systems

Path-integrals and large deviations in stochastic hybrid

Paul C Bressloff'
lDepartment of Mathematics, University of Utah

June 17,2014




Part I. Path-integral representation of an SDE
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LANGEVIN EQUATION WITH WEAK NOISE

@ Consider the scalar SDE
dX(t) = A(X)dt + v/edW(t),

for 0 < t < T and initial condition X(0) = xo. Here W(t) is a Wiener
process and the noise is taken to be weak (e < 1).

@ Discretizing time by dividing the interval [0, T] into N equal subintervals
of size At such that T = NAt and setting X, = X(nAt), we have

XrH»l —Xn = A(Xn)At + \EAW”,
withn =0,1,...,N — 1, AW, = W((n + 1)At) — W(nAt)

<AWH> - O, <AW111AW)1> - At(sm,w

@ Let X and W denote the vectors with components X, and W,
respectively.



CONDITIONAL PROBABILITY DENSITY

@ Conditional probability density function for X = x given a particular

Pxw) =156

realization w of the stochastic process W (and initial condition xp) is

w0 0 (g1 — x0 — A(xn) At — eAwy)
@ Inserting the Fourier representation of the Dirac delta function,

(s(merl - Zm) !
gives

oo ~
_ 27/ e—l»’(m(XMH»I_~m)dfm’
™ — 00

N—1

P — me (xm+1 Xm A(xm)At \ﬁAZUm) ﬂ .

o =T |/ e i

@ The Gaussian random variable AW, has the probability density function
P(Aw,) = !

ewa,% J2A¢
V2w At




JOINT PROBABILITY DENSITY
@ Setting

N-1
P(x) = / Pixw] [ P(Aw,)dAw,
n=0
square, we obtain the result

N—1

ge'el
P(x) _ H {/ Ip,,,(v,,1+1 mf/\(m)Af) —ep?, At/2 APm dp'”
m=0 -7 —°

and performing the integration with respect to Aw, by completing the
@ Performing the Gaussian integration with respect to p,,, we have

21w

N—-1
1 —A(xm) At/ (2eAt
P(x) = (*m«H Xm (xm) ) /(2eAt)
) g, V2meAt

1 Nzl Xm4+1 — X

m+1 m
_N3XP /’ (
VVlthN

2
7A(x,,1)) At
n=0 At

(27reAt)N/2




ONSAGER-MACHLUP PATH INTEGRAL

@ Define expectations according to

E[F(X)] = /.F(X)P(x)dxl N

for any integrable function F.

o Take the continuum limit At — 0, N — oo with NAt = T fixed. Now
P[x] is a probability density functional over the different paths {x(t)}}
realized by the original SDE with X(0) = xo:

Plx] ~ exp {7% /OT(x - A(x))zdt} .,

@ The expectation of a functional F[x] is given by the Onsager-Machlup
path integral

B[Fl) = [ FxPD(),

where D[x] is an appropriate measure.



VARIATIONAL PRINCIPLE

@ The conditional probability density that the stochastic process X(t)

x(7T)=x
P(x,T|x0) = /

reaches a point x at time ¢t = 7 given that it started at xo at time t = 0 is

(0)=xo
the approximation

exp {7% /OT(x - A(x))zdt} Dl].

@ In the limit e — 0, we can use the method of steepest descents to obtain

P(x,T|x0) ~ exp {f

€
where @ is the quasipotential

®(x, T|Xo):| ,

[ Xo) = i
(x, 7lx0) X(O):;(?.\i‘:(r):xs[xL
with




VARIATIONAL PRINCIPLE IT

@ Variational problem that minimizes the functional S[x] over trajectories
from {x(t)}5 with x(0) = x¢ and x(7) = x (most probable path)

@ We can identify S[x] as a “classical action” with corresponding
Lagrangian L(x, X)
@ Most probable path is given by the solution to the Euler-Lagrange
equation
doL_o
dt ox — Ox’
@ Substituting for L yields
¥=A(x)A'(x)
that is,

X(t)* = A(x(t))* 4 constant



STEADY-STATE DENSITY

@ Suppose that in the zero noise limit there is a globally attracting fixed
point x; such that A(xs) = 0.

@ Approximation of steady-state density can be obtained by solving the

Euler-Lagrange equation with x(—oo) = x; and x(7) = x. This yields
X = —A(x).

@ The quasipotential is

T

O(x, 1) = —Z.K;A(x)kdt =2 /

J —oo

U’ (x)xdt =2 /x U’ (x)dx = 2U(x).

J xg

@ Hence, we obtain the expected result that the stationary density is

p(x> ~ efzu(,\‘)/c.
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MULTI-VARIATE PATH-INTEGRAL

@ Consider the multivariate SDE

dXi(t) = A(X)dt + /ey by(X)dWi(t)
j

the action functional

fori=1,...,d with W;(t) a set of independent Wiener processes.
@ Generalizing the path integral method to higher dimensions, one obtains

where D = bb" is the diffusion matrix.




FOKKER-PLANCK EQUATION

@ Consider the FP equation corresponding to the scalar SDE:
Op _ _OA@p(x ] | e Pplxt) _ 9J(x,b)
ot Ox 2 o2 T ox

where

J(x,t) =

_eop)
2 Ox

+ A(x)p(x,t).
atx_, A(x—) =0, with 0 < x— < xo.

@ Suppose that the deterministic equation X = A(x) has a stable fixed point

@ Impose an absorbing boundary condition at xo and a reflecting
boundary condition at x = 0:

p(x0>t):0 J(0,t) =0




WKB APPROXIMATION

@ We seek a quasistationary solution of the WKB form
¢ (x) ~ K(x; €)e*®/<)
with K(x;€) ~ > €Ki (x).

@ Substitute into the stationary FP equation and Taylor expand with
respect to e.

@ Lowest order equation is

@ Similarly, collecting O(e) terms yields the following equation for the
leading contribution Ky to the pre factor:

0P OKo , 10%®(x) ’
|:07 +A(X>:| 07 = — |:A (x) -+ i 0x2 KO(A).




HAMILTON-JACOBI EQUATION
o Introducing the time-independent “Hamiltonian”
2

Hix,p) = B+ AWp,

we can rewrite lowest order equation as

H(x,®'(x)) = 0.

@ Hamiltonian H describes a “particle” with position x and conjugate
momentum p evolving according to Hamilton’s equations

. OH . OH ,
Y=gy TPHAW, P=—pr = pAW.
@ Performing the Legendre transformation

oL

ox
we recover Lagrangian of Onsager-Machlup path integral:

H(x,p) = px — L(x,%), p=

L(x, %) = %(5« — A))

— L



Part II. Path-integral representation of a stochas-
tic hybrid system
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EXAMPLES OF STOCHASTIC HYBRID SYSTEMS

Stochastic neural populations
(PCB/Newby 2013) Motor-driven intracellular transport
(PCB/Newby 2011),
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1D STOCHASTIC HYBRID SYSTEM
@ Consider the 1D system

dx 1

— = —F,(x), xeR, n=0,...,K—-1

a = 5
@ Jump Markov process n’ — n with transition rates W, (x) /7.
@ Set 7 = 1 and introduce the small parameter € = 7, /7x

@ CK equation is

op _ OF.@pa(xt)] 1<
E = T + g Z Ann’(x)Pn’ (x7 t)

n’=0

where

Amz’(Y mz’ E an n e

m=0

@ In the limit e — 0, obtain mean-field equation

dx = Z Fn [)71

n=0



PATH-INTEGRAL I

@ Discretize time by dividing a given interval [0, T] into N equal
subintervals of size At such that T = NAt and set

x; = x(jAL), nj = n(jAf)
@ The conditional probability density for x1,

..., XN given xp and a par-
ticular realization of the stochastic discrete variables n;,j = 0,...,N—1,is

N—-1

j=0
@ Using the Fourier representation of the Dirac delta function,

P(X], e ,XN|X(),1/10, ey ,1) = H ) (x,‘+1 — X/' — Fn] (X/')Af)

P(X],

N—1
., XN|x0, 10, 1)

)/

— o0

oo eflp] (,’X’j+1 — Xj — Fn/ (J@)At) %
N—-1

27r:|
= H |:/ H”;(x]'+17xj7p]')27;;_,:|
j=o Lo

[m]

&




PATH-INTEGRAL II

@ On averaging with respect to the intermediate states n = (n,,
we have
P(X1,. XN‘X(),I’[O

oy nK—l)/

dp, N1
H / pre Z H Ty y1.n (%) Huy (X341, %, pj)
where

ny,..,nN—1 j=0

At
Ty ”7(x1) ~ A”f+1»”f(xf) B /+1 M <

g Amm, > + o(Af)
€
At
= <6nj+l,n, +An/+1jlj(x/)?) .



PATH-INTEGRAL III

@ Consider the eigenvalue equation

Z [Anm

m

+ 5]6” ”IF"'( )] Rm (X»q) = AS(Y L])R< )(x Q)
and let £ be the adjoint eigenvector.

@ Insert multiple copies of the identity

ZE,, %, )RS (x,q) = dmn
into the discrtetized path-integral with (x, q)

(vj,q;) at the jth time-step




PATH-INTEGRAL IV

@ Find that

N-1
P()CN7 HN‘XU, 1’10)

51:['

/ dxiP(x1, ..., xn, nN|x0, 10)
j=177°%°
N-—1
= H/ / dx] j Z Z HR11/+1 x] 5]; 5»1, (xl ql)
j=1 - SN —1505-++SN—1
XHJ
exp (Z {/\sj (X7, q7) — iepj——— }
j

. At
) exp ([%Pan/ () = qiF; (x7)] )
@ Discretized path integral is independent of the g;. Set g; =
and eliminate the final exponential factor.

relation

iep; for all
@ Sum over the intermediate discrete states #; using the orthogonality

Z RSIS) (xv 17)5;15/) (x-, q) — (S., s/



PATH-INTEGRAL V (PCB AND NEWBY 2014)

@ Perron-Frobenius theorem shows that there exists a real, simple Perron
eigenvalue labeled by s = 0, say, such that Ao > Re()s) for all s > 0

@ Hence, set s; = 0 and take the continuum limit to obtain the following
path-integral from x(0) = xp to x(7) = x (after performing the change of
variables iep; — p; (complex contour deformation):

x(T)=x

P(x,n, |xo,10,0) = / exp <—£/[:[p5c — Xo(x, p)]dt) Dip|D[x|

#(0)=xo

@ Dropped factor Rés) (x, p(r)).f,gg) (x0,p(0))



VARIATIONAL PRINCIPLE

@ Applying steepest descents to path integral yields a variational principle
in which optimal paths minimize the action

Slx,p] = /U.T [P — Xo(x,p)] dt.

@ Hence, we can identify the Perron eigenvalue X\o(x, p) as a Hamiltonian
and the optimal paths are solutions to Hamilton’s equations

. OH . oH
A—%, p_757 H(X:P)—)\U(lsp)

@ Deterministic mean field equations and optimal paths of escape from a
metastable state both correspond to zero energy solutions.

@ Setting Ao = 0 in eigenvalue equation gives

Z [Anm(x) + pén,mFm(x)] R,(,?)(X, P) =0

m




“ZERO ENERGY” PATHS

o0Q

0Q
separatrix

@ (a) Deterministic trajectories converging to a stable fixed point xs

Boundary of basin of attraction formed by a union of separatrices
@ (b) Noise-induced paths of escape




MEAN-FIELD EQUATIONS

@ We have the trivial solution p = 0 and R (x,0) = pum(x) with

Z AIHH

pm =0
m

Oo(x,p)

e Differentiating the eigenvalue equation with respect to p and then
etting p = 0, Ao = 0 shows that
op

pn(x) =

p=0

+ Z AH}H

dR,(,?) (x,p)
p
@ Summing both sides wrt # and using >, Aum =0

p=0

a/\o (X)
op

Z F n /)11 (x
p=0
@ Hamilton’s equation x = d\o(x, p)/9p recovers mean-field equation

X = ZF,,

X) pn ().




MAXIMUM-LIKELIHOOD PATHS OF ESCAPE

R (x, u(x)) = v (x):

@ Unique non-trivial solution p = p(x) with positive eigenvector

S [Aun (%) + 18(2) 8 Fn (x)] o (x) = 0

@ Recovers leading order equation for WKB quasipotential ®(x) with
®'(x) = p(x) and

S[x,p] = /j \ [px — Xo(x,p)]dt = /\ P’ (x)dx




Part III. Stochastic ion-channels revisited
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STOCHASTIC MORRIS-LECAR MODEL

dov

@ Letn,n=0,...,N be the number of open sodium channels

dt

= Fu(0) = () — g(0)
with f(v) = gna(Vna — ) and (0) = —geft[Vetr — U] + Lext.

@ The opening and closing of the ion channels is described by a
birth-death process according to

n—n+tl,
with rates
wi(n) = a(@)(N—n), w_(n)=pn
o Take
a(v) = Bexp (2(0 — o)
for constants 3, v1, vs.

)




CHAPMAN-KOLMOGOROV EQUATION I

@ Introduce the joint probability density

Prob{ov(t) € (v,v + dv),n(t) = n} = pu(v, t)dv,
for given initial data

Opn __ OIFa(0)pa(0,1)
ot

v

o Differential Chapman-Kolmogorov (CK) equation (dropping the
explicit dependence on initial conditions)

ol 01— Dpuea(2,6) + 0 (1 Dpusa(0,8) = (@4 (1) + o ()0, 1)

@ Introduced small parameter € - opening and closing of sodium channels
much faster than relaxation dynamics of voltage




CHAPMAN-KOLMOGOROV EQUATION II

@ Rewrite CK equation in the more compact form

o OFpu(0.H)] 1
ot = *T + g ”Z/Anm(v)pm(v t)
Appn—1 =wi(n—1), A = —ws(n) —w—(n), Annt1 =w—(n+1)
@ There exists a unique steady state density p,(v) for which
Z Anm /)m =0
where
N! Nen _a(v)
/);1(U) (N o n)‘n!a(v) (U) ’ ﬂ(v) -



MEAN-FIELD LIMIT

@ In the limit e — 0, we obtain the mean-field equation

% = 3" Fu(0)pu(v) = a(0)f (v) — g(0)

aw
- dv’
@ Assume deterministic system operates in a bistable regime

ww) |

-100 -80 -60 -40 -20 0 20 40 60 80 100
v[mV]




PERRON EIGENVALUE
e Eigenvalue equation for Ao and R” = ¢

(N=n+1Dapu — [M+nb+ (N—n)alty + (n+1)BvYum
n |
=-r (Nf - g) Pn
@ Consider the trial solution

Ax,p)"
(N —n)n’

@ Yields the following equation relating A and p:

Yn(x,p) =

nxa+A6(an)f/\gfnﬁf(an)a:fp<%ffg>.

@ Collecting terms independent of # and terms linear in 7 yields

N 1
p- (A(m N 1) (a(x) — BE)AX, p)) |

and

Ao(x,p) = =N(a(x) — A(x,p)B(x)) — pg(x).



PERRON EIGENVALUE II

@ Eliminating A from these equation gives

_ NB(x)
”‘ﬂ@(mww>

+ Na(x) +pg
@ Obtain a quadratic equation for Ao:

X+ o(x)h — hix,p) = 0
with

o(x) = (28(x) — f(x)) + N(a(x) + B(x)),

h(x,p) = p[=NB(x)g(x) + (Na(x) + pg(x))(f(x) — g(x))]
@ The “zero energy” solutions imply that i(x,p) =0

5 1) Qo) + ps0)



RECOVERS WKB QUASIPOTENTIAL

@ Non-trivial solution recovers result of WKB analysis

p=p(x) =

N () — (a(x) + B)g(x)

g(x)(f(x) — g(x))
@ The corresponding quasipotential ® is given by

o) = [ uty)dy.
@ Analogous result in full ML model




Part IV. Higher-dimensional systems
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D-DIMENSIONAL STOCHASTIC HYBRID SYSTEM
o Consider the system

dxi 1 (i)
4 — *Fn 5
-~ (),

Tx

,...,D
@ Jump Markov process n’ — n with transition rates W, (x) /7
@ Set 7, = 1 and introduce the small parameter ¢ = 7, /7«
@ CK equation is

opn O[F} (ant
ot Z

1

ZAHV!

X)par (X, 1)
Am’ (X

717‘1 g WHZH

n/ e
m
@ In the limit e — 0, obtain mean-field equation

dx,

Z F(’)
where >, o Aun(X)pm(x) = 0.




PATH-INTEGRAL

@ Proceeding as in the 1D case find that

x(7)=x
Pn (X7 T‘Xo, no 0)

| oo e (- Lsixpl)
x(0)=xg
xR (x, p(7))&S (xo, P(0))
with action

o= [ [

} .
@ Here )\ is the Perron eigenvalue of the following linear operator equation

> |a

D
(R (%, P) + G > piFSy (%)

i=1

} R (x,p) = Mo (x, PRy (x, P)
and ¢© is the corresponding adjoint eigenvector

N



STOCHASTIC MORRIS-LECAR MODEL REVISITED

do
dr

@ Take n < N open Na* channels and m < M open Kt channels

n m
F(o,m,m) = < fun(0) + 11f(0) - g(0)
@ Each channel satisfies the kinetic scheme

«;(v)
C— 0, i=Na K,
Bi()

@ The Na' channels fast relative to voltage and K* dynamics.
@ Chapman-Kolmogorov (CK) equation,

op _  O(Fp)
5 = *W + ]LKP +]Lan-
@ The jump operators L;, j = Na, K, are defined according to
L= (B — Do (n) + By —Dw; (),
with B f (n) = f(n £ 1), w (1) = nf and w* (n)

(N —n)aj(v).

[m]

&




SMALL NOISE LIMIT

@ Introduce a small parameter ¢ < 1 such that (in dimensionless units)
Bl =€, M= Aye,
@ Setw = m/M and write (m+ 1)/M = w+ M™!

@ Perturbation expansion in e combines a system size expansion with a
slow/fast analysis

@ We would like to determine the most probable or optimal paths of
escape from the resting state in the (v, w)-plane for small ¢

@ For chemical master equations, the quasipotential of the WKB
approximation satisfies a Hamilton-Jacobi equation - the optimal paths
given by solutions to an effective Hamiltonian dynamical system

@ There is an underlying variational principle derived using large
deviation theory or path-integrals



WKB APPROXIMATION

@ Introduce quasistationary solution of the form

p(v,w,n) = R, (v, w) exp (71@(07 w))
€

where @ (v, w) is the quasipotential

@ To leading order,

[Lna + po + h(v,w, pw)] Ru(v, w) = 0,
where
0P 0P
Po="3" P»= 54
and

h(v, w, po) = ]\g\(M

[l — 1) (M0, ) + (P — D)y (Mo, )

N



HAMILTON-JACOBI EQUATION

@ Introducing the ansatz

_ Av,w)"
Ra(o,w) = (N —n)n!’
yields a Hamilton-Jacobi equation for ®:

0=H(v,w,puw, po) = (a(v)fNa(v) + &(V))po + h(v, w, po)

b(v

~ O [((23(0) + ra)peh(o, w, pu) + (fa(0) + 8(0))3(@)p2 + (o, w0, p)?)

@ Solve for ® using method of characteristics. Satisfy Hamilton’s equations

x=VpH(x,p), p=-—ViH(x,p).

for x = (v,w) and p = (pv, Pw)

o Interpret ®(t) as the action with ®(t) = p(t) - x(t), is a strictly increasing

function of ¢, and the quasipotential is given by ®(v,w) = ®(f) at the
point (v, w) = x(t).




/

SOLUTIONS OF HJ EQUATION (NEWBY,PCB,KEENER 2013)

@ Caustic (C), v nullcline (VN), and w nullcline (WN), metastable
separatrix (S), bottleneck (BN), caustic formation point (CP)

[m]

&




PATH-INTEGRAL FOR STOCHASTIC ML

@ Path-integral action is

S[xn w, Px, PZU} - / [P\X + pwzlu - )\O(x, W, Px, pw)]dt
0
where )\ is the Perron eigenvalue of the following linear operator
equation
MRy = [Lna + Fu(x, w)px + h(x, w, pw)] R,(I )
with F, (x,w) = F(x, Mw, n)

@ The path-integral representation of the stationary density is then

x(T)=x
pu(x, w, T|x0, wo,0) =

noy

exp (—%S[x,w,px,pw})
x(0)=xg
R (x, p(7))&s) (x0, p(0)) DIpI D[]




@ Introduce the ansatz

PERRON EIGENVALUE DIFFERS FROM WKB HAMILTONIAN

A 7 n
R,(f)) (v,w) = (v, w)

(N —n)!n!
into eigenvalue equation.

@ Collecting terms linear in n gives
Ax,w) = ana(x)

— 5 (Ps8(x, w) + h(x, w0, pu) = Ao (x, W, px, pw))
@ Collecting terms independent of n

and substituting for A(x, w) gives the following quadratic equation for Ao:
with

A5 — (2h(x, w0, pw) + o (x, w, px)) Ao + H (¥, w, px, pu) = 0,

o(x,w,px) =
and H the WKB Hamiltonian.

(28(x) +f(x))px — N/ (1 — weo(x))
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