
1

Object-Oriented Middleware and
Components for the GRID:

Java, Corba Techniques and Tools

Denis Caromel -- Christian Perez
Univ. Nice Sophia Antipolis IRISA Rennes

INRIA, CNRS, IUF INRIA

Tutorial Middleware 2003
Rio de Janeiro, June 16th 2003

2

Objectives of the Tutorial

• The main principles of component technology

• Object-oriented middleware for parallel and distributed
programming on the Grid

• State the main principles of Grid components

• Provide comprehensive examples with Java and Corba

3

Table of Contents (1)

1. Principles and Definition of Software Components
1.1 Basics ideas
1.2 JavaBeans
1.3 EJB
1.4 .Net
1.5 Corba 3 CCM
1.6 Hierarchical components
1.7 Summary and classification

4

Table of Contents (2)

2. Parallel Objects, Java, and Components
2.1 Some academic research on GRID components
2.2 Programming vs. Composing
2.3 The Java ProActive middleware
2.4 ProActive components
2.5 Tools, and Demonstration

5

Table of Contents (3)
3. Parallel CORBA Objects and Components

3.1 Motivations
3.2 CORBA-based approaches
3.3 PaCO++: a Portable Parallel CORBA Object Implementation
3.4 PaCO++ in action
3.5 GridCCM: toward Parallel CORBA Components
3.6 Concluding remarks on Corba

4. Conclusion

6

1. Basic Ideas and Definition - What is it ?
A Component = a unit of Composition and Deployment
From Objects (Classes) to Components:

• Objects:

• Programming in the small
• Composition by programming (Inheritance,

Instantiation/Aggregation)
• Components:

• Building software in the large
• Tools for assembling and configuring the execution

Component = a module (80s!) but subject to:
– Configuration (variation on Non Functional Properties)
– Instantiation, life Cycle management

To be deployed on various platforms (some portability)

7

Characteristics -- How ?
How it works --- Common characteristics

• A standardized way to describe a component:

• a specification of what a component does:
– Provide (Interfaces, Properties to be configured)
– Require (services, etc.)
– Accept as parameterization

• Usually dynamic discovery and use of components:

• Auto-description (Explicit information: text or XML, reflection, etc.)
• Usually components come to life through several classes, objects
• Legacy code: OO code wrapper to build components from C, Fortran, etc.

8

My Definition of Software Components

A component in a given infrastructure is:
• a software module,
• with a standardized description of what it needs and provides,

• to be manipulated by tools for Composition and Deployment

9

1.2 A typical example: JavaBeans
Graphical components in Java

Quite simple :
• a Java class (or several)
• a naming convention to identify properties:

• method:
• method:
• an attribute:

• a communication pattern: Events, Source, Listeners

and … a class is turned into a graphical component !
The Java introspection allows to discover dynamically the properties,
and to configure them, assemble JB interactively

10

JavaBeans (2)

Nothing very new (cf. NeXTStep Interface Builder),
but life made a bit easier with byte code and introspection

The BeanBox
So for JavaBeans:

Software module =
Java Class

Standardized description =
getX, setX, X,
listeners

Tools:
Composition = BeanBox
Deployment = JVM

11

Deploying and Executing Components
Components have to be configured on their Non-Functional Properties:

• Functional Properties, Calls (Def.):

• Application level services a component provides (e.g. Balance, Saxpy)
• Non-Functional Properties, Calls (Def.):

• The rest, mainly infrastructure services:
– Transaction, Security, Persistence, Remote/Asynchronous Com., Migration, …
– Start, Stop, Reconfiguration (location, bindings), etc.

so, Typical Infrastructure : Container for Isolation
Allows to manage and implement:

• the non-functional properties
• Life cycle of components

Container

ServerClient

12

1.3 Example: Enterprise Java Beans
A 3 tiers architecture (Interface, Treatment, DB), in Java

• Objectives: ease development + deployment + execution
• Java portability

A few concepts and definitions:
• EJB Home object:

• management of life cycle: creation, lookup, destruction, etc.
• EJB Remote object:

• Client view and remote reference
• EJB object (or Bean):

• the component itself (Session Stateless or Statefull, Entity
Bean)

• Functional Properties = Business Methods

13

Summary: Enterprise Java Beans
So for EJB:

Software module =
• Java Classes and Interfaces

(Home, Remote, Beans, …)

Only Provides (server), no Uses
Standardized description =

• a file with a standard format
Tools:

• Composition = ? EJBrew ?
• Deployment = JVM +

RMI, JTS, +
Generators +
EJB Servers

From www.tripod.com , G. S. Raj article

14

1.4 Components in Windows .Net
.Net basics:

• A VM designed for several languages (C, C++, VB, + others)

• CLR (Common Language Runtime)
• CIL (Common Intermediate Language, MSIL) wider than

ByteCode
– Boxing/Unboxing (value type <--> object), etc.

• A new language: C#
• An interactive tool (Visual Studio) to manipulate the “components”

A key choice: Extraction of description from program code
• C# introduces language constructions for component

information:
– Properties
– Attributes
– XML tags in source code (in Attributes)

15

Components in Windows .Net (2)
Example of Attributes, and Properties in C#:

(‘’http:// SomeClass’’

Components for Web program. : WSDL (Web Services Description Lang.)
• WSDL (Def. of Web callable methods) + Directories +
• SOAP as wire format + Classes with Attributes and properties,

An attribute:

A Property:

16

Components in Windows .Net

Components characteristics:

Software module =
• Classes and Interfaces in various languages, but focus on C#

Standardized description =
• Still the COM, DCOM interfaces
• Extraction of Attributes, Properties from source code!
• WSDL

Tools:
• Composition = Visual Studio, etc.
• Deployment = Windows, .NET CLR

A Web Service: the instance of a component, … running...

17

1.5 Assembly of Components
Corba 3 and CCM

CCM: Corba Components Model =
• EJB + a few things :

• More types of Beans defined:
– Service, Session, Process, Entity, ...

• Not bound to Java (Corba IDL)

• Provides but also Uses :
– Specification of the component needs, dependencies
– “Client Interfaces’’

• A deployment model (ongoing at OMG)

18

A CORBA Component

My
Business

Component

Component interface

Facets

Event
sources

Event
sinks

Attributes

Receptacles

O
FF

ER
ED

R
EQ

U
IR

ED

Courtesy of Philippe Merle, Lille, OpenCCM platform

19

Building CCM Applications =
Assembling CORBA Component Instances

Provide+Use, but flat assembly

20

1.6 Hierarchical Component
Fractal model

Defined by E. Bruneton, T. Coupaye, J.B. Stefani, INRIA & FT

21

A
B
C

A

B

C

C

D

A

A

B

C

Composite Components
Composition of components
to build new component:

Composite (vs. Primitif)
Cp. Inside Cp.

Composite components:
- Internal interfaces
- Internal Bindings
- Imbrication
- IN/OUT operations

- Controllers
- Life cycle Mng.

--> Reconfiguration

C

22

1.7 Conclusion on the basics:
Component Orientedness

• Level 1: Instantiate - Deploy - Configure
• Simple Pattern
• Meta-information (file, XML, etc.) JavaBeans, EJB

• Level 2: Assembly (flat)
• Use and client interfaces CCM

• Level 3: Hierarchic
• Composite Fractal

• Level 4: Reconfiguration
• Binding, Inclusion, Location On going work …

Interactions / Communications:
Functional Calls: service, event, stream
Non-Functional: instantiate, deploy, start/stop, inner/outer, re-bind

23

A
B
C

A

A

A

A

D

A

A

B

C

Towards GRID Components
Collections are essential:

--> Group Communications
--> Collective Interfaces

Parallel component
vs. Distributed:
A given component
instance can be
distributed over
machines
Reconfigurations:
bindings, in/out

24

Towards GRID Components

Plus specificity :
• High performance
• Communication :

• Important Bandwidth
• Very High Latency

• Deployment complexity: --> Abstractions
• Various remote execution tools (rsh, ssh, Globus, Web Services)
• Various registry and lookup protocols (LDAP, RMI, WS, etc.)
• Large variations in nodes being used (1 to 5000, … 200 000)

• Debugging, Monitoring, and Reconfiguring
• Across the world ??

High-Performance a specificity ?
Not sure: an EJB component handling
1 000 000 of requests already needs
High-Performance!

Networks grow faster than Procs

Techniques for hiding it

Parallel and Distributed:
--> Group Communications

25

2.
Java Parallel Objects and Components

26

2.1
Some Academic Research

on GRID Components
SciRun from Utah

• scalable parallel applications and visualization

Webflow from Syracuse
• graphical composition palette

CCA:
• CCAT and XCAT from Indiana University
• Ccaffeine from Sandia Nat. Lab. in Livermore

27

A quick look at CCA
The U.S. Dept of Energy DOE2000 project

• The Common Component Architecture: CCA
• Lawrence Livermore National Lab
• Sandia Labs
• Argonne National Labs
• Los Alamos National Labs
• Universities: Utah, NCSA, Indiana

Initiative to define minimal specification for scientific components
Targeting Parallel and distributed
Draws ideas from CCM and other models
Provide/Use ports, Calls/Events/Streams, Scientific IDL

28

CCAT and XCAT:
Common Component Architecture

D. Gannon et al.
CCAT: Common Component Architecture Toolkit

• D. Gannon’s team implementation of CCA
• Based on :

• HPC++
• Globus, SSH
• Java for GUI, JPython, Matlab interface

A focus on : Composition
Novel MxN work at MPI-I/O level
Java and C++ components

29

CCAT Components
Main principles:

• CCA framework

• Core Services are components

• Flexibility, Higher-level services from core

• GUI for composition is a component

• connected to Provides-Port of core service components

• Standard services:

• Directory, Registry, Creation, Connection, Events

• XML description of components

30

Component Communication

How do components communicate?
• Use Remote Procedure Call (RPC) Mechanism

• XCAT uses SOAP 1.1
• XCAT ports can serve as web services

• Events/Messages

• Objects encoded as XML documents

31

CCAT session with Java GUI: Composition

Composition Tool:

• Select

• Connect

• But also:
Test and Execute

Level 2 Provide/Use model

Courtesy of D. Gannon et al.

32

CCAT Gui image

33

XCAT:
D. Gannon et al. current project

• A Java-based web server
(Tomcat) on the client:

• Java Servlets
• A Browser on the client

as well
• Script Editing

• Scripts in JPython

• Web Services:
SOAP communications

• XML wire format

Notebook
Browsing
Controls

Notebook Scripts
can be “parameterized”
by web forms

Script Editing

Courtesy of D. Gannon et al.

34

XCAT Services Architecture
Default services for all components
XCAT services

• Directory
• locate components based on port types and other attributes

• Registry
• locate running instances of components

• Creation
• create running instance of a component

• Connection
• connect ports of two running instances

• Events
• publish/subscribe framework for messages

35

Ccaffeine
Mainly from HPC Research Div. At Sandia Nat. Lab. in Livermore

SPMD

GUI and Scripted Interface

Interactive or Batch

Serial or Parallel

Components written in C++

36

Ccaffeine

37

CCA Characteristics
XCAT, CCAT, Ccaffeine, ...

So for CCA, etc.:

Software module =
• Any Code + wrappers

Standardized description =
• XML
• Interfaces (Provide+Use)

Tools:
• Composition = GUI (Java)
• Deployment = some

CCAT Container: User and Service Components
Service Components are mainly wrappers

for external services (factory,registry,...)

From D. Gannon et al. article

But: CCA not specific to any underlying distributed object model

Level 2 Provide/Use model

38

2.2 Programming vs. Composing

A model of computation is still needed

39

Programming vs. Composing
The underlying model of parallel and distributed computing being
used is FUNDAMENTAL.

How to build components that actually compose:
• semantics, correctness,
• efficiency, predictability of performance, ...

without a clearly defined programming model ?

For 50 years, Computer Science have been looking for abstractions
that compose: functions, modules, classes, objects, …
The semantics of a composite is solely and well defined from the
semantics of inner components. The quest is not over !

40

Techniques
for Components Interactions

Interactions / Communications:
Functional Calls: service, event, stream
Non-Functional: instantiate, deploy, start/stop, inner/outer, re-bind

Alternative:
• A unique infrastructure and model, e.g.: ---> 2.2 ProActive

• RMI for functional and parallel calls
• RMI for component management

• 2 different infrastructures: ---> 3.2 GridCCM
• MPI, openMP, … for functional and parallel calls
• Corba, WebServices (SOAP), … for non-functional

41

2.3 The ProActive middleware

A programming model for the Grid:
• Asynchronous and typed communications
• Data-driven synchronization: Wait-By-Necessity
• Group communications
• Migration

ProActive Components:
• Parallel and distributed
• Abstractions of deployment: Virtual Nodes
• Composition: composite components
• Interactive deployment and monitoring

Demonstration:
• IC2D GUI

42

ProActive: Basic Features and Model
Overall Goal
• Library for Parallelism, Distribution, Mobility, CSCW , GRID
• 100 % Java
Parallel, Distributed, Mobile, Activities, across the world !

Goals:
• Change in distribution: smooth + incremental transitions
• Interactive Configuration, Deployment
• Strong Semantics, performance, safety and security issues
• Distributed Components: Structured, Hierarchical

SMP ClustersLANDesktop

43

• A uniform framework: An Active Object pattern
• A formal model behind: Prop. Determinism, insensitivity to deploy.

Main features:
• Remotely accessible Objects (Classes, not only Interfaces, Dynamic)
• Asynchronous Communications with synchro: automatic Futures
• Group Communications, Migration (mobile computations)

• XML Deployment Descriptors
• Interfaced with various protocols: rsh,ssh,LSF,Globus,Jini,RMIregistry
• Visualization and monitoring: IC2D

In the www. ObjectWeb .org Consortium (Open Source middleware)
since April 2002 (LGPL license)

ProActive:
A Java API + Tools for Parallel, Distributed Computing

44

ProActive : model
• Active objects : coarse-grained structuring entities (subsystems)
• Each active object: - possibly owns many passive objects

 - semantically one thread
• No shared passive objects -- Parameters are passed by deep-copy
• Asynchronous Communication between active objects
• Future objects and wait-by-necessity.
• Full control to serve incoming requests (reification)

45

An object created with A a = new A (obj, 7);

can be turned into an active and remote object:

• Instantiation-based:
A a = (A)ProActive.newActive(«A», params, node);

The most general case.

To get Class-based: a static method as a factory
To get a non-FIFO behavior (Class-based):

class pA extends A implements RunActive { … }

• Object-based:
A a = new A (obj, 7);
...
...
a = (A)ProActive.turnActive (a, node);

ProActive : Creating active objects

46

ProActive : flexibility
Two key features:
• Polymorphism between standard and active objects

• Type compatibility for classes (and not only interfaces)
• Needed and done for the future objects also
• Dynamic mechanism (dynamically achieved if needed)

• Wait-by-necessity: inter-object synchronization
• Systematic, implicit and transparent futures

Ease the programming of synchronizations, and the reuse of routines

"A"

"pA"

ap_a
foo (A a)
{

a.g (...);
v = a.f (...);
...
v.bar (...);

}

47

ProActive : flexibility
Two key features:
• Polymorphism between standard and active objects

• Type compatibility for classes (and not only interfaces)
• Needed and done for the future objects also
• Dynamic mechanism (dynamically achieved if needed)

• Wait-by-necessity: inter-object synchronization
• Systematic, implicit and transparent futures (“value to come”)

Ease the programming of synchronization, and the reuse of routines

"A"

"pA"

ap_a
foo (A a)
{

a.g (...);
v = a.f (...);
...
v.bar (...);

}

O.foo(a) : a.g()
and a.f() are
« local »
O.foo(p_a): a.g()
and a.f()are
«remote + Async.»

O

48

Group Communications

Typed and polymorphic Groups of active and remote objects
Dynamic generation of group of results

• Manipulate groups of Active Objects, in a simple and typed manner:

• Be able to express high-level collective communications (like in MPI):
• broadcast,
• scatter, gather,
• all to all

A ag = (A)ProActiveGroup.newActiveGroup(«A», {{p1},...}, {Nodes});
V v = ag.foo(param);
v.bar();

49

Construction of a Result Group

Typed Group Java or Active Object

A ag = newActiveGroup (…)
V v = ag.foo(param);
v.bar();

V

A

50

ProActive : Mobility of active objects

Migration is initiated by the active object itself through a primitive: migrateTo

Can be initiated from outside through any public method

The active object migrates with:
• all pending requests
• all its passive objects
• all its future objects

Automatic and transparent forwarding of:
• requests (remote references remain valid)
• replies (its previous queries will be fulfilled)

51

Characteristics and optimizations

Same semantics guaranteed (RDV, FIFO order point to point, asynchronous)
Safe migration (no agent in the air!)
Local references if possible when arriving within a VM
Tensionning (removal of forwarder)

52

Characteristics and optimizations

Same semantics guaranteed (RDV, FIFO order point to point, asynchronous)
Safe migration (no agent in the air!)
Local references if possible when arriving within a VM
Tensionning (removal of forwarder)

53

Characteristics and optimizations

Same semantics guaranteed (RDV, FIFO order point to point, asynchronous)
Safe migration (no agent in the air!)
Local references if possible when arriving within a VM
Tensionning (removal of forwarder)

direct

54

Characteristics and optimizations

Same semantics guaranteed (RDV, FIFO order point to point, asynchronous)
Safe migration (no agent in the air!)
Local references if possible when arriving within a VM
Tensionning (removal of forwarder)

direct

direct

55

Characteristics and optimizations

Same semantics guaranteed (RDV, FIFO order point to point, asynchronous)
Safe migration (no agent in the air!)
Local references if possible when arriving within a VM
Tensionning (removal of forwarder)

direct

direct

forwarder

56

Characteristics and optimizations

Same semantics guaranteed (RDV, FIFO order point to point, asynchronous)
Safe migration (no agent in the air!)
Local references if possible when arriving within a VM
Tensionning (removal of forwarder)

direct

direct

forwarder

57

Characteristics and optimizations

Same semantics guaranteed (RDV, FIFO order point to point, asynchronous)
Safe migration (no agent in the air!)
Local references if possible when arriving within a VM
Tensionning (removal of forwarder)

direct

direct

forwarder

58

Characteristics and optimizations

Same semantics guaranteed (RDV, FIFO order point to point, asynchronous)
Safe migration (no agent in the air!)
Local references if possible when arriving within a VM
Tensionning (removal of forwarder)

direct

direct

forwarder

59

2.4 ProActive Components

- Principles for Distributed Components

- Abstract Deployment model

- Composing Virtual Nodes

- Descriptors: Primitive and Composite

60

Towards Distributed Components

Typed Group Java or Active Object

A ag = newActiveGroup (…)
V v = ag.foo(param);
v.bar();

V

A

Example of
component
instance

Compose
Deploy
Monitor-
Control
at the
component
level

61

ProActive Component Definition
A component is:

• Formed from one (or several) Active Object
• Executing on one (or several) JVM
• Provides a set of server ports (Java Interfaces)
• Uses a set of client ports (Java Attributes)
• Point-to-point or Group communication between components

Hierarchical:
• Primitive component: define with Java code and a descriptor
• Composite component: composition of primitive components

Descriptor:
• XML definition of primitive and composite
• Virtual node captures the deployment capacities and needs

Virtual Node is a very important abstraction for GRID components

62

Components vs. Activity and JVMs

Cp. are rather orthogonal to activities and JVMs:
contain activities, span across several JVMs

Here, co-allocation of two components,
within a composite one,
with a collective port using group com.

Activity JVM Component

A BC

Components are a way to globally manipulate
distributed, and running activities

63

Abstract Deployment Model
Objectives

Problem:
• Difficulties and lack of flexibility in deployment
• Avoid scripting for: configuration, getting nodes, connecting, etc.

A key principle:
• Abstract Away from source code:

• Machines
• Creation Protocols
• Lookup and Registry Protocols

Context:
• Distributed Objects, Java
• Not legacy-code driven, but adaptable to it

64

Descriptors: based on Virtual Nodes
Virtual Node (VN):

• Identified as a string name
• Used in program source
• Configured (mapped) in an XML descriptor file --> Nodes

Operations specified in descriptors:
• Mapping of VN to JVMs (leads to Node in a JVM on Host)
• Register or Lookup VNs
• Create or Acquire JVMs

Program Source Descriptor (RunTime)
|----------------------------------| |---|
Activities (AO) --> VN VN --> JVMs --> Hosts

Runtime structured entities: 1 VN --> n Nodes in n JVMs

65

Descriptors: Mapping Virtual Nodes
Component Dependencies:

Provides: … Uses: ...
VirtualNodes:

Dispatcher <RegisterIn RMIregistry, Globus, Grid Service, … >
RendererSet

Mapping:
Dispatcher --> DispatcherJVM
RendererSet --> JVMset

JVMs:
DispatcherJVM = Current // (the current JVM)
JVMset=//ClusterSophia.inria.fr/ <Protocol GlobusGram … 10 >

...

Example of
an XML file
descriptor:

66

Descriptors: Virtual Nodes in Programs
Descriptor pad = ProActive.getDescriptor ("file:.ProActiveDescriptor.xml");
VirtualNode vn = pad.activateMapping ("Dispatcher"); // Triggers the JVMs
Node node = vn.getNode();
...
C3D c3d = ProActive.newActive("C3D", param, node);

log (... "created at: " + node.name() + node.JVM() + node.host());

67

Descriptors: Virtual Nodes in Programs
Descriptor pad = ProActive.getDescriptor ("file:.ProActiveDescriptor.xml");
VirtualNode vn = pad.activateMapping ("Dispatcher"); // Triggers the JVMs
Node node = vn.getNode();
...
C3D c3d = ProActive.newActive("C3D", param, node);

log (... "created at: " + node.name() + node.JVM() + node.host());

// Cyclic mapping: set of nodes
VirtualNode vn = pad.activateMapping ("RendererSet");
while (… vn.getNbNodes …) {

Node node = vn.getNode();
Renderer re = ProActive.newActive(”Renderer", param, node);

68

Composing Virtual Nodes

When composing A and B to form C
VNa , VNb --> 2 VNs : Distributed mapping
VNa , VNb --> VNa+b : Co-allocation

Activity JVM Component

A BC

Composition can control distribution of
composite VNa VNb

VNa+b

Co-allocation in a composite

69

Component Descriptors

• Defining Provide and Use ports (Server, Client)
• Defining Composite

• Using the Fractal component model, and
ADL: Architecture Description Language

[ObjectWeb, Bruneton-Coupaye-Stefani]

• XML descriptors
• Integration with Virtual Nodes

70

Descriptor Example:
Primitive Component

<primitive-component
implementation="test.component.car.MotorImpl” name="motor_1"

virtualNode="Node2">
<requires> <interface-type cardinality="single” contingency="mandatory"
name="controlWheel" signature="test.component.car.Wheel" />

</requires>

<provides> <interface-type name="controlMotor"
signature="test.component.car.Motor" /> </provides>

</primitive-component>

71

Descriptor Example:
Composite Component

<composite-component name="composite2" virtualNode="Node2">
<provides> <interface-type name="controlComposite2"

signature="test.component.car.Motor" />
</provides>
<composite-component name="composite1" virtualNode="Node2">

<provides>
<interface-type name="controlComposite1”

signature="test.component.car.Motor" />
</provides>

<primitive-component …..
Not to be written nor read by humans !!

TOOLS

72

2.5
Tools for Distributed Objects and Components

- GUI: IC2D: Interactive Control and Debugging of Distribution
graphical visualization and control

- Component Tools: Composing, Deploying

- Screenshots or Demo

73

IC2D: Interactive Control and Debugging of
Distribution

Main Features:
- Hosts, JVM,
- Nodes
- Active Objects
- Topology
- Migration

- Logical Clock

74

IC2D: Basic features
Graphical Visualisation:

• Hosts, Java Virtual Machines, Nodes, Active Objects
• Topology: reference and communications
• Status of active objects (executing, waiting, etc.)
• Migration of activities

Textual Visualisation:
• Ordered list of messages
• Status: waiting for a request or for a data
• Causal dependencies between messages
• Related events (corresponding send and receive, etc.)

Control and Monitoring:
• Drag and Drop migration of executing tasks
• Creation of additional JVMs and nodes

75

IC2D: Dynamic change of Deployment
Drag-n-Drop Migration

Drag-n-Drop
tasks
around the
world

76

IC2D: Related Events

Events:
• Textual and ordered list of events for each Active Object
• Logical clock: related events, ==> Gives a Partial Order

77

IC2D: Dynamic change of Deployment
New JVMs

Creation,
Acquisition
of
new JVMs,
and Nodes

Protocols:
rsh, ssh
Globus,
LSF

78

Monitoring of RMI, Globus, Jini, LSF cluster
Nice -- Baltimore at SC’02

Width of links

proportional

to the number

of com-

munications

79

DEMO:
Components with the IC2D monitor

• A simple Motors and Wheels demo case
• Parallel:

– several instances of components with collective interface
• Composite:

– 3 levels of imbrication
• Level 3 component orientedness:

– life cycle management, rebinding, in and out

80

WP1

WP2

WP3

M1

M2

Motors and Wheels demo case

WP4

WP5

W1

W2

composite2
composite1

WP6 parallel2

parallel1

81

Component Manipulation

Selecting: component and deployment descriptors
DEPLOY

Managing: life cycle, rebinding, in and out

82

Component Interface with IC2D

83

ProActive Components:
Characteristics

Components characteristics:

Software module =
• Java Classes and Interfaces + threads: forming Active Objects

Standardized description =
• In source: Virtual Nodes, newActive API
• .ProActiveDescriptor : an XML file per component

Tools:
• Composition = working on: IC2D--Compose
• Deployment = Java VM, and IC2D (Deploy + Monitor)

84

Next steps

• Interactively compose components with the component view

• Maintain component view at execution

• Formal Semantics of mixing:
• Functional, with
• Non Functional calls (start/stop, rebind, in/out, …)

85

3. Parallel CORBA Objects and
Components

86

Contents

3.1 Motivations
3.2 CORBA-based approaches
3.3 PaCO++: a Portable Parallel CORBA Object

Implementation
3.4 PaCO++ in action
3.5 GridCCM: toward Parallel CORBA Components
3.6 Concluding remarks

87

Code Coupling on Grids

Thermal

Optics

Dynamics

Satellite design

Structural Mechanics

Homogeneous
cluster

SAN

SAN

Homogeneous
cluster

LAN

WAN

Supercomputer
Visualization

88

Coupling Through a Middleware

process

process

processprocessprocessprocessprocess

processprocessprocessprocessprocess

Thermal

Optics

Dynamics

Satellite design

Structural Mechanics

Homogeneous cluster

SAN

SAN

Homogeneous cluster

LAN

WAN

Supercomputer
Visualization

Thermal

Optics

Dynamics

Structural Mechanics

middleware

89

Features to support

Re-use legacy codes
• Support several languages
• Support parallel codes

Support of heterogeneous machines

Dynamical code interconnection

Transfer data & control
• Message passing (MP) vs remote method invocation (RMI)

CORBA

90

Communication Models

Message Passing (MP)
• Explicit receive operation
• User has to poll/wait

Remote Method Invocation (RMI)
• Method implicitly called
• Better in multithreaded environments / for code independence

Simulating MP on top of RMI or RMI on top of MP
• It is known that each paradigm can be simulated on top of the other

RMI appears better as a foundation
Higher-level abstractions (like PAWS) provide their best-

suited models

91

Communication between codes

How to transfer distributed data between parallel codes ?

Parallel code A Parallel code B

MPI MPI

92

Object

Communication between codes

Parallel code A Parallel code B

MPI MPI

Master

RMI

Embedding a process into an object
Communication scalability issue
Code modification

93

Communication between codes
Embedding all processes into an object

Parallel information associated to an object
Scalable communication

Parallel code A Parallel code B

MPI

Object

MPI
RMI

94

Definition of a parallel object

Definition : A parallel object is an object whose execution
model is parallel.

In practice,
• A parallel object is often incarnated by a collection of object.
• The execution model is Single Program Multiple Data

• Invoking a method on a parallel object invokes the
corresponding method on all the objects of the collection.

95

An example of a parallel object

MPI

SPMD
Code

SPMD
Code

SPMD
Code

// Parallel Object Interface
interface anInterface {

void example(const Matrix mat) ;
}

// Collection of objects
interface anInterface {

void example(const DisMatrix mat) {
MPI_Bcast(...);

}

96

Examples of invocations of
a parallel object

MPI

SPMD
Code

SPMD
Code

SPMD
Code

MPI

SPMD
Code

SPMD
Code

SPMD
Code

MPI

SPMD
Code

SPMD
Code

Seq.
Code

Sequential to parallel

Parallel to parallel

97

Contents

3.1 Motivations

3.2 CORBA-based approaches
3.3 PaCO++: a Portable Parallel CORBA Object

Implementation
3.4 PaCO++ in action
3.5 GridCCM: toward Parallel CORBA Components
3.6 Concluding remarks

98

Performance of CORBA

« Towards High Performance CORBA and MPI Middleware
for Grid Computing »
• Alexandre Denis, Christian Pérez and Thierry Priol
• Presented at GridComputing’01

Myrinet-2000 network
• CORBA performance : OmniORB / PadicoTM

• Bandwidth : 240 MB/s of 250 MB/s
• Latency : 20 µs

• MPI performance : MPICH
• Bandwidth : 240 MB/s
• Latency : 11 µs

99

Object oriented middleware
systems

Parallel objects
• ParDIS: K. Keahey and D. Gannon

• PaCO: C. René and T. Priol

• Data Parallel CORBA: OMG

• PaCO++: C. Pérez, T. Priol and A. Ribes

Main differences
• Description of the parallelism
• Support for distributed data

100

ParDIS
Developed by K. Keahey and D. Gannon (U. of Indiana)
Model

• Extension of CORBA objects
to “SPMD objects”

• Concept of distributed sequences
• Mechanism of “future” to handle

asynchronous requests

typedef dsequence <double,1024,
(BLOCK,BLOCK)> MyArray;

interface diff_object {
void diffusion(in long timestep,

inout MyArray darray);
};

IDL specification

Object A
diff_object

spmd_bind

spmd_bind

spmd_bind

Object B

101

PaCO

Object Request Broker (ORB)

POA

Skel.

SPMD
Proc.

Object
inv.

Stub POA

Skel.

SPMD
Proc.

POA

Skel.

SPMD
Proc.

MPI communication layer

Parallel CORBA Object

Sequential
client

Parallel Server

Developed by T. Priol and C. René (PARIS Research team)
• Available at http://www.irisa.fr/paris/

Model
• A collection of identical CORBA object
• Extended-IDL
• Support HPF-like data distribution
• Stub and skeleton based on MPI

Extended-IDL
Compilerinterface[*:2*n] MatrixOperations {

typedef double Vector[SIZE];
typedef double Matrix[SIZE][SIZE];
void multiply(in dist[BLOCK][*] Matrix A,

in Vector B,
out dist[BLOCK] Vector C);

void skal(in dist[BLOCK] Vector C,
out csum double skal);

};

102

Data Parallel CORBA
OMG initiative to extend CORBA
Standardization procedure completed

• Technology adopted : orbos/2001-11-09
Model

• Optional ORB feature
• Runtime-based solution

• No IDL modification
• New Data-Parallel POA
• Explicit parallelism
• No data redistribution
• Interoperability (Proxy)

103

Contents

3.1 Motivations
3.2 CORBA-based approaches

3.3 PaCO++: a Portable Parallel
CORBA Object Implementation

3.4 PaCO++ in action
3.5 GridCCM: toward Parallel CORBA Components
3.6 Concluding remarks

104

PaCO++ objectives

Extends CORBA
• No modification of CORBA specifications
• Parallelism is a non-functional property of an object implementation
• Implementation on top of existing CORBA implementations

Parallel object
• Collection of sequential object
• SPMD execution model
• Support of parallel operations with distributed arguments
• Support for redistribution libraries as plug-in
• Interoperability with standard CORBA objects

105

A simple example

Data
Redistribution

Client

PaCO++ Object

// IDL
interface MyInterface {

void example(in Matrix mat);
};

// XML
Name: MyInterface.example
Type: Parallel
Argument1: *, bloc
ReturnType: noReduction

// Code SPMD on the client
o->example(m);

// Code SPMD on the server
class MyInterface_impl : public MyInterface_serv {

void example(const Matrice_serv mat) {
.... MPI_Bcast(...) ... ;

}
}

106

Code generation

XML Description fileUtilisation.idl

PaCO++ compiler

GCUtilisation.idl

CORBA
compiler

CORBA stubs

PaCO++ code

107

Example

Parallel client
• A bloc-distributed vector

Parallel server
• A method expecting a block-distributed argument

108

Example : IDL
interface example

{
typedef sequence<long> lseq;
void send(in lseq vect);

};

XML Description

// declare 1st argument of send
// to be of type parallel
...

interface example : PaCO_Proxy {...}; // for the clients
interface example_serv : PaCO_Node // for the implementer of the service
{

void send(in PaCOData_vect vect);
};

109

Example: sequential client code
// Retrieving a standard CORBA reference
CORBA::Object obj = ...

// Obtaining a correctly type reference
example_ptr ex_obj = example::_narrow(obj) ;

// Initializing some data

long vect[40];
...

// Real call to the (parallel) object
ex_obj->send(vect);

110

Example: the parallel client code (1)
// Retrieving parallel view from a standard CORBA reference
example ex_obj = ... ;
PaCO_example * server = PaCO_example::get_PaCO_example(ex_obj);

// Retrieving the parallel context of the parallel operation
PaCO_operation_client * send_ctx = server->getContext(“send");

// Describing client-side data distribution: a bloc distribution
PaCO::Paco1DBlockData_t data;
data.gd.len = 10 * numprocs; // let assume 10 elements per node
data.gd.unit_size = sizeof(long);
data.ld.rank = myid;
data.ld.start = 10 * myid;
data.ld.len = 10;

// Description of the client topology
PaCO::PacoGridTopology_t topo;
topo.dim.length(1); // 1D
topo.dim[0] = numprocs; // number of procs in 1st dim

111

Example: the parallel client code (2)
// Initialization of internal library : see server code
...

// Declaration of distribution types associated with operation send
send_ctx->init(myid, numprocs); // Id of local node
send_ctx->initArg(data, topo, 0); // 1st argument distribution type declaration

// Initializing some local data

long local_vect[10];
...

// Real call
server->send(local_vect); // Distribution assumed to be

112

Server setting

1: Set up interface manager (contains the code of the proxy)

2: Set up of all objects belonging to the collection
On each node:
i: Initialization of the parallel context of

each parallel operation
ii: Initialization of redistribution library

3: Registering the nodes to the interface manager

4: The server is ready to receive requests

Interface
Manager

113

Example : the implementation code
class example_serv_impl : public example_serv
{
public:

void send(const PaCOData_seq& seq) {
// SPMD execution model

// Parallel object specific interface access
int myid = InterfaceParallel::getMyRank();
int nbprocs = InterfaceParallel::getTotalNode();

// Accessing the distributed data is distribution dependant
// This example is logical view for a block distribution
for(int i=0; i<seq.ld.len; i++) // local number of element

cout << seq.data[i] << endl; // access to the ith element
}
MPI_Barrier(...); // Parallel operations can be used :

// There are not dependant on PaCO++
};

114

Example : the server code
// Servant creation
example_serv_impl * servant = new example_serv_impl(orb,ior);

// Retrieving the parallel context of the parallel operation
PaCO_operation_server * send_ctx = servant->getContext("envoyer");

// Select the communication library
// Note: the code to manage communication library is not shown
MPI_Comm group = MPI_COMM_WORLD;
send_ctx->setLibCom("mpi",&group);

// Select the distribution library for the distributed arguments
send_ctx->setTypeArg(0, "Block");

...

// Actually declared the object as member of a collection
servant->deploy();

115

PaCO++ performance
Client and server programs

• PaCO++
• OmniORB (AT&T)
• MPI

WAN Network
• VTHD (2.5 Gb/s)
• 11 nodes to 11 nodes
• 826 Mb/s (103 MB/s)
⇒ at the 1 Gbit/s switch limit

• Pt-2-Pt at 75 Mb/s (9.4 MB/s)
SAN Network

• Myrinet 2000 (2 Gb/s pt-2-pt)
• 8 nodes to 8 nodes
• 12 Gbit/s (1.5 GB/s)
• Pt-2-Pt at 1.5 Gbit/s (187 MB/s)

Ethernet 100 Mb/s

Ethernet 100 Mb/s

1 Gb/s

2.5 Gb/s
VTHD

Switch 1 Gb/s

Switch

116

PaCO++ Status

Portable parallel extension to CORBA
• Independent of the ORB
• Successfully test with Mico 2.3.x and OmniORB 3 et 4

Still under development
• IDL compiler ready
• Beta C++ version of the PaCO++ layer
• 1st public version expected summer 2003

Web site
• http://www.irisa.fr/paris/PaCO++

117

Contents

3.1 Motivations
3.2 CORBA-based approaches
3.3 PaCO++: a Portable Parallel CORBA Object

Implementation

3.4 PaCO++ in action
3.5 GridCCM: toward Parallel CORBA Components
3.6 Concluding remarks

118

ACI GRID RMI
Application from EADS

http://www.irisa.fr/Grid-RMI

Plane
wave

Scattering of 2 on 1

Virtual plane

Scattering of 1 on 2

Object 1 Object 2

119

Logical MPI code scheduling

1: AS-ELFIP

1: AS-ELFIP

3: VecSum

5: AS-ELFIP

5: AS-ELFIP

6:
TestStop

6:
TestStop

2: IoR

4: PoR

4: PoR

2: IoR
Object 2 Object 1

120

Parallel Scheduling

AS-ELFIP

IoR

VecSum

PoR

AS-ELFIP

PoR

AS-ELFIPAS-ELFIP

TestStop

Master Scheduler

Se
co

nd
ar

y
Sc

he
du

le
r

Se
co

nd
ar

y
Sc

he
du

le
rIoR

remote forkremote fork

= parallel CORBA object
embedding an MPI code

= standard CORBA object

Object 1 Object 2

TestStop

121

Data to be transferred

Data structure
• Two-column matrix

• Data : double complex
• Block-cyclic distribution
• Matrix size: up to many GigaBytes!

P0

P1

P2

P0

P1

P2

P0

P1

P2

P0

P1

P2

122

Data transfer
CODE SPMD CLIENT

...

tobj->send(id, data);

...

CODE SPMD SERVER

void OBJ::send(id, data) {

store data locally

}

sender:
MPI application

receiver:
MPI application

serverclient

local
API local

API

123

Remarks

Application is independent of deployment consideration
• Two secondary schedulers on the same cluster
• Two secondary schedulers on different clusters

Well-defined programming model
• Object-oriented model
• Separation of distributed and parallel issues

CORBA and MPI co-existence
• Co-existence and network transparency can be achieved
• PadicoTM : An Open Integration Framework for Communication

Middleware and Runtimes
http://www.irisa.fr/paris/Padicotm

124

ACI EPSN
http://www.labri.fr/Recherche/PARADIS/epsn/

A computational steering environment for numerical
distributed application

EPSN capitalizes CORBA advantages
• Portability, interoperability, network transparency
• Based on PaCO++ for parallel applications

Visualization environment

Steering
Environment

End user

Distributed simulations

SAN
WAN

125

Epsilon: a prototype of EPSN

ORB

Client

Data
client

Control
client

A
PI

E
PSN

Epsilon

Data
Manager

Control
manager

Simulation Epsilon

A
PI

E

PS
N

CORBA

Parallel CORBA Object

Steering ClientSimulation

EPSN CORE

EPSN APIs

Software layer

126

Contents

3.1 Motivations
3.2 CORBA-based approaches
3.3 PaCO++: a Portable Parallel CORBA Object

Implementation
3.4 PaCO++ in action

3.5 GridCCM: toward Parallel
CORBA Components

3.6 Concluding remarks

127

From CORBA 2 . . .
A distributed object-oriented model

• Heterogeneity: OMG Interface Definition Language (OMG IDL)
• Portability: Standardized language mappings
• Interoperability: GIOP / IIOP
• Various invocation models: SII, DII, and AMI
• Middleware: ORB, POA, etc.

minimum, real-time, and fault-tolerance profiles
No standard packaging and deployment facilities !!!
Explicit programming of non functional properties !!!

• lifecycle, (de)activation, naming, trading, notification, persistence,
transactions, security, real-time, fault-tolerance, ...

No vision of software architecture
From OMG document ccm/2002-06-01

128

. . . to the CORBA Component
Model

A distributed component-oriented model
• An architecture for defining components and their interactions

• From client-side (GUI) to server-side (business) components
• A packaging technology for deploying binary multi-lingual

executables
• A container framework for injecting lifecycle, (de)activation,

security, transactions, persistence, and events
• Interoperability with Enterprise Java Beans (EJB)

The Industry’s First Multi-Language Component Standard
• Multi-languages, multi-OSs, multi-ORBs, multi-vendors, etc.
• Versus the Java-centric EJB component model
• Versus the MS-centric .NET component model

From OMG document ccm/2002-06-01

129

GridCCM objectives

Re-define the parallel object concept in terms of parallel
components

• Benefit from the PaCO++ experience
• Benefit from the CORBA component model

Component model
• Definition of non-functional properties
• CCM: packaging and deployment model!

130

A GridCCM Parallel component
Definition : A parallel component is a collection of identical

sequential component that executes some of the
operations attached to its ports in parallel.

provide
port

use
port

SPMD
Code

SPMD
Code

SPMD
Code

131

GridCCM component description

component CoPa1
{

provides AnInterface to_client;
uses Interfaces2 to_server;

};

interface AnInterface
{

void example(in Matrix mat);
};

Component: CoPa1
Port: to_client
Name: AnInterface.example
Type: Parallel
Argument1: *, bloc
ReturnArgument: noReduction

XML
A parallel component

of type CoPa1

to_client to_server
SPMD
Code

SPMD
Code

SPMD
Code

132

Early Performance study
Platform

• 16 PIII 1 Ghz
• Linux 2.2
• Fast-Ethernet network
• Myrinet-2000 network

CCM-based for GridCCM
• JAVA: OpenCCM
• C++: MicoCCM

C++/Myri based on
MicoCCM/PadicoTM

0

50

100

150

200

250

300

1->1 2->2 4->4 8->8

Component configuration

A
gg

re
ga

te
d

Ba
nd

wi
dt

h
in

 M
B/

s

0

20

40

60

80

100

120

140

160

Java
C++/Eth
C++/Myri
C++/Myri

133

GridCCM status

Portable parallel extension to CORBA
• ORB-independent... but it needs a CCM implementation
• The accurate interface with redistribution library is under

development

GridCCM will be based on PaCO++
• Component model solves many PaCO++ implementation issues
• 1st public version expected by the end of year

Deployment
• Integrate CCM deployment model with Grid environment

• CORBACoG

134

CORBACoG
http://www.caip.rutgers.edu/TASSL/Projects/CorbaCoG/

From CORBACoG web site

135

Contents

3.1 Motivations
3.2 CORBA-based approaches
3.3 PaCO++ : a Portable Parallel CORBA Object

Implementation
3.4 PaCO++ in action
3.5 GridCCM : toward Parallel CORBA Components

3.6 Concluding remarks

136

Concluding remarks on CORBA

CORBA is an industrial standard for distributed
programming

• Legacy-based grid applications (multi-languages)
• Heterogeneous environment (OS independent)

CORBA 3 brings the software component technology
• Complete implementations in progress

Parallel CORBA
• Several parallel CORBA extension have shown the feasibility

• Object-oriented and component-oriented models
• High performance can be achieved
• Integration with Grid environment under investigation

137

4. Conclusion

138

Sum Up (1)
Software component technology was developed to overcome object
limitations

Software component key benefits:
• Reduce develop time by increasing code re-use
• Program by assembly rather than developing
• A unit of deployment

Still an evolving concept
• Hierarchical component model, Reconfiguration, ...

139

Sum Up (2)

Parallel Object/Component concepts offer a solid programming
model basis for building complex applications

• Benefit of well-known technology
• Support parallelism for high performance

Most concepts are independent of the implementation technology
• Java
• CORBA
• ...

140

Where to manage heterogeneity ?

Language oriented view
• Hide heterogeneity by a virtual machine
• Manage parallelism and distribution inside a unified framework
• Java, ProActive, ..., and web services

Interface oriented view
• Manage heterogeneity at the interface level
• Interoperability
• Support of legacy codes
• CORBA, PaCO++, ..., and web services

141

Conclusion -- Perspectives
Not all models are equivalent: Component Orientedness

Level 1: Configuration 2: Assembly 3: Hierarchic 4:Reconfiguration
Specificity for GRID Components:

• Parallel (HPC), Distributed, Collective Op., Deployment, … Reconfiguration
Can programming models be independent of (Grid) Components ?

• Do not target the same objectives
• But can components … compose, … reconfigure without a clear model ?

Reconfiguration is the next big issue:
• Life cycle management, but with direct communications as much as possible
• For the sake of reliability and fault tolerance ---> GRID

– Error, Exception handling across components
– Checkpointing: independent, coordinated, memory channel, ...

Other pending issues:
• Peer-to-peer (even more volatile … reconfiguration is a must), Security, ...

142

Adaptive GRID
The need for adaptive middleware is now acknowledged,

with dynamic strategies at various points in containers, proxies, etc.

Can we afford adaptive GRID ?

with dynamic strategies at various points
(communications, checkpointing, reconfiguration, …)
for various conditions (LAN, WAN, network, P2P, ...)

HPC vs. HPC
High Performance Components vs. High Productivity Components

143

144

Extra Material

145

DEMO: Applis with the IC2D monitor

• 1. C3D : Collaborative 3D renderer in //
a standard ProActive application

• 2. Penguin
a mobile agent application

IC2D: Interactive Control & Debug for Distribution
work with any ProActive application

Features:
Graphical and Textual visualization

Monitoring and Control

146

C3D: distributed-//-collaborative

147

Object Diagram for C3D

148

Monitoring: graphical and textual com.

149

ProActive
• A library:

--> 100% Java, no change to the JVM,
--> no change to user code

• Parallelism, Distribution, Synchronization, and mobility
• Typed Groups, subject to important optimizations,
• Interactive deployment and control: IC2D

--> Towards Components for the Grid
• Formal properties:

• A calculus: ASP: Asynchronous Sequential Processes
--> Result on confluence

• Markov Chains: Performance Evaluation
-->Towards adaptive strategies (LAN, WAN, ...)

150

ProActive : API for Mobile Agents
• Mobile agents (active objects) that communicate

• Basic primitive: migrateTo

• public static void migrateTo (String u)
// string to specify the node (VM)

• public static void migrateTo (Object o)
// joinning another active object

• public static void migrateTo (Node n)
// ProActive node (VM)

• public static void migrateTo (JiniNode n)
// ProActive node (VM)

151

ProActive : API for Mobile Agents
• Mobile agents that communicate

• Primitive to automatically execute action upon migration

• public static void onArrival (String r)
// Automatically executes the routine r upon arrival
// in a new VM after migration

• public static void onDeparture (String r)
// Automatically executes the routine r upon migration
// to a new VM, guaranted safe arrival

• public static void beforeDeparture (String r)
// Automatically executes the routine r before trying a migration
// to a new VM

152

ProActive : API for Mobile Agents
Itinerary abstraction

Itinerary : VMs to visit
• specification of an itinerary as a list of (site, method)
• automatic migration from one to another
• dynamic itinerary management (start, pause, resume, stop, modification, …)

API:
• myItinerary.add (“machine1’’, “routineX”); ...
• itinerarySetCurrent, itineraryTravel, itineraryStop, itineraryResume, …

Still communicating, serving requests:
• itineraryMigrationFirst ();

// Do all migration first, then services, Default behavior
• itineraryRequestFirst ();

// Serving the pending requests upon arrival before migrating again

153

Mobile Application executing on 7 JVMs

154

IC2D: Cluster Visualization

Visualization
of 2 clusters
(1Gbits links)

Featuring
the current
communications
(proportional)

155

Automatic Continuations

Transparent Future transmissions (Request,Reply)

156

Formal Models and Properties inside

- The ASP calculus:
Asynchronous Sequential Processes

- Performance Evaluation of Mobile Agents:
Markov Chains

157

The ASP calculus:
Asynchronous Sequential Processes

An Imperative and Parallel Object Calculus
Together with Ludovic Henrio, and Bernard Serpette

Objectives:
• Formally study the ProActive model
• Investigate various strategies for asynchronous calls
• Prove some equivalence between Sequential and

Parallel programs
• Demonstrate the deterministic nature of sub-sets of the

model

158

Parallel

Transition

System

159

Performance Evaluation of
Mobile Agent

Together with Fabrice Huet and Mistral Team

Objectives:
• Formally study the performance of Mobile Agent

localization mechanism: Markov Chains
• Investigate various strategies (forwarder, server, etc.)
• Define adaptive strategies

160

Transitions for the Server localization

161

OASIS Team:
Active Objects, Semantics, Internet and Security

Sophia Antipolis (Nice)
www.inria.fr/oasis

• 6 Researchers, 8 Ph.D., 2 to 4 Eng.

• Distributed Objects, Grid, Middleware,

• Formal foundations

• An Open Source (ObjectWeb consortium) experimental platform: ProActive

162

PARIS Research Team
IRISA/INRIA (Rennes)

http://www.irisa.fr/paris

PARIS*: Programming parallel and distributed Systems for
Large Scale Numerical Simulation

Head of the project: Thierry Priol
Members: 7 Researchers, 7 PhD, 3 Engineers

Make distributed and parallel systems easier to use by
• Designing operating systems for clusters of PC and workstations
• Designing runtimes for parallel languages (HPF, OpenMP, Java) to make the

programming of clusters as simpler as possible
• Designing scalable middleware to hide distributed resources for both

computational and storage Grids

*Common project with CNRS, ENS-Cachan, INRIA, INSA, University of Rennes 1

