Identify and
Replace
Subroutines

Parallel
Library

Rerun, Reload or

Even Dynamic!

Parallel
Application

492009

Traditional Parallel Computing &
HPC Solutions

► Parallel Computing
� Principles
� Parallel Computer Architectures
� Parallel Programming Models
� Parallel Programming Languages

► Grid Computing
� Multiple Infrastructures
� Using Grids
� Using Clouds

► Conclusion

502009

Parallel Programming Languages

► System architecture transparency
► Network communication transparency
► Easy-to-use
► Fault –tolerance
► Support of heterogeneous systems
► Portability
► High level programming language
► Good scalability
► Some parallelism transparency

Goals

512009

OpenMP: Shared Memory
Application Programming Interface

► Multiplatform shared memory multi-threads
programming

► Compiler directives, library routines, and
environnement variables

► For C++ and Fortran

522009

OpenMP: General Concepts

► An OpenMP program is
executed by a unique
process

► This process activates
threads when entering a
parallel region

► Each thread executes a
task composed by
several instructions

► Two kinds of variables:
� Private
� Shared

Shared
variables

Program

Parallel
region

Local
variables

Thread

Process

Set of
instructions

532009

OpenMP

► The programmer has
to introduce OpenMP
directives within his
code

► When program is
executed, a parallel
region will be created
on the “fork and join”
model

fork

join

parallel
region

542009

OpenMP: General Concepts

► An OpenMP program
is an alternation of
sequential and
parallel regions

► A sequence region is
always executed by
the master task

► A parallel region can
be executed by
several tasks at the
same time

Nb. Tasks

T
im

e

0 1 2 3

552009

OpenMP: General Concepts

Do i= …
……..
……….
End do

X=a+b

Call sub(..)

do i= ..
end do

call sub(..)

Looplevel
parallelism

Parallel
sections

Parallel procedure
(orphaning)

562009

OpenMP: General Concepts

► A task is affected to
a processor by the
Operating System

Task Manager

Processors

572009

OpenMP Basics: Parallel region

► inside a parallel region:
� by default, variables are

shared
� all concurrent task

execute the same code

► there is a default
synchronization barrier at
the end of a parallel region

Program parallel
use OMP_LIB
implicit none
real ::a
logical ::p

a=9999. ; p= false.
!$OMP PARALLEL

!$ p = OMP_IN_PARALLEL()
print *, “A value is :”,a &

“; p value is:
”,p

!$OMP END PARALLEL

end program parallel

58

> export OMP_NUM_THREADS=3; a. out;

> A value is 9999. ; p value is: T

> A value is 9999. ; p value is: T

> A value is 9999. ; p value is: T

2009

OpenMP Basics: Parallel region

� By using the DEFAULT
clause one can change the
default status of a variable
within a parallel region

� If a variable has a private
status (PRIVATE) an
instance of it (with an
undefined value) will exist
in the stack of each task.

Program parallel
use OMP_LIB
implicit none
real ::a
a=9999.
!$OMP PARALLEL DEFAULT(PRIVATE)

a=a+10.
print *, “A value is : ”,a

!$OMP END PARALLEL

end program parallel

59

> export OMP_NUM_THREADS=3; a. out;

> A value is : 10

> A value is : 10

> A value is : 10

a=10 a=10

a=9999

a=10

2009

OpenMP Basics:
Synchronizations

► The BARRIER directive
synchronizes all threads
within a parallel region

► Each task waits that all
tasks have reached this
synchronization point
before continuing its
execution

program parallel

implicit none

real,allocatable,dimension(:) :: a, b

integer :: n, i

n = 5

!$OMP PARALLEL

!$OMP SINGLE

allocate(a(n),b(n))

!$OMP END SINGLE

!$OMP MASTER

read(9) a(1:n)

!$OMP END MASTER

!$OMP BARRIER

! $OMP DO SCHEDULE(STATIC)

do i = 1, n

b(i) = 2.*a(i)

end do

!$OMP SINGLE

deallocate(a)

!$OMP END SINGLE NOWAIT

!$OMP END PARALLEL

print *, "B vaut : ", b(1:n)

end program parallel
602009

OpenMP, Conclusion

► Explicit Parallelism and Synchronisation

OpenMP Is Not:
► Meant for distributed memory parallel
► Necessarily implemented identically by all

vendors
► Guaranteed to make the most efficient use of

shared memory

612009

MPI, Message Passing Interface

► Library specification for message-passing
► Proposed as a standard
► High performance on both massively parallel

machines and on workstation clusters
► Supplies many communication variations and

optimized functions for a wide range of needs
► Helps the production of portable code, for

� distributed-memory multiprocessor machine
� a shared-memory multiprocessor machine
� a cluster of workstations

622009

MPI, Message Passing Interface

► MPI is a specification, not an implementation
� MPI has Language Independent Specifications (LIS)

for the function calls and language bindings

► Implementations for
� C, C++, Fortran
� Python
� Java

632009

MPI, Message Passing Interface

► MPI is a collection of functions, handling:
� Communication contexts
� Point to Point communications

� Blocking
� Non blocking
� Synchronous or Asynchronous.

� Collectives Communications
� Data Templates (MPI Datatype)
� Virtual Topologies
� Parallel I/O
� Dynamic management of processes (spawn,

semaphores, critical sections…)
� Remote Direct Memory Access (high troughput, low

latency)
642009

MPI Basics

► The overwhelmingly
most frequently used
MPI commands are
variants of
� MPI_SEND() to send

data
� MPI_RECV() to

receive it.

program

Node1

Data of
Node1

Waiting
for data

program

Node 2

Data of
Node 2

calculus

program

652009

► There are several blocking, synchronous,
and non-blocking varieties.

MPI Principles Behind

► Design to please all vendors in the consortium:
� As many primitives as vendors optimizations

► Design to optimize:
� Copy, or Latency

� Zero Copy Attempt, Buffer Management
� Programmer’s Choice vs. Dynamic, Adaptive

662009

Message Passing Interface

► Difficulties:
� Application is now viewed as a graph of

communicating processes. And each process is :
� Written in a standard sequential language (Fortran, C, C++)
� All variables are private (no shared memory) and local to

each process
� Data exchanges (communications) between processes are

explicit : call of functions or subroutines

� Mapping of the processes graph onto the real
machine (one or several processes on one
processor)

� Too low level
672009

MPI – low level

► The user has to manage:
� the communication and the synchronization between

processes
� data partitioning and distribution
� mapping of processes onto processors
� input/output of data structures

► It becomes difficult to widely exploit parallel
computing

► The “easy to use” goal is not accomplished

682009

69

Main MPI problems for
Modern Parallel Computiing

► Too Primitive (no Vertical Frameworks)

► Too static in design

► Too complex interface (API)
� More than 200 primitives and 80 constants

► Too many specific primitives to be adaptive
� Send, Bsend , Rsend , Ssend , Ibsend , etc.

► Typeless (Message Passing rather than RMI)

► Manual management of complex data structures

692009

Languages, Conclusion

► Program remains too static in design
� Do not offer a way to use new resources that

appears at runtime

► Bound to a given distributed system (cluster)
� Hard to cross system boundaries

702009

Traditional Parallel Computing &
HPC Solutions

► Parallel Computing
� Principles
� Parallel Computer Architectures
� Parallel Programming Models
� Parallel Programming Languages

► Grid Computing
� Multiple Infrastructures
� Using Grids
� P2P
� Clouds

► Conclusion

712009

The Grid Concept

► The Grid is a service for sharing computer
power and data storage capacity over the
Internet.

722009

Solution

One vast computational resource

1. Global management,
2. Mutual sharing of the

resource

Rational

Computer Power

is like
Electricity

Can hardly be stored
if not used

The Grid Concept

► However CPU cycles are harder to share than electricity
� Production cannot be adjusted
� Cannot really be delivered where needed
� Not fully interoperable:

� Incompatible Hardware
� Multiple Administrative Domains

732009

Rational

Computer Power

is like
Electricity

Can hardly be stored
if not used

Solution

One vast computational resource

1. Global management,
2. Mutual sharing of the

resource

Original Grid Computing

A Grid is a Distributed System

► Coordinate resources (no centralized scheduling)
belonging to different organizations and domains.

► Provide security and respect all local policies
► Use standard interfaces and protocols, promote

open standard such as TCP/IP, X509, Ldap, Ssl, ...
► Insure complex quality of services : resources co-

allocation, handles replicates, reliability, ...
► Communications between different grids must be

possible via one standard “inter-grid” protocol

742009

Grid

DD

Computing Unit

Instructions

DD DD DD DD DDDDMemoryMemory

Multiple Instructions
Multiple Data
Streams

Multiple heterogeneous computers with their own
memory connected through a network

N
et

w
or

k

DDDD DD DDDD

Shared
Memory
Shared
Memory

DDDD DD DDDD

752009

Grid Computing: Fundamentals

► Optimizing the use of resources

� Running a job on a remote resource (machine)
� Application should be able to execute remotely
� The remote machine should meet all the hardware and

software requirements imposed by the application
� Use of Idle CPUs of desktops and servers machines

in the enterprise
� Use of available disk storage on the machines of the

enterprise

Reduced Cost, Increased Capability & Flexibility

Why using Grid Computing?

762009

Grid Computing: Fundamentals

► Global (enterprise-wide Job Scheduling):

� Define job priorities

� Schedule jobs on machines with low utilization

� Split jobs in sub-jobs and schedule on the grid

► Manage SLA, QoS with scheduling strategies to meet
deadlines, contracted SLA

How to use Grid Computing?

772009

Grid Computing: Fundamentals

► Parallel computation

� Application divided in several jobs executed in
parallel

� Communication issues

� Scalability issues
� The scalability of a system decreases when the amount of

communication increases

How to use Grid Computing?

782009

Grid Computing: Fundamentals

► Virtualizing resources and organizations for
collaboration

� Putting together heterogeneous systems to create a
large virtual computing system

� Sharing of resources like software, data, services,
equipments, licenses, etc.

� Implementing priority and security policies

How to use Grid Computing?

792009

Grid Computing
Different kinds of Grids

802009

► Computing Grid:
� Aggregate computing power

► Information Grid:
� Knowledge sharing
� Remote access to Data owned by others

► Storage Grid:
� Large scale storage
� Can be internal to a company

The multiple GRIDs

► Scientific Grids :
� Parallel machines, Clusters
� Large equipments: Telescopes, Particle accelerators, etc.

► Enterprise Grids :
� Data, Integration: Web Services
� Remote connection, Security

► Internet Grids (miscalled P2P grid):
� Home PC: Internet Grid (e.g. SETI@HOME)

► Intranet Desktop Grids
� Desktop office PCs: Desktop Intranet Grid

812009

Top 500

� http://www.top500.org

� Rmax and Rpeak values
are in GFlops

822009

Notes on Top 500 Benchmarks

► The HPL (High-Performance Linpack) used as a benchmark: problem size
yielding the highest performance, often the largest problem size that will fit
in memory.

► The HPL benchmark provides the following information:

► Rpeak: The theoretical maximum FLOPS for the system determined by
multiplying the floating-point operations per clock cycle, the CPU clock, and
the number of processors.

► Rmax: The maximum number of FLOPS achieved for that problem size.
► Nmax: The matrix size
► N1/2: The problem size achieving 50% of Rmax. A low N1/2 shows a robust

system delivering strong performance on a broad range of problem sizes.

832009

Typology of Big Machines

MPP: Message Passing Parallelism

Cluster: MPP Commodity Procs + Interconnects

SMP: Shared Memory Machines

Constellation: A combination of SMPs or MPPs

SIMD: Vector Machine

842009

Top 500: Architectures

852009

Top 500: Architectures

862009

Top 500: Architectures

872009

Top 500: Applications

882009

Top 500: Interconnect Trend

892009

Top 500: Operating Systems

902009

Grid, Conclusion

► The goal to present a vast computational
resource is not completely reached.
� Still a system with boundaries and limitations

► Only a grid instance can be seen as a
computational resource

► Using different grid instances is not transparent
� Need for virtualization at middleware level

► Too static design from application POV
� A Grid is not meant to adapt itself to an application

912009

Traditional Parallel Computing &
HPC Solutions

► Parallel Computing
� Principles
� Parallel Computer Architectures
� Parallel Programming Models
� Parallel Programming Languages

► Grid Computing
� Multiple Infrastructures
� Using Grids
� P2P
� Using Clouds

► Conclusion

922009

The Globus Toolkit

► A Grid development environment
� Develop new OGSA-compliant Web Services
� Develop applications using Java or C/C++ Grid APIs
� Secure applications using basic security mechanisms

► A set of basic Grid services
� Job submission/management
� File transfer (individual, queued)
� Database access
� Data management (replication, metadata)
� Monitoring/Indexing system information

► Tools and Examples
► The prerequisites for many Grid community tools

93 932009

The Globus Toolkit

94 942009

The Globus Toolkit

► Areas of Competence

� “Connectivity Layer” Solutions

� “Resource Layer” Solutions

� “Collective Layer” Solutions

95 952009

The Globus Toolkit

► A uniform service interface
for remote job submission
and control

► GRAM is not a scheduler
� it can be used as either

an interface to a
scheduler or the interface
that a scheduler uses to
submit a job to a
resource.

96

GRAM - Basic Job Submission and Control
Service

962009

How To Use the Globus Toolkit

► By itself, the Toolkit has surprisingly limited end -
user value.
� There’s very little user interface material there.
� You can’t just give it to end users (scientists, engineers,

marketing specialists) and tell them to do something useful!

► The Globus Toolkit is useful to system integrators.
� You’ll need to have a specific application or system in mind.
� You’ll need to have the right expertise.
� You’ll need to set up prerequisite hardware/software.
� You’ll need to have a plan…

97 972009

Traditional Parallel Computing &
HPC Solutions

► Parallel Computing
� Principles
� Parallel Computer Architectures
� Parallel Programming Models
� Parallel Programming Languages

► Grid Computing
� Multiple Infrastructures
� Using Grids
� P2P
� Clouds

► Conclusion

982009

Peer to Peer

► What is a P2P system?
� A system where all participants are equals
� A system which uses the resources of the enterprise, of the

Internet

► Structured
� Peers are associated using an algorithm (Distributed Hash

Table) and the placement of resources is controlled

► Unstructured
� Peers are “randomly” associated and the resources

randomly distributed

► P2P deals with 2 resources
� Files/Data : P2P File Sharing
� CPUs : Edge Computing or Global Computing

992009

P2P Architectures and
techniques

► “An open source platform for volunteer
computing”

► Internet Computing
► Master-Slave applications

� Servers have tasks to be performed
� Clients connect to servers to get work
� No client-to-client communication

Boinc (*@home)

1002009

P2P Architectures and
techniques
Boinc (*@home)

http://boinc.berkeley.edu

1012009

P2P Architectures and
techniques

► Workload management system for compute-
intensive jobs

► Provides
� Job queuing mechanism
� Scheduling policy
� Resource monitoring and management

► Matchmaking
� A file indicates resources available
� When new resources are needed:

Condor dynamically provides the corresponding resources

Condor

http://www.cs.wisc.edu/condor/

1022009

JXTA (Juxtapose)

► Open source p2p protocol specification
► Started by Sun Microsystems in 2001

► Set of open protocols to allow any devices to
communicate in a P2P manner

► Handles NAT, firewalls…
► It is a low level specification

� Only provides the infrastructure
� No specific mechanism for programming the

application

1032009

P2P, Conclusion

► Resources’ pool size is dynamic
� Can adapt to application needs
� Best effort most of the time, QoS needed

► Resources are volatile
� Need for fault-tolerant applications

► No real industrial vendors

1042009

Traditional Parallel Computing &
HPC Solutions

► Parallel Computing
� Principles
� Parallel Computer Architectures
� Parallel Programming Models
� Parallel Programming Languages

► Grid Computing
� Multiple Infrastructures
� Using Grids
� P2P
� Clouds

► Conclusion

1052009

Cloud Computing

Cloud computing is a label for the subset of grid computing
that includes utility computing and other approaches to the
use of shared computing resources (Wikipedia)

1062009

IaaS SaaS PaaS

Infrastructure
As
A

Service

Software
as
A

Service

Platform
as
A

Service

Some Clouds

► Peer to Peer File sharing: Bit torrent
► Web based Applications:

� Google Apps
� Facebook

► New Microsoft OS with cloud computing
applications

► Web Based Operating Systems
� http://icloud.com/

1072009

Cloud Computing

► Perceived benefits
� Easy to deploy
� Cheap

� Pay per use model
� Outsourcing, reduce in-house costs

� Infinite capacities (storage, computation, …)

► Challenges (same as grid)
� Security
� Performance
� Availability
� Integrate with existing softwares
� Customization

1082009

Cloud Computing

► What customers want from cloud
computing:
� Competitive pricing
� Performance assurances (SLA)
� Understand my business & industry
� Ability to move cloud offerings back on-premise

1092009

Hype vs Reality

Hype Reality

All of corporate computing will move to
the cloud.

Low-priority business tasks will
constitute the bulk of migration out of
internal data centers.

The economics are vastly superior. Cloud computing is not yet more
efficient than the best enterprise IT
departments.

Mainstream enterprises are using it. Most current users are Web 2.0-type
companies (early adopters)

It will drive IT capital expenditures to
zero.

It can reduce start-up costs
(particularly hardware) for new
companies and projects.

It will result in an IT infrastructure that
a business unit can provision with a
credit card.

It still requires a savvy IT
administrator, developer, or both.

1102009

Source: CFO magazine

Cloud, conclusion

► Another step towards integration of grid
computing within application

► Possible to adapt resource to applications
► Several vendors exist, market exists

� Amazon Ec2, Flexiscale, GoGrid, Joyent,

1112009

Traditional Parallel Computing &
HPC Solutions

► Parallel Computing
� Principles
� Parallel Computer Architectures
� Parallel Programming Models
� Parallel Programming Languages

► Grid Computing
� Multiple Infrastructures
� Using Grids
� P2P
� Clouds

► Conclusion

1122009

The Weaknesses and Strengths
of Distributed Computing

► In any form of computing, there is always a
tradeoff in advantages and disadvantages

► Some of the reasons for the popularity of
distributed computing :
� The affordability of computers and availability of

network access
� Resource sharing
� Scalability
� Fault Tolerance

1132009

The Weaknesses and Strengths
of Distributed Computing

► Disadvantages of distributed computing:
� Multiple Points of Failures: the failure of one or

more participating computers, or one or more
network links, can spell trouble.

� Security Concerns : In a distributed system, there
are more opportunities for unauthorized access.

� Malicious worms, viruses, etc.
� Personal Identity theft – social, medical, …
� Lack of interoperability between Grid Systems

1142009

EXPLICIT DISTRIBUTION AND
PARALLELISM

IMPLICIT DISTRIBUTION AND
PARALLELISM

SHARED MEMORY COMMUNICATING
PROCESSES

PROGRAMMING
BASED

GUI BASED

Solutions for Parallel and Distributed
Processing (a few of them…)

1152009

Software Shared Memory

1162009

► Emulate a distributed shared memory at
software level
� write(key , value) , read(key) and

take(key)

► Many java-based solutions
� Commercial products

– JSR 107 implementation (JCache)

– Extended implementation of JavaSpaces (Jini)

� Open source solutions
� SlackSpaces, SemiSpace, PyLinda (Python)…

Communicating processes

1172009

► Enable communication between remote
processes
� Message passing : send(…),receive(…),…
� RPC : func(…),object.foo(…)

► Many MPIs (open-source and commercial)
� Optimized implementations

� Hardware specific implementations

► In Java : RMI (synchronous only)
� Fast-RMI implementation (open-source)

Implicit Programming-based

1182009

► Parallelism is predefined in the solution

► The user writes tasks and applies predefined
parallelism patterns (skeletons)

� Farm, pipeline, map, divide-and-conquer, branch&bound

► Can rely on user-defined methods
� Split/merge,map/reduce,…

► Commercial Open-source Java solution
� Annotation-based with split/merge methods

Map/Reduce with Distributed File System (~ Google)

Implicit GUI-based

1192009

► Tasks are third party applications
� Parallelism can be deduced from…

� Parameters (parameters sweeping)
� Tasks flow

► Create applications from the GUI
� Visual composition of tasks
� Parameter sweeping wizards

► Solutions with similar capabilities
� Commercial .Net based solution (Windows only)

� Commercial multi-platform solution

� Commercial Open-source multi-platform solution

Conclusion

► Uniform Framework for
� Multi-Threading (for Multicores)
� Multi-Processing (for Distribution)

► Basic programming model
� Asynchronous
� Insensibility to Sharing or Not (even if used at

implementation)
� Taking advantage of multicores, However resisting to

Distribution

The need to unify Distribution and Multi-Core

1202009

Need for resources virtualization to knit together all available resourcesNeed for resources virtualization to knit together all available resources

Need for new programming paradigmsNeed for new programming paradigms

Conclusion
The need to unify Distribution and Multi-Core

Sequential Multithreaded Distributed

Seamless

Java Middleware for Parallel and Distributed computing

1212009

General Tradeoff:
ProActive Design Decision

► Implicit vs. Explicit:
� Explicit: User definition of Activities

►Copied vs. Shared:
� Copy (with shared optimization with no behavior

consequences)

►Abstract away infrastructure details

1222009

Conclusion

► Basic Programming model
� Independent on the physical architecture
� Hardware resources handled by the middleware
� Virtualisation of multi-core, multi-processors, servers, clusters
� Interoperability with different Grid middleware
� Managed Security

► Vertical Programming Model, Specialized
(Master/Workers, Branch&Bound, Skeleton, …)

Abstracting Away Architecture

1232009

Parallelism: Problem / Solution

Embarrassingly Parallel Applications

• Independent Tasks � Master Slave package
Monte Carlo Simulation (in Financial Math, Non Linear Physic, ...)

• Dynamic Generation of Tasks � High-Level Patterns
(Skeleton Framework)

Post-Production

Slightly Communicating Applications
• Branch & Bound package

Flow-Shop

Highly Communicating Applications

• Dynamic,Numerical � OO SPMD
Electro-Magnetism, Vibro-Acoustic, Fluid Dynamics

• Unstructured � Basic API with Active Objects and Groups
EDA (Electronic Design Automation for ICs), N-Body

Non-Java code
• Numerical MPI � Legacy Code Wrapping
• Script code � Script Legacy Code Wrapping

1242009

Conclusion

► A set of parallel programming frameworks in Java
� Active Objects (Actors)
� Master/Worker
� Branch & Bound
� SPMD
� Skeletons
� Event Programming
� Mathlab, Scilab
� A component framework as a reference implementation of

the GCM
� Legacy Code Wrapping, Grid Enabling

► To simplify the programming of Parallel Applications

Various Applications with Different Needs

1252009

Conclusion

► Resource Management
� Still the need for In-Enterprise sharing (vs. SaaS, Cloud)

– Meta-Scheduler/RM for
– Dynamic scheduling and resource sharing
– Various Data Spaces, File Transfer

► Deployment & Virtualization
� A Resource acquisition, virtualization and deployment framework

Multi-core processors, distributed on Local Area Network (LAN),
on clusters and data centers, on intranet and Internet Grids

Local Machine, Enterprise Servers, Enterprise
Grids, SaaS-Clouds

1262009

Conclusion

► Parallel Programming needs Tools:
� Understand
� Analyze
� Debug
� Optimize

features Graphical User Interface : IC2D

A RCP application composed of plugins for
� Visualizing
� Analyzing
� Debugging
� Optimizing ProActive Applications

Needs for Tools for Parallel Programming

1272009

EXPLICIT DISTRIBUTION AND
PARALLELISM

IMPLICIT DISTRIBUTION AND
PARALLELISM

SHARED MEMORY COMMUNICATING
PROCESSES

PROGRAMMING
BASED

GUI BASED

1282009

Solutions for Parallel and Distributed
Processing (a few of them…)

Backed up by

1292009

