Object-Oriented Middleware and
Components for the GRID:

Java, Corba Techniques and Tools

Denis Caromel -- Christian Perez
Univ. Nice Sophia Antipolis IRISA Rennes
INRIA, CNRS, IUF INRIA

Tutorial Middleware 2003
Rio de Janeiro, June 16th 2003

&

Objectives of the Tutorial

The main principles of component technology

Object-oriented middleware for parallel and distributed
programming on the Grid

State the main principles of Grid components

Provide comprehensive examples with Java and Corba

&

Table of Contents (1)

1. Principles and Definition of Software Components

1.1
1.2
1.3
1.4
1.5
1.6
1.7

Basics ideas

JavaBeans

EJB

Net

Corba 3 CCM
Hierarchical components

Summary and classification

&

Table of Contents (2)

2. Parallel Objects, Java, and Components

2.1
2.2
23
24
2.5

Some academic research on GRID components
Programming vs. Composing

The Java ProActive middleware

ProActive components

Tools, and Demonstration

N

Table of Contents (3)

3. Paralle]l CORBA Objects and Components
3.1 Motivations
3.2 CORBA-based approaches
33 PaCO++: a Portable Parallel CORBA Object Implementation
34 PaCO++ in action
3.5 GridCCM: toward Parallel CORBA Components
3.6 Concluding remarks on Corba

4. Conclusion

W 5

1. Basic Ildeas and Definition - What is it ?

A Component = a unit of Composition and Deployment
From Objects (Classes) to Components:
» Objects:
* Programming in the small
» Composition by programming (Inheritance,
Instantiation/Aggregation)
» Components:
* Building software in the large
* Tools for assembling and configuring the execution
Component = a module (80s!) but subject to:

— Configuration (variation on Non Functional Properties)
— Instantiation, life Cycle management

To be deployed on various platforms (some portability)

W 6

Characteristics -- How ?

How it works --- Common characteristics
* A standardized way to describe a component:
« a specification of what a component does:
— Provide (Interfaces, Properties to be configured)
— Require (services, etc.)
— Accept as parameterization
* Usually dynamic discovery and use of components:
* Auto-description (Explicit information: text or XML, reflection, etc.)
* Usually components come to life through several classes, objects
* Legacy code: OO code wrapper to build components from C, Fortran, etc.

W 7

My Definition of Software Components

A component in a given infrastructure is:

* a software module,
+ with a standardized description of what it needs and provides,

* to be manipulated by tools for Composition and Deployment

1.2 A typical example: JavaBeans
Graphical components in Java

Quite simple :
* aJava class (or several)

* anaming convention to identify properties:

« method: public T getX ()
« method: public void setX ()
e an attribute: private [X = <default value>;
* a communication pattern: Events, Source, Listeners
and ... aclassis turned into a graphical component !
The Java introspection allows to discover dynamically the properties,
and to configure them, assemble JB interactively

W 9

JavaBeans (2)

The BeanBox FEiTooBor MEET)| [[2jBeanbox T I | [Properties - Jugaler T 2
R Fie Edit View Help
So for JavaBeans: e wregrouns [N
BlusBution ; ; oot l:l
[expricitBution ! :
cEvznlMum(ur E 4 font Abede...
JellyBean ’ 4
SOftW&I’C l’IlOdLlle = \ 'ﬁ"Jugg\er E ; animationRate 125
J Cl ChangeReporter E ; namelm
ava ass \T’::w E’ s j
Standardized description =
Quotehionitar
getX, setX, X, e seecr
SorterBean
listeners M
Tools:

Composition = BeanBox
Deployment = JVM

Nothing very new (cf. NeXTStep Interface Builder),
but life made a bit easier with byte code and introspection

W 10

Deploying and Executing Components

Components have to be configured on their Non-Functional Properties:
» Functional Properties, Calls (Def.):
» Application level services a component provides (e.g. Balance, Saxpy)
» Non-Functional Properties, Calls (Def.):
* The rest, mainly infrastructure services:
— Transaction, Security, Persistence, Remote/Asynchronous Com., Migration, ...

— Start, Stop, Reconfiguration (location, bindings), etc.
so, Typical Infrastructure : Container for Isolation

Client Server
Allows to manage and implement: Container
* the non-functional properties O‘\.,
« Life cycle of components
(OO]

W 11

1.3 Example: Enterprise Java Beans

A 3 tiers architecture (Interface, Treatment, DB), in Java
* Objectives: ease development + deployment + execution
+ Java portability
A few concepts and definitions:
* EJB Home object:
* management of life cycle: creation, lookup, destruction, etc.
» EJB Remote object:
* Client view and remote reference
» EJB object (or Bean):
* the component itself (Session Stateless or Statefull, Entity
Bean)

» Functional Properties = Business Methods

W 12

Summary: Enterprise Java Beans

EIB Server
So for EJB:

Software module =

¢ Java Classes and Interfaces
(Home, Remote, Beans, ...)

Only Provides (server), no Uses

Standardized description =
« a file with a standard format

Tools:
* Composition = ? EJBrew ?
° Deployment — JVM + Enterprise Services and APT
RMIL, JTS, +
Generators + From www.tripod.com , G. S. Raj article

EJB Servers

W 13

1.4 Components in Windows .Net

.Net basics:
* A VM designed for several languages (C, C++, VB, + others)
* CLR (Common Language Runtime)
* CIL (Common Intermediate Language, MSIL) wider than
ByteCode
— Boxing/Unboxing (value type <--> object), etc.
* A new language: C#
* An interactive tool (Visual Studio) to manipulate the “components”
A key choice: Extraction of description from program code
» C# introduces language constructions for component
information:
— Properties
— Attributes
— XML tags in source code (in Attributes)

W 14

Components in Windows .Net (2)
Example of Attributes, and Properties in C#:

[HelpUrl ¢ * htipy/ /someUrl/Docs/SameChss’ /)hn attribute: HelpUrl

class SomeClass § It is actually a user define
orivate string caption; class (derive from Syst.Att.)
public string|Caption |§ Attribute exists at RT.
get § return caption; § A Property: Caplion
set § caption = value; JavaBeans in a lanquage
Repaint (); } Also: Indexed properties

%

Components for Web program. : WSDL (Web Services Description Lang.)
*« WSDL (Def. of Web callable methods) + Directories +
* SOAP as wire format + Classes with Attributes and properties,

W 15

Components in Windows .Net

@mponents characteristics: \

Software module =

* Classes and Interfaces in various languages, but focus on C#
Standardized description =

+ Still the COM, DCOM interfaces

 Extraction of Attributes, Properties from source code!

+ WSDL
Tools:

» Composition = Visual Studio, etc.

\ * Deployment = Windows, NET CLR /

A Web Service: the instance of a component, ... running...

W 16

1.5 Assembly of Components
Corba 3 and CCM

CCM: Corba Components Model =
* EJB + a few things :

* More types of Beans defined:

— Service, Session, Process, Entity, ...

* Not bound to Java (Corba IDL)
« Provides but also Uses :

— Specification of the component needs, dependencies
— “Client Interfaces”’

* A deployment model (ongoing at OMG)

&

OFFERED

A CORBA Component

Component interface ~——» Q

of Y

Facets
~ Receptacles
Oﬁ My D_@
Business
> Component B
Event 7 - "~ Event
sinks \E - _— sources

N

‘\Attributes /

Courtesy of Philippe Merle, Lille, OpenCCM platform

18

a3xyiNo3y

&

Building CCM Applications =
Assembling CORBA Component Instances

el 2R,

O SR
O O
O
e o DN
Oo- T i;@}@@
O— O
O— 9 IBBIBD =
N~
R Provide+Use, but flat assembly
W 19

1.6 Hierarchical Component
Fractal model

Defined by E. Bruneton, T. Coupaye, J.B. Stefani, INRIA & FT

EE? 20

Composite Components

H Composite (vs.
H Cp. Inside Cp.

T
H
T
low>]

D
- 4————F—I!!I | ')

4

Composition of components
| to build new component:

Primitif)

Composite components:

Internal interfaces
Internal Bindings
Imbrication
IN/OUT operations

- Controllers

- Life cycle Mng.

--> Reconfiguration

21

&

1.7 Conclusion on the

basics:

Component Orientedness

* Level I: Instantiate - Deploy - Configure
* Simple Pattern
* Meta-information (file, XML, etc.)

* Level 2: Assembly (flat)
* Use and client interfaces
* Level 3: Hierarchic
» Composite
* Level 4: Reconfiguration
* Binding, Inclusion, Location
Interactions / Communications:

Functional Calls: service, event, stream

JavaBeans, EJB

CCM

Fractal

On going work ...

Non-Functional: instantiate, deploy, start/stop, inner/outer, re-bind

22

&

Towards GRID Components

— Collections are essential:
--> Group Communications
--> Collective Interfaces

T
H

T

O W >

— Parallel component

vs. Distributed:

A given component
instance can be
distributed over

machines

Reconfigurations:

bindings, in/out

23

T
T
|

Towards GRID Components

Parallel and Distributed:
--> Group Communications

Plus specificity :

* High performance

High-Performance a specificity ?
Not sure: an EJB component handling
1 000 000 of requests already needs

High-Performance!

* Communication : Networks grow faster than Procs
 Important Bandwidth
° Very ngh Latency Techniques for hiding it

* Deployment complexity: --> Abstractions
» Various remote execution tools (rsh, ssh, Globus, Web Services)
* Various registry and lookup protocols (LDAP, RMI, WS, etc.)
» Large variations in nodes being used (1 to 5000, ... 200 000)

* Debugging, Monitoring, and Reconfiguring
* Across the world ??

W 24

2.
Java Parallel Objects and Components

2.1
Some Academic Research
on GRID Components

SciRun from Utah

* scalable parallel applications and visualization

Webflow from Syracuse
* graphical composition palette

CCA:
* CCAT and XCAT from Indiana University
e Ccaffeine from Sandia Nat. Lab. in Livermore

W 26

A quick look at CCA

The U.S. Dept of Energy DOE2000 project
* The Common Component Architecture: CCA

» Lawrence Livermore National Lab
» Sandia Labs
» Argonne National Labs
* Los Alamos National Labs
* Universities: Utah, NCSA, Indiana
Initiative to define minimal specification for scientific components
Targeting Parallel and distributed
Draws ideas from CCM and other models
Provide/Use ports, Calls/Events/Streams, Scientific IDL

W 27

CCAT and XCAT:
Common Component Architecture
D. Gannon et al.

CCAT: Common Component Architecture Toolkit
* D. Gannon’s team implementation of CCA
* Basedon:

* HPC++
» Globus, SSH
+ Java for GUI, JPython, Matlab interface

A focus on: Composition
Novel MxN work at MPI-I/O level
Java and C++ components

W 28

CCAT Components

Main principles:
* CCA framework
» Core Services are components
+ Flexibility, Higher-level services from core
* GUI for composition is a component
» connected to Provides-Port of core service components
« Standard services:
* Directory, Registry, Creation, Connection, Events

* XML description of components

29

&

Component Communication

C naln

How do components communicate?
* Use Remote Procedure Call (RPC) Mechanism

¢ XCAT uses SOAP 1.1
* XCAT ports can serve as web services
+ Events/Messages

* Objects encoded as XML documents

30

&

CCAT session with Java GUIl: Composition

Composition Tool:

» Select

e Connect

* But also:
Test and Execute

Level 2 Provide/Use model

Courtesy of D. Gannon et al.

31

1 Set parameters

initialTirme

br

imelner (0.1

o8 Event #5

o Event #4

e

Execute
Setparameters |

baldy extreme.indiana.edu gram

o E|

Bsgtreme.indiana.edu gram

T

Execute

Set paramsters |

caledonia.cs.indiana.edu gram

XCAT:

D. Gannon et al. current project
Notebook

Browsin
» A Java-based web server Con'fr‘olsg

(Tomcat) on the client:

* Java Servlets Notebook Scripts

» A Browser on the client can be “parameterized”
by web forms ;

as well Script Editing

A e @ + & 0]
=

* Script Editing
* Scripts in JPython

* Web Services:

SOAP communications
XML wire format

W Courtesy of D. Ganr;on et al. 13

XCAT Services Architecture

Default services for all components
XCAT services
* Directory
* locate components based on port types and other attributes
* Registry
* locate running instances of components
* Creation
* create running instance of a component
» Connection
+ connect ports of two running instances
* Events
* publish/subscribe framework for messages

27 34

Ccaffeine
Mainly from HPC Research Div. At Sandia Nat. Lab. in Livermore
SPMD
GUI and Scripted Interface
Interactive or Batch

Serial or Parallel

Components written in C++

W 35

Ccaffeine

Arena EeEa |
Preps MyMesh
[oo IO, [crrops || Tmeempsea
CONFIC
Props Interpolations imaln
—— Templcport
CoNFIG BaundaryGonds r‘ Timelnterp _
Gracefart Timelnterp
| Frops
pre— Sea CONFIG
cProps MyMesh | COMFIS DiffCoeffPro| DiffCoeffPrap
cFrops MyMesh E I
CONFIG InitCond |~ FTarmPor iTCosfts DiffCasts
CONFIG DiffFlus [EDIERERI] DifCodrfs |
co n - D

cProps

COMFIG

DiffGoeffProp

usion CasfflnputPart DiffCaaffs

usianCaeffPropPart

=
[Mabazh
: ADVANGE | AR THE_CYODE Band and mpi
| PROJECT CONFIG Diaa set_properties

rnirropror Contigure

ChemRates

W 36

CCA Characteristics
XCAT, CCAT, Ccaffeine,

So for CCA, etc.: From D. Gannon et al._ article

Software module = \ ——
CCAT Container (Process)
. Any Code —+ Wrappers Regular Components Standard Services |y Jini Discovery Service
. .. A— Directory!
Standardized description = | Graphical Registry % V00w
composition Services T — God GISALDAP
« XML :::;‘h” 4 STy Globus Gram
+ Interfaces (Provide+Use) component Service .
TOOIS. B — Connection 1 Girid events
.. m" i /// J2EE Messaging Services
+ Composition = GUI (Java) - m—
:::‘:L" '_______._ 4—- ——— CORBA events
* Deployment = some / e ey =i £ VD e
CCAT Container: User and Service Components
Level 2 Provide/Use model Service Components are mainly wrappers
for external services (factory,registry,...)

But: CCA not specific to any underlying distributed object model

W 37

2.2 Programming vs. Composing

A model of computation is still needed

38

N

Programming vs. Composing

The underlying model of parallel and distributed computing being
used is FUNDAMENTAL.

How to build components that actually compose:
* semantics, correctness,

» efficiency, predictability of performance, ...

without a clearly defined programming model ?

For 50 years, Computer Science have been looking for abstractions
that compose: functions, modules, classes, objects, ...
The semantics of a composite is solely and well defined from the

semantics of inner components. The quest is not over !

W 39

Techniques
for Components Interactions

Interactions / Communications:

Functional Calls: service, event, stream

Non-Functional: instantiate, deploy, start/stop, inner/outer, re-bind
Alternative:
* A unique infrastructure and model, e.g.: ---> 2.2 ProActive

» RMI for functional and parallel calls
* RMI for component management

« 2 different infrastructures: --->3.2 GridCCM

* MPI, openMP, ... for functional and parallel calls
* Corba, WebServices (SOAP), ... for non-functional

W 40

2.3 The ProActive middleware

A programming model for the Grid:
» Asynchronous and typed communications
» Data-driven synchronization: Wait-By-Necessity
* Group communications
* Migration
ProActive Components:
* Parallel and distributed
* Abstractions of deployment: Virtual Nodes
» Composition: composite components
* Interactive deployment and monitoring
Demonstration:
» 1C2D GUI

W 41

ProActive: Basic Features and Model
Overall Goal

 Library for Parallelism, Distribution, Mobility, CSCW , GRID
* 100 % Java

Parallel, Distributed, Mobile, Activities, across the world !

Desktop SMP LAN Clysters

S

SO &0 ‘//642‘0“-//8? § 8§5

?E—’ogw)| Ov | O

A

Goals:
* Change in distribution: smooth + incremental transitions
* Interactive Configuration, Deployment
* Strong Semantics, performance, safety and security issues
* Distributed Components: Structured, Hierarchical

W 42

ProActive:
A Java API + Tools for Parallel, Distributed Computing

* A uniform framework: An Active Object pattern

* A formal model behind: Prop. Determinism, insensitivity to deploy.

Main features:

Remotely accessible Objects (Classes, not only Interfaces, Dynamic)
Asynchronous Communications with synchro: automatic Futures
Group Communications, Migration (mobile computations)

XML Deployment Descriptors

Interfaced with various protocols: rsh, ssh, L.SF, Globus, Jini, RMIregistry
Visualization and monitoring: 1C2D

Inthe www. ObjectWeb .org Consortium (Open Source middleware)
since April 2002 (LGPL license)
W 43 ‘

ProActive : model

Active objects : coarse-grained structuring entities (subsystems)

Each active object: - possibly owns many passive objects
- semantically one thread

No shared passive objects -- Parameters are passed by deep-copy
» Asynchronous Communication between active objects

Future objects and wait-by-necessity.

Full control to serve incoming requests (reification)

W 44

ProActive : Creating active objects

An object created with A a=new A (obj, 7);

can be turned into an active and remote object:

¢ Instantiation-based:

| A a = (A)ProActive.newActive («A», params, node) ;

The most general case.
To get Class-based: a static method as a factory

To get a non-FIFO behavior (Class-based):
class pA extends A implements RunActive { .. }

* Object-based:

A a =new A (obj, 7);

| a = (A)ProActive.turnActive (a, node) ;

W 45

ProActive : flexibility

Two key features:

* Polymorphism between standard and active objects

» Type compatibility for classes (and not only interfaces)
» Needed and done for the future objects also

* Dynamic mechanism (dynamically achieved if needed)

"A" foo (A a)

* Wait-by-necessity: inter-object synchronization
» Systematic, implicit and transparent futures
Ease the programming of synchronizations, and the reuse of routines

W 46

ProActive : flexibility

Two key features:

* Polymorphism between standard and active objects
» Type compatibility for classes (and not only interfaces)
» Needed and done for the future objects also
* Dynamic mechanism (dynamically achieved if needed)

"A" foo (A a) O.foo(a) : a.g()

{ and a.f() are
ag (...); « local »
v=af (...);

O.foo(p_a): a.g()
and a.f()are
} «remote + Async.»

* Wait-by-necessity: inter-object synchronization
 Systematic, implicit and transparent futures (“value to come™)
Ease the programming of synchronization, and the reuse of routines

W 47

Group Communications

* Manipulate groups of Active Objects, in a simple and typed manner:

— Typed and polymorphic Groups of active and remote objects
Dynamic generation of group of results

* Be able to express high-level collective communications (like in MPI):
* broadcast,
* scatter, gather,
* all to all

A ag = (A)ProActiveGroup.newActiveGroup («A», {{pl},...}, {Nodes})
V v = ag.foo(param) ;
v.bar();

W 48

Construction of a Result Group

A ag = newActiveGroup (..)
V v = ag.foo (param) ;
v.bar();

49

ProActive : Mobility of active objects

Migration is initiated by the active object itself through a primitive: migrateTo

Can be initiated from outside through any public method

The active object migrates with:
» all pending requests
» all its passive objects
« all its future objects

Automatic and transparent forwarding of:
* requests (remote references remain valid)
» replies (its previous queries will be fulfilled)

W 50

Characteristics and optimizations

Same semantics guaranteed (RDV, FIFO order point to point, asynchronous)

Safe migration (no agent in the air!)
Local references if possible when arriving within a VM

Tensionning (removal of forwarder)

OO0
T

6%
0
O\\
X})/

Characteristics and optimizations

Same semantics guaranteed (RDV, FIFO order point to point, asynchronous)

Safe migration (no agent in the air!)

Local references if possible when arriving within a VM

Tensionning (removal of forwarder)

3 o

[

¥

\}l}/

Qo0

O

Characteristics and optimizations

Same semantics guaranteed (RDV, FIFO order point to point, asynchronous)
Safe migration (no agent in the air!)

Local references if possible when arriving within a VM

Tensionning (removal of forwarder)

E} ?)O V d /P direct
@\b <£2,o9

W 53

Characteristics and optimizations

Same semantics guaranteed (RDV, FIFO order point to point, asynchronous)
Safe migration (no agent in the air!)

Local references if possible when arriving within a VM

Tensionning (removal of forwarder)

AN

O Q‘éi —> direct
Q)Ol = //Q;’j?
o TR i

W 54

Characteristics and optimizations

Same semantics guaranteed (RDV, FIFO order point to point, asynchronous)

Safe migration (no agent in the air!)

Local references if possible when arriving within a VM

Tensionning (removal of forwarder)

3

o B
T

—_

forwarder

e~

P AN

? direct

=S

55

&

Characteristics and optimizations

Same semantics guaranteed (RDV, FIFO order point to point, asynchronous)

Safe migration (no agent in the air!)

Local references if possible when arriving within a VM

Tensionning (removal of forwarder)

3

—S
% forwarder

B

AN

Y

56

&

Characteristics and optimizations

Same semantics guaranteed (RDV, FIFO order point to point, asynchronous)

Safe migration (no agent in the air!)

Local references if possible when arriving within a VM

Tensionning (removal of forwarder)

=

@)

i

OO0
T

forwarder

e~

direct

=S

&

Characteristics and optimizations

Same semantics guaranteed (RDV, FIFO order point to point, asynchronous)

Safe migration (no agent in the air!)

Local references if possible when arriving within a VM

Tensionning (removal of forwarder)

N
JO—»v T
o

'

forwarder

AN

e

58

&

2.4 ProActive Components

- Principles for Distributed Components
- Abstract Deployment model
- Composing Virtual Nodes

- Descriptors: Primitive and Composite

59

&

Towards Distributed Components

A ag = newActiveGroup (..)
V v = ag.foo(param) ;
v.bar();

T
—1

W4

:sO

Example of
component

instance

Compose
Deploy
Monitor-
Control
at the
component

level

60

ProActive Component Definition

A component is:

* Formed from one (or several) Active Object

» Executing on one (or several) JVM

* Provides a set of server ports (Java Interfaces)

» Uses a set of client ports (Java Attributes)

* Point-to-point or Group communication between components
Hierarchical:

* Primitive component: define with Java code and a descriptor

» Composite component: composition of primitive components
Descriptor:

* XML definition of primitive and composite

* Virtual node captures the deployment capacities and needs

Virtual Node is a very important abstraction for GRID components

61

&

Components vs. Activity and JVMs

O C

Activity JVM Component

>
oy}

0
O

Cp. are rather orthogonal to activities and JVMs:

contain activities, span across several JVMs

Here, co-allocation of two components,

within a composite one,

T
L
— _‘_\5\

with a collective port using group com.

Components are a way to globally manipulate

distributed, and running activities

62

&

Abstract Deployment Model
Objectives

Problem:
+ Difficulties and lack of flexibility in deployment
* Avoid scripting for: configuration, getting nodes, connecting, etc.
A key principle:
* Abstract Away from source code:
* Machines
* Creation Protocols
» Lookup and Registry Protocols
Context:
* Distributed Objects, Java
» Not legacy-code driven, but adaptable to it

W 63

Descriptors: based on Virtual Nodes

Virtual Node (VN):

* Identified as a string name

* Used in program source

* Configured (mapped) in an XML descriptor file --> Nodes
Operations specified in descriptors:

* Mapping of VN to JVMs (leads to Node in a JVM on Host)

* Register or Lookup VNs

* Create or Acquire JVMs

Program Source Descriptor (RunTime)
| | |- |
Activities (AO) --> VN VN --> JVMs --> Hosts
Runtime structured entities: 1 VN -->n Nodes in n JVMs

W 64

Descriptors: Mapping Virtual Nodes

Component Dependencies:
Provides: ... Uses: ...

VirtualNodes:
Dispatcher <RegisterIn RMIregistry, Globus, Grid Service, ... >
RendererSet
Example of)
Mapping:
an XML file . .
. Dispatcher --> DispatcherJVM
descriptor:
RendererSet --> JVMset

JVMs:
DispatcherJ]VM = Current // (the current JVM)
JVMset=//ClusterSophia.inria.fr/ <Protocol GlobusGram ... 10 >

W 65 ‘

Descriptors: Virtual Nodes in Programs

Descriptor pad = ProActive.getDescriptor ("file:.ProActiveDescriptor.xml");
VirtualNode vn = pad.activateMapping ("Dispatcher"); // Triggers the JVMs

Node node = vn.getNode();

C3D c¢3d = ProActive.newActive("C3D", param, node);
log (... "created at: " + node.name() + node.JVM() + node.host());

W 66

Descriptors: Virtual Nodes in Programs

Descriptor pad = ProActive.getDescriptor ("file:.ProActiveDescriptor.xml");
VirtualNode vn = pad.activateMapping ("Dispatcher"); // Triggers the JVMs

Node node = vn.getNode();

C3D c3d = ProActive.newActive("C3D", param, node);
log (... "created at: " + node.name() + node.JVM() + node.host());

// Cyclic mapping: set of nodes
VirtualNode vn = pad.activateMapping ("RendererSet");
while (... vn.getNbNodes ...) {

Node node = vn.getNode();
Renderer re = ProActive.newActive(”Renderer", param, node);

&

67

Composing Virtual Nodes

Co-allocation in a composite
O Ao
HOHO
|

Activity JVM Component

When composing A and B to form C -, _[_ H O O
VNa, VNb -->2 VNs : Distributed mapping \

VNa , VNb --> VNa+b : Co-allocation \\

1OrO

Composition can control distribution of
VNa VNb

composite
VNa+b

&

68

Component Descriptors

* Defining Provide and Use ports (Server, Client)
* Defining Composite

» Using the Fractal component model, and

ADL: Architecture Description Language
[ObjectWeb, Bruneton-Coupaye-Stefani]

XML descriptors
* Integration with Virtual Nodes

W 69

Descriptor Example:
Primitive Component

<primitive-component
implementation="test.component.car.MotorImpl” name="motor 1"
virtualNode="Node2">

<requires> <interface-type cardinality="single” contingency="mandatory"
name="controlWheel" signature="test.component.car.Wheel" />

</requires>

<provides> <interface-type name="controlMotor"
signature="test.component.car.Motor" /> </provides>

</primitive-component>

W 70

Descriptor Example:
Composite Component

<composite-component name="composite2" virtualNode="Node2">
<provides> <interface-type name="controlComposite2"
signature="test.component.car.Motor" />
</provides>
<composite-component name="compositel" virtualNode="Node2">
<provides>
<interface-type name="controlCompositel”
signature="test.component.car.Motor" />
</provides>
<primitive-component
Not to be written nor read by humans !!

TOOLS

W 71

2.5
Tools for Distributed Objects and Components

- GUI: IC2D: Interactive Control and Debugging of Distribution
graphical visualization and control

- Component Tools: Composing, Deploying

- Screenshots or Demo

W 72

IC2D: Interactive Control and Debugging of
Distribution

fetivm — E1=h
| monaring Look &Teel Winda
| Woild Panet
1 . YL Irivase
Main Features:
-V id=d AR 8ETc0C 12}
- Hosts, JVM,
#C3DDispatcher#5# |
: : plAg:Linu galerafil inue:
- Active Objects
J W id=1502606 RBESHT VA= Uig= ZIJ?US.II’.H‘JQKUH?'\:TiI VI i=42020332
Topology o 1NNl | ————— i 14Node2—; dlereBNode 1
C3DRenderingEngine#1 ’_"\BI.\I Iservq ’1\‘ 3DRenderingEngines3 | CIDUserdt
- Migration '
|
[Displaytopolemy () proportional () ratio @ filaire Resel Topology | [v] Monitering enable |
- Logical Clock |
clear messages-
12,2000 (rmate andes a9 = Node Object gt Inria frpi1aNsde crasted, =
12120:00 (Dt Aodtes o 579) == VMObjeet I4=d117 817 cD o127 bA:260240 05 165141 THe eréated based on node #pi.(ntia fipNade2
1220001 trete nodes for o) == The node fpfd.inda frpBNode2 has been found on vm id=d1F7867 o0e127b4:20b249:2 00 1EIG141 THe EE
12:20001 (Creats nones -7 19) == VM Obje of id=156268500 b 2c3550. 261240 6515177 THe created hased on node #piiS.infafipfiNode =

W 73

IC2D: Basic features

Graphical Visualisation:
* Hosts, Java Virtual Machines, Nodes, Active Objects
» Topology: reference and communications
« Status of active objects (executing, waiting, etc.)
* Migration of activities
Textual Visualisation:
* Ordered list of messages
« Status: waiting for a request or for a data
* Causal dependencies between messages
* Related events (corresponding send and receive, etc.)
Control and Monitoring:
* Drag and Drop migration of executing tasks
* Creation of additional JVMs and nodes

27 74

IC2D: Dynamic change of Deployment
Drag-n-Drop Migration

Drag-n-Drop
tasks

around the
world

24 Monitor

 [ncquire Jini host [acquire GLOBUS host|Acquire RMI host| Acquire Rvi Node [Hidershow Objects | Toggle player [Legend|

[_[Ofx]

rhiequesiindows NT-

Other thread #1
C3DDispatcher #1148

C3DUser #12

Other thread #3

rNode2-
Other thread #6

#C3DRenderingEngine #15

amel:Li

Noded

C3DRenderingEngine #13 ||

Other thread #10

3DRanderiW

Starting monitor of sent replies for frinria.proactive.examples.c3d. C30RenderingEngine

Starting monitor of sent requests for frinria proactive examples c3d C3DRenderingEngine
Starting monitor of incoming replies for frinria. proactive. examples.c3d. C3DRenderingEngine
Dbject frintia proactive.examples.c3d.C3DRenderingEngine migrate to feamelNoded

75

&

IC2D: Related Events

& (200

W -

& [CI0Dispat

W - oojecty

T ectiva ForRequest

& [LFDispateharmsice

b jactiifall FarR st

#Elso ez age

FarReques:

ZH)

o
o
w

— Db =otWaltFor Request

— Oljmetinfall For fraguast

OnyjaetiysitFor Rag

patoterdSjrander

30z patahersslealF el

Related events ‘ | Messayes recorder | ‘ ‘Clear all events ‘ |

Legentd

Events:

» Textual and ordered list of events for each Active Object

* Logical clock: related events, ==> Gives a Partial Order

76

&

IC2D: Dynamic change of Deployment

Creation,

List of curfent processes

Acquisition :sc\lda.\-nnafrl fnetfhomejlm|

\lpom:inriafr | fnet/home/Ime
of

[leinriafr | /netthome/imesty
new JVM

and Nodes

New JVMs

Baie new process
hostname
usefname

policy file path
classname ta stan
parameiers of the class

fava cammand path

lo.inriafr

|mestre

/metflinux—libesflocal /idkl. 3.1/ bin/java
home/lmestre/ProActive/demofsc200]/proactive java policy
frinriaproactive rmi StartNode

/ifnodesalida

classpath

environmeant

/netfhome/Imestre/proactive-tmp. /net/home/Imestre/ProActive/class [«
es i
-
CISPLAY=palllata i fr -
~|

Protocols:

Stop selected process

51ait new process

;Me.ssagcs far proteés lunﬁiﬁu.[r.lr.n|a.|:|ro.acli-ve_rrn.|.5.lanNodé
rsh, ssh s et

clear messages

L L e

Globus,
LSF

THDEEE AN s B et fo d
BL28 BT (N 2wl -V Imestre fo.ta)
PR PFFF SN o rsfy < fmestee fo gl
FHPESE LN ren L dmesprd o Iy

4} => Command is rsh -| Imestre lotinria fr fnetdlinux |6 Incalfjdkl 3 1jbinjjava —cp
Inet{homeflmestrel proactive-tmp:fnet/ homedlmestre/ ProActive/ classes

-Djava. security. policy={ net/ home/imestre/Profctive/demo/sc2 001/ proactive. java policy fr.inrisproactive rmi.Startlode f f frodeS olida
FF2F 8T LN = rEh -/ fmesers da ln) == Process started Thread=IN -> r=h ~| Imestre |o.in

14:25:F3 (ERR ~> refk ~/ frestes o i)

» Process started Thread=ER
ClassFileSerwer bound.on poj

Profctive Mode successfully

Detected an existing RM| Registry on port 1099

= OF. Mode nodesolida created in VM id=ed4bed64c03e2 377452877 &ch 184005 0: -Fffe

R = rsh -I Imgstre Joyin
Tt 2005.with 1o codshases (reading résources from classpath)

bound in registry at /flo inriafrinodeSclida

71

Monitoring of RMI, Globus, Jini, LSF cluster |

Nice -- Baltimore at SC’02

ManRonng Lesk & feel Windsw Globes

Werta Fanel —————— ~[Hiagena
VM b ch AP S 22 B T VM 10 Bctbled Adtive Object
EhabusRm o Henderer] IEBAS IO
[T SeR———r | £ IRenaringEngises fJDﬂlwl-Nuermnn‘ | e —— O waming
- - ALTLEOSE 300 Zong
Width of links s i
globel, - Node 59190
- Saandard Has1
- - Renderer- 1ABAAT3115 e i !
proportional . e . i (-
Menderer- 1BEFI2F 22
1 € i0Rendermglngines f
to the number :
Glabus it 7
! VM 1= 99505 50U 0TV A5
£ = | - Rrmdererddd M4 165 o
f = b CIDRenderimgingines *
or com- " :
| ™ ¥
i P sy [tnderer- 581356 | .immusnms (
. . |] G AMNIE : y
munications | ° ‘
1 Rendere-4A1995T4 Renderes- SEI845 165 k T
- e | c c I\ 4 || e 25
 Display topslogy pregartionsd ® ratie Milaire Hevei Topslagy '~ Montoring enable
esrages
e

Vi

DEMO:
Components with the IC2D monitor

* A simple Motors and Wheels demo case
* Parallel:
—several instances of components with collective interface
» Composite:
—3 levels of imbrication
* Level 3 component orientedness:

—life cycle management, rebinding, in and out

W 79

Motors and Wheels demo case

A —
Lt — [

composite]

HH—+]H

parallel1
HH

-[Cwea]
~[Cwes]
Cwee]

p

W 80

Component Manipulation

Caonfigure

deployment descriptar file is | not selected
components descriptor file is | not selected

40 on with this configuration

name

| | GET COMPONENT

[pemo Frame

INVOKE

state

life cycle | START STOP
interface UNBIND

parallel 1 - REMOVE INTERNAL PARA...

composite 1- ADD INTERNAL PARAL ...

composite 1- BIND INTERNAL PARAL...

composite componhent 2 - ACCELERA...

composite 1 - START LIFE CYCLE

parallel 2 - START LIFE CYCLE

parallel 2 - STOP LIFE CYCLE

parallel wheels component 1-STAR... parallel 1- STOP LIFE CYCLE client
parallel 1 - TURN WHEELS parallel companent 1 - HALT WHEELS . T] W
paraliel 1 - UNBIND INTERNAL PARAL .. paraliel 1 - BIND INTERNAL PARALLE...
mator 1 - UNBIND WHEEL 1 motor componenit 1 - BIND WHEEL 2 TED || remove || apo |
Internal Ci

Selecting:

component and deployment descriptors

DEPLOY
Managing: life cycle, rebinding, in and out

81

&

Component Interface with IC2D

p— P—
L P (S S v ——rery
| worid Pancl o
' “ VM - A0 18,
from : Morabors T
i
EN— la; o
i =0l = Comnpostast Matorkngts2 | Wheeimpls 14
ParaieiComposin Motorimptes Wheelimgple 16
ParahukComposaur WA Ao
Wehoulmgds 13 haalingd 1 Lompostusd
Wihaslimple 11
P g,
| | =I5l x|
15 Configunation Framss [paatieiz
Configrn. Intarface mams contnsn
ol method I.'lllll'll\'\"l(:l -
g P v |
| 0 e with s condigrntion | ;.«mzmm.
w&n = - Wocycle | STaRT || stop | Lt
== === F [=10
(] Buma Frama clon nterface | | \MRHD | =
1. Eampasitn 1 - START LIFE CYCLE server JelZ interface |
 ER AN S N N companees 10 handia [paralall
1. paralial 1. START LIFE CYOLE o p—
A paratnl 1. TURNWHEFLS o
5. paraliel 1. HALT WHEELS. whaal.p2
L paraliel 2 . TURHWHEFLS whwl g
7.VHEELT —> PARALLELZ
B, motor 1 - HALT MOTOR

82

ProActive Components:
Characteristics

@ponents characteristics: \

Software module =

+ Java Classes and Interfaces + threads: forming Active Objects
Standardized description =

* In source: Virtual Nodes, newActive API

» .ProActiveDescriptor : an XML file per component
Tools:

» Composition = working on: IC2D--Compose

\\° Deployment = Java VM, and IC2D (Deploy + Monitor) /

W 83

Next steps

* Interactively compose components with the component view
* Maintain component view at execution

* Formal Semantics of mixing:
* Functional, with

* Non Functional calls (start/stop, rebind, in/out, ...)

W 84

3. Parallel CORBA Objects and
Components

W 85

Contents

3.1 Motivations

3.2 CORBA-based approaches

3.3 PaCO++: a Portable Parallel CORBA Object
Implementation

3.4 PaCO++ in action
3.5 GridCCM: toward Parallel CORBA Components
3.6 Concluding remarks

27 86

Code Coupling on Grids

| Structural Mechanics |

\ Thermal \ \ Dynamics \

Satellite design

Coupling Through a Middleware

L — I

| midd

P
‘ Structural Mechanics ‘ ‘Thermal ‘

| ,,;,

‘ Thermal ‘ ‘ Dynamics ‘

Satellite design

Features to support

Re-use legacy codes
* Support several languages
* Support parallel codes

CORBA

Support of heterogeneous machines
Dynamical code interconnection

Transfer data & control
* Message passing (MP) vs remote method invocation (RMI)

W 89

Communication Models

Message Passing (MP)

 Explicit receive operation

+ User has to poll/wait
Remote Method Invocation (RMI)

* Method implicitly called

+ Better in multithreaded environments / for code independence
Simulating MP on top of RMI or RMI on top of MP

+ It is known that each paradigm can be simulated on top of the other
RMI appears better as a foundation

Higher-level abstractions (like PAWS) provide their best-
suited models

27 90

Communication between codes

How to transfer distributed data between parallel codes ?

minlm minlm
MPI 00O 000 MPI
minlm =" minlm
Parallel code A Parallel code B
W 91

Communication between codes

Embedding a process into an object
e Communication scalability issue
e Code modification

Master Object
RMI
oo- » | OO0
MPI 000 00O MPI
oo- oo-
Parallel code A Parallel code B

27 92

Communication between codes

Embedding all processes into an object
e Parallel information associated to an object
e Scalable communication

Object
ooa ooa
RMI
MPI ooo o0oo MPI
ooa ooa
Parallel code A Parallel code B93

&

Definition of a parallel object

Definition : 4 parallel object is an object whose execution
model is parallel.

In practice,
A parallel object is often incarnated by a collection of object.
* The execution model is Single Program Multiple Data

* Invoking a method on a parallel object invokes the
corresponding method on all the objects of the collection.

94

/i

An example of a parallel object

// Parallel Object Interface SPMD
interface anlinterface { Code
void example(const Matrix mat) ;
! SPMD
MPI

ﬁ Code

SPMD

Code

/I Collection of objects
interface aninterface {
void example(const DisMatrix mat) {
MPI_Bcast(...);

W 95

Examples of invocations of
a parallel object

SPMD .
Code Sequential to parallel
Seq. SPMD
Code Code MPI
SPMD
Code
SPMD
Parallel to parallel > —
p SPMD Code —|
Code
.| SPMD
MPI oD > Code MPI
Code SPMD
"| Code

27 96

Contents

3.1 Motivations

3.2 CORBA-based approaches

3.3 PaCO++: a Portable Parallel CORBA Object
Implementation

3.4 PaCO++ in action
3.5 GridCCM: toward Parallel CORBA Components
3.6 Concluding remarks

W 97

Performance of CORBA

« Towards High Performance CORBA and MPI Middleware
for Grid Computing »

+ Alexandre Denis, Christian Pérez and Thierry Priol
* Presented at GridComputing’01
Myrinet-2000 network
* CORBA performance : OmniORB / PadicoTM
» Bandwidth : 240 MB/s of 250 MB/s
* Latency : 20 us
* MPI performance : MPICH
* Bandwidth : 240 MB/s
* Latency : 11 us

27 98

Object oriented middleware
systems

Parallel objects
* ParDIS: K. Keahey and D. Gannon
* PaCO: C. René and T. Priol
* Data Parallel CORBA: oMG
e PaCO++: C. Pérez, T. Priol and A. Ribes

Main differences
+ Description of the parallelism
+ Support for distributed data

99

&

ParDIS

Developed by K. Keahey and D. Gannon (U. of Indiana)

Model

» Extension of CORBA objects

to “SPMD objects”

» Concept of distributed sequences

* Mechanism of “future” to handle

asynchronous requests

o *e

. spmd_bind

IDL specification

typedef dsequence <double, 1024,
(BLOCK,BLOCK)> MyArray;

interface diff_object {
void diffusion(in long timestep,
inout MyArray darray);

: spmd _bind

i spmd_bind |

Object B

Object A
diff_object

100

PaCO

Developed by T. Priol and C. René (PARIS Research team)
* Auvailable at http://www.irisa.fr/paris/

Model

e A collection of identical CORBA object

* Extended-IDL

* Support HPF-like data distribution | MPI communication layer |
+ Stub and skeleton based on MPI ¢ ¢ ¢
ey Il 1
| Sequential | S SPMD SPMD

interface[*:2*n] MatrixOperations {

-~

Parallel Server

Parallel CORBA Object

1 Client

o
:[Extended-IDL
Compiler ¢ ¢ ¢

F--->(skel.) (sket.] [sket]

typedef double Vector[SIZE]; Objec
typedef double Matrix[SIZE][SIZE]; | inv.
void multiply(in dist[BLOCK][*] Matrix A, |

in Vector B,

out dist[BLOCK] Vector C);
void skal(in dist[BLOCK] Vector C,
out csum double skal);

|P9A||P9A| |P(3A|

v v

Object Request Broker (ORB) |

101

Data Parallel CORBA

OMG initiative to extend CORBA

Standardization procedure completed
* Technology adopted : orbos/2001-11-09

Model
* Optional ORB feature
* Runtime-based solution

* No IDL modification

* New Data-Parallel POA
+ Explicit parallelism

* No data redistribution

* Interoperability (Proxy)

Operations on Parallel Objects

During execution of

Clients invokin, operation X, the parts of
operation X on Pags.llef Parallel Object A perform
Object A a collective invocation of

operation Y on Object B

Client1 on
Parallel ORB

Client 2 on
Non-parallel ORB

Parallel
Object A

Parallel

Object B

W 102

3.1
3.2

Contents

Motivations
CORBA-based approaches

3.3 PaCO++: a Portable Parallel

CORBA Object Implementation

3.4 PaCO++ in action
3.5 GridCCM: toward Parallel CORBA Components
3.6 Concluding remarks
W 103
PaCO++ objectives
Extends CORBA

+ No modification of CORBA specifications
+ Parallelism is a non-functional property of an object implementation

* Implementation on top of existing CORBA implementations

Parallel object

* Collection of sequential object

* SPMD execution model

* Support of parallel operations with distributed arguments
* Support for redistribution libraries as plug-in

* Interoperability with standard CORBA objects

27 104

A simple example

//'1IDL
interface Mylnterface {
void example(in Matrix mat);

I3 Data

Redistribution 000
/I XML /
Name: Mylnterface.example 000
Type: Parallel 000 < minln
Argument1: *, bloc 000
ReturnType: noReduction

™ ooo

/I Code SPMD on the client Client
o->example(m); ien
/I Code SPMD on the server PaCO++ ObJeCt

class Mylinterface_impl : public MyInterface_serv {
void example(const Matrice_serv mat) {

.... MPI_Bcast(...) ... ;
}
}
W 105
Code generation
Utilisation.id| —|— XML Description file
PaCO++ compiler
GCUftilisation.idl PaCO++ code
CORBA
compiler

CORBA stubs

27 106

Example

Parallel client
» A bloc-distributed vector

Parallel server
* A method expecting a block-distributed argument

W 107

Example : IDL

interface example XML Description
{
typedef sequence<long> Iseq; /I declare 1st argument of send
void send(in Iseq vect); /I to be of type parallel
h :

interface example : PaCO_Proxy {...}; // for the clients
interface example_serv : PaCO_Node // for the implementer of the service

{
void send(in PaCOData_vect vect);

I}

27 108

Example: sequential client code

// Retrieving a standard CORBA reference
CORBA::Object obj = ...

// Obtaining a correctly type reference
example_ptr ex_obj = example::_narrow(obj) ;

/I Initializing some data
long vect[40];

// Real call to the (parallel) object
ex_obj->send(vect);

W 109

Example: the parallel client code (1)

/I Retrieving parallel view from a standard CORBA reference
example ex_obj = ... ;
PaCO_example * server = PaCO_example::get_ PaCO_example(ex_obj);

/I Retrieving the parallel context of the parallel operation
PaCO_operation_client * send_ctx = server->getContext(“send");

/I Describing client-side data distribution: a bloc distribution
PaCO::Paco1DBlockData_t data;

data.gd.len = 10 * numprocs; I let assume 10 elements per node
data.gd.unit_size = sizeof(long);

data.ld.rank = myid;

data.ld.start = 10 * myid;

data.ld.len =10;

/I Description of the client topology
PaCO::PacoGridTopology_t topo;
topo.dim.length(1); /I 1D

topo.dim[0] = numprocs; // number of procs in 1st dim

?7 110

Example: the parallel client code (2)

// Initialization of internal library : see server code

// Declaration of distribution types associated with operation send
send_ctx->init(myid, numprocs); // Id of local node

send_ctx->initArg(data, topo, 0); / 1st argument distribution type declaration
A

/I Initializing some local data
long local_vect[10];

Il Real call
server->send(local_vect); // Distribution assumed to be ——

W 111

Server setting

1: Set up interface manager (contains the code of the proxy)
2: Set up of all objects belonging to the collection

On each node:
i Initialization of the parallel context of
each parallel operation

i Initialization of redistribution library

3: Registering the nodes to the interface manager Interface
Manager

4: The server is ready to receive requests

27 112

Example : the implementation code

class example_serv_impl : public example_serv

{
public:

void send(const PaCOData_seq& seq) {
/ SPMD execution model

/I Parallel object specific interface access
intmyid = InterfaceParallel::getMyRank();
int nbprocs = InterfaceParallel::getTotalNode();

/I Accessing the distributed data is distribution dependant
/I This example is logical view for a block distribution
for(int i=0; i<seq.ld.len; i++) // local number of element
cout << seq.data[i] << endl; // access to the it element
}
MPI_Barrier(...); // Parallel operations can be used :
/I There are not dependant on PaCO++

W 3

Example : the server code

// Servant creation
example_serv_impl * servant = new example_serv_impl(orb,ior);

/I Retrieving the parallel context of the parallel operation
PaCO_operation_server * send_ctx = servant->getContext("envoyer");

/I Select the communication library

/I Note: the code to manage communication library is not shown
MPI_Comm group = MPI_COMM_WORLD;
send_ctx->setLibCom("mpi",&group);

/I Select the distribution library for the distributed arguments
send_ctx->setTypeArg(0, "Block");

/I Actually declared the object as member of a collection

servant->deploy/();
114
&

PaCO++ performance

Ethernet 100 Mb/s

Client and server programs

¢ PaCO++

* OmniORB (AT&T)

« MPI
WAN Network

* VTHD (2.5 Gb/s)

* 11 nodes to 11 nodes

* 826 Mb/s (103 MB/s)

= at the 1 Gbit/s switch limit

* Pt-2-Pt at 75 Mb/s (9.4 MB/s)
SAN Network

* Myrinet 2000 (2 Gb/s pt-2-pt)

* 8 nodes to 8 nodes

» 12 Gbit/s (1.5 GB/s)

» Pt-2-Pt at 1.5 Gbit/s (187 MB/s)

Ethernet 100 Mb/s

W 115

PaCO++ Status

Portable parallel extension to CORBA

* Independent of the ORB

* Successfully test with Mico 2.3.x and OmniORB 3 et 4
Still under development

+ IDL compiler ready

* Beta C++ version of the PaCO++ layer

* 18t public version expected summer 2003

Web site
* http://www.irisa.fr/paris/PaCO++

W 116

Contents

3.1 Motivations
3.2 CORBA-based approaches

3.3 PaCO++: a Portable Parallel CORBA Object
Implementation

3.4 PaCO++ 1n action

3.5 GridCCM: toward Parallel CORBA Components
3.6 Concluding remarks

117

&

ACI| GRID RMI
Application from EADS

http://www.irisa.fr/Grid-RMI

Virtual plane

Plane
wave NN Scattering of 1 on 2
N | |[—>
<) |<—
Scattering|of 2 on 1

Object 1

118

Logical MPI code scheduling

3: VecSum
1: AS-ELFIP 5: AS-ELFIP
‘ 2: IoR ‘ 4: PoR
Object 2 TestStop PR ‘ R ‘ Object 1
: Po H)
5: AS-ELFIP 1: AS-ELFIP

W 119

Parallel Scheduling

[Master Scheduler }
| |

FTork .,

b, e
Ty remote Tork remote fo
AS-ELFIP S-ELFIP «¥

A

IoR i R e

A

i

AS-ELFIP

+{ Teststop {Teststop J<r

\
Secondary Scheduler

Object 1 Object 2

() =standard CORBA object | | = parallel CORBA object
embedding an MPI code

27 120

Data to be transferred

PO
Data structure Pl
: P2

* Two-column matrix
0
e Data: double complex El
* Block-cyclic distribution P2
* Matrix size: up to many GigaBytes! PO
Pl
P2
PO
Pl
P2

121
&
Data transfer
CODE SPMD CLIENT I CODE SPMD SERVER

void OBJ::send(id, data) {

- |
tobj->send(id, data); Hﬂ[ti:> store data locally

client server

ooooooooooooooooo

local

@ API

[1]
[1]

}
I
receiver:

= MPI application

sender:

MPI application

S-----

Remarks

Application is independent of deployment consideration
* Two secondary schedulers on the same cluster
» Two secondary schedulers on different clusters

Well-defined programming model
* Object-oriented model
* Separation of distributed and parallel issues

CORBA and MPI co-existence
+ Co-existence and network transparency can be achieved

* PadicoTM : An Open Integration Framework for Communication
Middleware and Runtimes
http://www.irisa.fr/paris/Padicotm

W 123

ACI EPSN

http://www.labri.fr/Recherche/PARADIS/epsn/

A computational steering environment for numerical
distributed application

EPSN capitalizes CORBA advantages
+ Portability, interoperability, network transparency
* Based on PaCO++ for parallel applications

Visualization environment

1 Distributed simulations

1
-! - -I sl I
G
J H 1
Steering FEFEFEFEFE !
.............. |

Environment / === oo oo -- a

W 124

Epsilon: a prototype of EPSN

Simulation | Steering Client

EPSN APIs

EPSN CORE

Parallel CORBA Object

Software layer

CORBA
]]
— T\/[Datal O] I?‘ata)
- 7 anaged | [Jclient =
& @ >
Q)& s ORB 2= O
— >Controt fo.ntrol o
I manager client 1
Simulation Epsilon V Epsilon Client

W 125

3.1
3.2
3.3

3.4

Contents

Motivations
CORBA-based approaches

PaCO++: a Portable Parallel CORBA Object
Implementation

PaCO-++ in action

3.5 GridCCM:; toward Parallel

CORBA Components

3.6 Concluding remarks

27 126

From CORBA 2...

A distributed object-oriented model
* Heterogeneity: OMG Interface Definition Language (OMG IDL)
* Portability: Standardized language mappings
* Interoperability: GIOP / IIOP
* Various invocation models: SII, DII, and AMI

* Middleware: ORB, POA, etc.
minimum, real-time, and fault-tolerance profiles

No standard packaging and deployment facilities !!!

Explicit programming of non functional properties !!!

+ lifecycle, (de)activation, naming, trading, notification, persistence,
transactions, security, real-time, fault-tolerance, ...

No vision of software architecture
From OMG document ccm/2002-06-01

W 127

... to the CORBA Component
Model

A distributed component-oriented model
* An architecture for defining components and their interactions
* From client-side (GUI) to server-side (business) components

» A packaging technology for deploying binary multi-lingual
executables

* A container framework for injecting lifecycle, (de)activation,
security, transactions, persistence, and events

* Interoperability with Enterprise Java Beans (EJB)
The Industry’s First Multi-Language Component Standard
* Multi-languages, multi-OSs, multi-ORBs, multi-vendors, etc.
* Versus the Java-centric EJB component model
* Versus the MS-centric NET component model

From OMG document ccm/2002-06-01

27 128

GridCCM objectives

Re-define the parallel object concept in terms of parallel

components

 Benefit from the PaCO++ experience

+ Benefit from the CORBA component model

Component model

* Definition of non-functional properties

* CCM: packaging and deployment model!

129

&

A GridCCM Parallel component

Definition : 4 parallel component is a collection of identical
sequential component that executes some of the
operations attached to its ports in parallel.

provide
port

SPMD
Code

<

SPMD
Code

use

SPMD
Code

< port

130

/i

GridCCM component description

interface Anlinterface

{
void example(in Matrix mat);

I}

component CoPa1

{

provides Anlinterface to_client;
uses Interfaces2 to_server;

I}

Component: CoPa1
Port: to_client
Name: Aninterface.example

Type: Parallel XML

Argument1: *, bloc

ReturnArgument: noReduction

to_client<

SPMD
Code

SPMD
Code

(

SPMD
Code

A parallel component
of type CoPa1

131

to_server

&

Early Performance study

Platform
e 16 PIII 1 Ghz
e Linux 2.2
 Fast-Ethernet network

* Myrinet-2000 network

CCM-based for GridCCM
* JAVA: OpenCCM
e C++: MicoCCM

C++/Myri based on
MicoCCM/PadicoTM

300 160
3
= 250 140
-_E + 120
g 200 L 100
g 150 - 80
a
E 100 r 60
S - 40
xg 50 L 20
<
0 - + 0
1->1 2->2 4->4 8->8
I Java . .
C++/Eth Component configuration
B C++/Myri
—— C++/Myri

132

/i

GridCCM status

Portable parallel extension to CORBA
* ORB-independent... but it needs a CCM implementation

 The accurate interface with redistribution library is under
development

GridCCM will be based on PaCO++

* Component model solves many PaCO++ implementation issues
+ 1t public version expected by the end of year

Deployment
+ Integrate CCM deployment model with Grid environment
* CORBACoG

W 133

CORBACOG

http://www.caip.rutgers.edu/TASSL/Projects/CorbaCoG/

Grid Service
Objects
For other
services

From CORBACoG web site

27 134

Contents

3.1 Motivations
3.2 CORBA-based approaches

3.3 PaCO++ : a Portable Parallel CORBA Object
Implementation

3.4 PaCO++ in action
3.5 GridCCM : toward Parallel CORBA Components

3.6 Concluding remarks

W 135

Concluding remarks on CORBA

CORBA is an industrial standard for distributed
programming
» Legacy-based grid applications (multi-languages)
* Heterogeneous environment (OS independent)
CORBA 3 brings the software component technology
* Complete implementations in progress
Parallel CORBA
+ Several parallel CORBA extension have shown the feasibility
* Object-oriented and component-oriented models
* High performance can be achieved
* Integration with Grid environment under investigation

27 136

4. Conclusion

137

N

Sum Up (1)

Software component technology was developed to overcome object
limitations

Software component key benefits:
* Reduce develop time by increasing code re-use
* Program by assembly rather than developing
* A unit of deployment

Still an evolving concept
+ Hierarchical component model, Reconfiguration, ...

W 138

Sum Up (2)

Parallel Object/Component concepts offer a solid programming
model basis for building complex applications

* Benefit of well-known technology
* Support parallelism for high performance

Most concepts are independent of the implementation technology
» Java
« CORBA

139

N

Where to manage heterogeneity ?

Language oriented view
* Hide heterogeneity by a virtual machine
* Manage parallelism and distribution inside a unified framework
» Java, ProActive, ..., and web services

Interface oriented view
» Manage heterogeneity at the interface level
* Interoperability
* Support of legacy codes
* CORBA, PaCO++, ..., and web services

W 140

Conclusion -- Perspectives

Not all models are equivalent: Component Orientedness
Level 1: Configuration 2: Assembly 3: Hierarchic 4:Reconfiguration
Specificity for GRID Components:
+ Parallel (HPC), Distributed, Collective Op., Deployment, ... Reconfiguration
Can programming models be independent of (Grid) Components ?
* Do not target the same objectives
* But can components ... compose, ... reconfigure without a clear model ?
Reconfiguration is the next big issue:
+ Life cycle management, but with direct communications as much as possible
* For the sake of reliability and fault tolerance ---> GRID
— Error, Exception handling across components
— Checkpointing: independent, coordinated, memory channel, ...
Other pending issues:
* Peer-to-peer (even more volatile ... reconfiguration is a must), Security, ...

W 141

Adaptive GRID

The need for adaptive middleware is now acknowledged,

with dynamic strategies at various points in containers, proxies, etc.

Can we afford adaptive GRID ?

with dynamic strategies at various points
(communications, checkpointing, reconfiguration, ...)
for various conditions (LAN, WAN, network, P2P, ...)

HPC vs. HPC
High Performance Components vs. High Productivity Components

W 142

143

N

Extra Material

144

N

DEMO: Applis with the IC2D monitor

e 1. C3D : Collaborative 3D renderer in //

a standard ProActive application

* 2. Penguin
a mobile agent application

IC2D: Interactive Control & Debug for Distribution

work with any ProActive application
Features:
Graphical and Textual visualization
Monitoring and Control

145

&

on maching: 3 i fLins 210

[

iy
H
%

| T EEEEEEEE

|

146

Object Diagram for C3D
'

Elaction

é

e
RenderingEngine
()

()
RenderingEngine
£y |

UseiFrame o

Interval

e
Redirecter

Legend
Standard " Active
-—Reference—»
W, 147

Monitoring: graphical and textual com.

|
Msniosing Losk & frrl Windom
Worts Fanel
sspatcher Nade 1L Renderen
B
\ L
1 |
I e
VI e SR v
M s | seat
mnlun/‘ | (
Ciuser =
]
- |(minaet
L =]

ProActive

A library:

-->100% Java, no change to the JVM,

-->no change to user code
Parallelism, Distribution, Synchronization, and mobility
Typed Groups, subject to important optimizations,
Interactive deployment and control: IC2D

--> Towards Components for the Grid
Formal properties:

* A calculus: ASP: Asynchronous Sequential Processes
--> Result on confluence

» Markov Chains: Performance Evaluation
-->Towards adaptive strategies (LAN, WAN, ...)

W 149

ProActive : API for Mobile Agents

» Mobile agents (active objects) that communicate
* Basic primitive: migrateTo

* public static void migrateTo (String u)
// string to specify the node (VM)

* public static void migrateTo (Object o)

// joinning another active object

* public static void migrateTo (Node n)
// ProActive node (VM)

* public static void migrateTo (JiniNode n)
// ProActive node (VM)

W 150

ProActive : API for Mobile Agents

* Mobile agents that communicate
* Primitive to automatically execute action upon migration
* public static void onArrival (String r)

/I Automatically executes the routine r upon arrival

// in a new VM after migration

* public static void onDeparture (String r)
/I Automatically executes the routine r upon migration

// to anew VM, guaranted safe arrival
* public static void beforeDeparture (String r)

/I Automatically executes the routine r before trying a migration
// to anew VM

W 151

ProActive : API for Mobile Agents
Itinerary abstraction

[tinerary : VMs to visit
* specification of an itinerary as a list of (site, method)
* automatic migration from one to another
+ dynamic itinerary management (start, pause, resume, stop, modification, ...)
API:
» myltinerary.add (“machinel”’, “routineX”); ...
* itinerarySetCurrent, itineraryTravel, itineraryStop, itineraryResume, ...
Still communicating, serving requests:
* itineraryMigrationFirst ();
// Do all migration first, then services, Default behavior
* itineraryRequestFirst ();
// Serving the pending requests upon arrival before migrating again

W 152

Mobile Application executing on 7 JVMs

IC2D: Cluster Visualization

Visualization

of 2 clusters
(1Gbits links)

Featuring

the current

communications

(proportional)

154

Automatic Continuations

clienk Serveur INRIA Serveur CHRES
®
$phi_1%

p_mb:=inria_kd.Members("SLOOP"|) ;
p_mb.prink;

. repult:= mh.creater
phi 3§ result.set_inria(localkd.members (pname)

Merkers (pnams: String): Projeck _Members is
local mh: Project_Member;
da

8

result.set_cnrs (cnrekd.Menkers (prnamel) ;

Transparent Future transmissions (Request,Reply)

W 155

Formal Models and Properties inside

- The ASP calculus:
Asynchronous Sequential Processes

- Performance Evaluation of Mobile Agents:
Markov Chains

W 156

Asynchronous Sequential Processes

The ASP calculus:

An Imperative and Parallel Object Calculus
Together with Ludovic Henrio, and Bernard Serpette

Objectives:

 Formally study the ProActive model

* Investigate various strategies for asynchronous calls

* Prove some equivalence between Sequential and
Parallel programs

* Demonstrate the deterministic nature of sub-sets of the

model

157

&

Parallel

Transition

System

{2002} —s5 (alol}
Ofaa; Taiioi Fo; Foi f]ll@ = elats 0005 Foi s 1o]10
7 nouvelle activité ¢ & Dom{o,)
g, ={t' = 0AWY)} noe copy)(eoa) = oy
o[RlActive(t)]; oa; to; 1 e 12]]Q %Jl
R o0s 00 5y s L1105 5 050 05 0|2
oot} = OA(B) & & Dom(og)
o = Append(og,copy) (v oa) {t — &' 1"}
f nouvean futar Ry = Rg [t e fomA
ty & Domfo.) of, = {oy — fut{f7 5} 0w (SENDREQUEST)

R[edi (Vi 0 ai t0s Fius Fas fo]||Bloss ogs o3 Fas B [4])16
=y e[Rlegls ot cas Fug Fas ful|Blass o 1o; Fas Ry £o] @

R, = [lj‘;LT; fl= R,
a0 5005 P Bai O| P —) 0eadj (o) 7 2 Fus Blai JII|1 P

(LocaL)

(KEWACT)

(XEWSERVIOE)

Vg Dom{o,) Fo={fa—0}:F,
7o = append(aacopy| (Lo {t — £}:2) {ENDSERVICE}
alt; 0a; 003 Fai s fa] [P —) @i oh; 005 Fo; Ao 0] P

oot} = fut(f7™F) F(f) =
at, = Append(a, copy) (trogHes — i)t}

(SEXDREPLY}
003005 b0 Fui Fai L] |B[og03 103 Fas Fas £ —
ofae; 00 tos Fui i fo]||Blog; o 193 Fas Bas f5)||1P

158

&

Performance Evaluation of
Mobile Agent

Together with Fabrice Huet and Mistral Team

Objectives:

* Formally study the performance of Mobile Agent
localization mechanism: Markov Chains

* Investigate various strategies (forwarder, server, etc.)

* Define adaptive strategies

W 159

Transitions for the Server localization

Analyse Markovienne du serveur centralisé

Serveur actif
A =iy
B =0
=12
D =20
E =i
Serveur blogué
F =00
@ =0

Fic. 4.6 — Etat du systéme ef taur de transitions dans le mécanisme du serveur.

W 160

OASIS Team:

Active Objects, Semantics, Internet and Security

Sophia Antipolis (Nice)
www.inria.fr/oasis
* 6 Researchers, 8 Ph.D., 2 to 4 Eng.
* Distributed Objects, Grid, Middleware,
* Formal foundations

* An Open Source (ObjectWeb consortium) experimental platform: ProActive

’ UNIERSITE
BIiNREA W@ICE “%hs

TA

W 161

PARIS Research Team
IRISA/INRIA (Rennes)

http://www.irisa.fr/paris

PARIS*: Programming parallel and distributed Systems for
Large Scale Numerical Simulation

Head of the project: Thierry Priol
Members: 7 Researchers, 7 PhD, 3 Engineers

Make distributed and parallel systems easier to use by
» Designing operating systems for clusters of PC and workstations

* Designing runtimes for parallel languages (HPF, OpenMP, Java) to make the
programming of clusters as simpler as possible

* Designing scalable middleware to hide distributed resources for both
computational and storage Grids

*Common project with CNRS, ENS-Cachan, INRIA, INSA, University of Rennes 1

W 162

