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Part I. Path-integral representation of an SDE



LANGEVIN EQUATION WITH WEAK NOISE

Consider the scalar SDE

dX(t) = A(X)dt +
√
εdW(t),

for 0 ≤ t ≤ T and initial condition X(0) = x0. Here W(t) is a Wiener
process and the noise is taken to be weak (ε� 1).

Discretizing time by dividing the interval [0,T] into N equal subintervals
of size ∆t such that T = N∆t and setting Xn = X(n∆t), we have

Xn+1 − Xn = A(Xn)∆t +
√
ε∆Wn,

with n = 0, 1, . . . ,N − 1, ∆Wn = W((n + 1)∆t)−W(n∆t)

〈∆Wn〉 = 0, 〈∆Wm∆Wn〉 = ∆tδm,n.

Let X and W denote the vectors with components Xn and Wn

respectively.



CONDITIONAL PROBABILITY DENSITY

Conditional probability density function for X = x given a particular
realization w of the stochastic process W (and initial condition x0) is

P(x|w) =
∏N−1

n=0 δ (xn+1 − xn − A(xn)∆t−√ε∆wn) .

Inserting the Fourier representation of the Dirac delta function,

δ(xm+1 − zm) =
1

2π

∫ ∞
−∞

e−ĩxm(xm+1−zm)dx̃m,

gives

P(x|w) =

N−1∏
m=0

[∫ ∞
−∞

e−ipm
(
xm+1 − xm − A(xm)∆t−√ε∆wm

) dpm

2π

]
.

The Gaussian random variable ∆Wn has the probability density function

P(∆wn) =
1√

2π∆t
e−∆w2

n/2∆t.



JOINT PROBABILITY DENSITY

Setting

P(x) =

∫
P[x|w]

N−1∏
n=0

P(∆wn)d∆wn

and performing the integration with respect to ∆wn by completing the
square, we obtain the result

P(x) =

N−1∏
m=0

[∫ ∞
−∞

e−ipm(xm+1−xm−A(xm)∆t)e−εp2
m∆t/2 dpm

2π

]
.

Performing the Gaussian integration with respect to pm, we have

P(x) =

N−1∏
m=0

1√
2πε∆t

e−(xm+1−xm−A(xm)∆t)2
/(2ε∆t)

= N exp

[
− 1

2ε

N−1∑
m=0

(xm+1 − xm

∆t
− A(xm)

)2
∆t

]
,

withN = 1
(2πε∆t)N/2 .



ONSAGER-MACHLUP PATH INTEGRAL

Define expectations according to

E[F(X)] =

∫
F(x)P(x)dx1 . . . xN

for any integrable function F.

Take the continuum limit ∆t→ 0,N →∞ with N∆t = T fixed. Now
P[x] is a probability density functional over the different paths {x(t)}T

0
realized by the original SDE with X(0) = x0:

P[x] ∼ exp
[
− 1

2ε

∫ T

0
(ẋ− A(x))2dt

]
,

The expectation of a functional F[x] is given by the Onsager-Machlup
path integral

E[F[x]] =

∫
F[x]P[x]D(x),

where D[x] is an appropriate measure.



VARIATIONAL PRINCIPLE

The conditional probability density that the stochastic process X(t)
reaches a point x at time t = τ given that it started at x0 at time t = 0 is

P(x, τ |x0) =

∫ x(τ)=x

x(0)=x0

exp
[
− 1

2ε

∫ τ

0
(ẋ− A(x))2dt

]
D[x].

In the limit ε→ 0, we can use the method of steepest descents to obtain
the approximation

P(x, τ |x0) ∼ exp
[
−Φ(x, τ |x0)

ε

]
,

where Φ is the quasipotential

Φ(x, τ |x0) = inf
x(0)=x0,x(τ)=x

S[x],

with

S[x] =

∫ τ

0
L(x, ẋ)dt, L(x, ẋ) =

1
2

(ẋ− A(x))2



VARIATIONAL PRINCIPLE II

Variational problem that minimizes the functional S[x] over trajectories
from {x(t)}τ0 with x(0) = x0 and x(τ) = x (most probable path)

We can identify S[x] as a “classical action” with corresponding
Lagrangian L(x, ẋ)

Most probable path is given by the solution to the Euler-Lagrange
equation

d
dt
∂L
∂ẋ

=
∂L
∂x
.

Substituting for L yields

ẍ = A(x)A′(x)

that is,

ẋ(t)2 = A(x(t))2 + constant



STEADY-STATE DENSITY

Suppose that in the zero noise limit there is a globally attracting fixed
point xs such that A(xs) = 0.

Approximation of steady-state density can be obtained by solving the
Euler-Lagrange equation with x(−∞) = xs and x(τ) = x. This yields
ẋ = −A(x).

The quasipotential is

Φ(x, τ) = −2
∫ τ

−∞
A(x)ẋdt = 2

∫ τ

−∞
U′(x)ẋdt = 2

∫ x

xs

U′(x)dx = 2U(x).

Hence, we obtain the expected result that the stationary density is

P(x) ∼ e−2U(x)/ε.



MULTI-VARIATE PATH-INTEGRAL

Consider the multivariate SDE

dXi(t) = Ai(X)dt +
√
ε
∑

j

bij(X)dWi(t),

for i = 1, . . . , d with Wi(t) a set of independent Wiener processes.

Generalizing the path integral method to higher dimensions, one obtains
the action functional

S[x] =
1
2

∫ T

0

d∑
i,j=1

(ẋi(t)− Ai(x(t)))D−1
ij (ẋj(t)− Aj(x(t)))dt,

where D = bbtr is the diffusion matrix.



FOKKER-PLANCK EQUATION

Consider the FP equation corresponding to the scalar SDE:

∂p
∂t

= −∂[A(x)p(x, t)]
∂x

+
ε

2
∂2p(x, t)
∂x2 ≡ −∂J(x, t)

∂x
,

where

J(x, t) = − ε
2
∂p(x, t)
∂x

+ A(x)p(x, t).

Suppose that the deterministic equation ẋ = A(x) has a stable fixed point
at x−, A(x−) = 0, with 0 < x− < x0.

Impose an absorbing boundary condition at x0 and a reflecting
boundary condition at x = 0:

p(x0, t) = 0, J(0, t) = 0



WKB APPROXIMATION

We seek a quasistationary solution of the WKB form

φε(x) ∼ K(x; ε)e−Φ(x)/ε,

with K(x; ε) ∼∑∞m=0 ε
mKm(x).

Substitute into the stationary FP equation and Taylor expand with
respect to ε.

Lowest order equation is

1
2

(
∂Φ(x)

∂x

)2

+ A(x)
∂Φ(x)

∂x
= 0.

Similarly, collecting O(ε) terms yields the following equation for the
leading contribution K0 to the pre factor:[

∂Φ

∂x
+ A(x)

]
∂K0

∂x
= −

[
A′(x) +

1
2
∂2Φ(x)

∂x2

]
K0(x).



HAMILTON-JACOBI EQUATION

Introducing the time-independent “Hamiltonian”

H(x, p) =
p2

2
+ A(x)p,

we can rewrite lowest order equation as

H(x,Φ′(x)) = 0.

Hamiltonian H describes a “particle” with position x and conjugate
momentum p evolving according to Hamilton’s equations

ẋ =
∂H
∂p

= p + A(x), ṗ = −∂H
∂x

= −pA′(x).

Performing the Legendre transformation

H(x, p) = pẋ− L(x, ẋ), p =
∂L
∂ẋ

we recover Lagrangian of Onsager-Machlup path integral:

L(x, ẋ) =
1
2

(ẋ− A(x))2



Part II. Path-integral representation of a stochas-
tic hybrid system



EXAMPLES OF STOCHASTIC HYBRID SYSTEMS

Stochastic neural populations
(PCB/Newby 2013)

STOCHASTIC PROCESS

A process of change governed by
probabilities at each step.
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advantage in overall predominance, as indexed by the
percentage of total viewing time for which it is domi-
nant. So, for example, a high-contrast rival figure will
be visible for a greater percentage of time than a low-
contrast one19, a brighter stimulus patch will predominate
over a dimmer one20, moving contours will enjoy an
advantage over stationary ones21, and a densely contoured
figure will dominate a sparsely contoured one17,22. Does
a ‘strong’ rival figure enjoy enhanced predominance
because its periods of dominance last longer, on average,
than those of a weaker figure, or because its periods of
suppression are abbreviated, on average? The evidence
favours the latter explanation: variations in the stimulus
strength of a rival target primarily alter the durations 
of suppression of that target, with little effect on its
durations of dominance17,23.

Can these unpredictable fluctuations in dominance
and suppression be arrested by mental will power?
Hermann von Helmholtz, among others, believed that
they could24. Observing rivalry between sets of orthogo-
nally oriented contours presented separately to the two
eyes, Helmholtz claimed to be able to hold one set of
contours dominant for an extended period of time by
attending vigorously to some aspect of those contours,
such as their spacing. Ewald Hering, Helmholtz’s long-
standing scientific adversary, characteristically disagreed
with this claim, arguing that any ability to deliberately
maintain dominance of one eye’s view could be chalked
up to eye movements and differential retinal adapta-
tion25. Which view does the weight of evidence favour? It
does appear that, with prolonged practice, attention can
be used to alter the temporal dynamics of rivalry26 with-
out resorting to oculomotor tricks. However, this evi-
dence also indicates that observers cannot maintain
dominance of one rival figure to the exclusion of
another26, even when that temporarily dominant figure
comprises interesting, potentially personal visual mater-
ial27 — an attended rival figure eventually succumbs to
suppression despite concentrated efforts to maintain its
dominance. In this respect, binocular rivalry differs
from dichotic listening, in which a listener can maintain
focused attention indefinitely on one of two competing
messages broadcast to the two ears.

There is reason to believe that ‘top–down’ atten-
tional modulation of rivalry operates by boosting the
effective strength of a stimulus during dominance. Ooi
and He28 found that a dominant stimulus was less sus-
ceptible to a perturbing event presented to the other
eye when observers voluntarily focused attention on
that dominant stimulus. However, we know that volun-
tary attention cannot be guided by visual cues pre-
sented during suppression phases of rivalry29; evidently,
then, voluntary attention does not have access to infor-
mation portrayed in a suppressed figure. However,
involuntary attention can be captured during suppres-
sion: stimulus events known to capture involuntary
attention — such as the sudden onset of motion in a
previously stationary figure — are sufficient to rescue
a stimulus from suppression, thrusting it into con-
scious awareness at the expense of its competitor30–32.
So, voluntary, ‘endogenous’ attention seems to operate

Definitive answers to these questions are not yet
available, but this review summarizes what we know at
present. We start with an overview of the hallmark per-
ceptual properties of binocular rivalry, for these will illu-
minate the search for its neural concomitants. From the
outset, it is important to keep in mind that rivalry prob-
ably does not stem from a single, omnibus process; in
our view, it is near-sighted to speak of ‘the’ neural mech-
anism of binocular rivalry. Instead, multiple neural
operations are implicated in rivalry, including: registra-
tion of incompatible visual messages arising from the
two eyes; promotion of dominance of one coherent per-
cept; suppression of incoherent image elements; and
alternations in dominance over time. These distinct
operations might be implemented by neural events dis-
tributed throughout the visual pathways, an overarching
theme that we shall develop in this review.

Perceptual characteristics of rivalry
Temporal dynamics. Fluctuations in dominance and
suppression during rivalry are not regular, like the oscil-
lations of a pendulum. Instead, successive periods of
dominance of the left-eye stimulus and the right-eye
stimulus are unpredictable in duration, as if being gener-
ated by a STOCHASTIC PROCESS driven by an unstable time
constant9,17,18. It is possible, however, to bias this dynamic
process by boosting the strength of one rival figure over
another. In this case, the ‘stronger’ competitor enjoys an

a

b d

c

Figure 1 | Examples of some well-known ambiguous
figures, the perceptual appearance of which fluctuates
over time despite unchanging physical stimulation.
a | The Necker cube. b | Rubin’s vase/face figure. c | E. G.
Boring’s old lady/young woman figure. d | Monocular rivalry, in
which two physically superimposed patterns that are dissimilar
in colour and orientation compete for perceptual
dominance113. Readers are encouraged to view each figure for
durations sufficient to experience alternations in perception,
which, for naive viewers, can take some time. Evidently, when
one views figures such as these, the brain vacillates between
alternative neural states; for this reason, such multistable
figures offer a promising means to study the neural bases of
visual perception.

© 2001 Macmillan Magazines Ltd

gene networks (Newby 2012)
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the random formation and decay of single molecules 
and multi-component complexes explicitly. As a result, 
the deterministic approach cannot capture the poten-
tially significant effects of factors that cause stochasticity 
in gene expression. 

In certain circumstances, deterministic simula-
tions of the model in FIG. 1 predict intracellular protein 
concentrations that are similar to those predicted by 
stochastic simulations. The conditions that need to 
be satisfied for the predictions of the two approaches 
to be similar are large system size (high numbers of 
expressed mRNA and proteins, and large cell vol-
umes) and fast promoter kinetics (BOX 1; see below). 

These conditions are met in the example illustrated in 
FIG. 2a, in which the protein concentration (the overall 
measure of gene expression) predicted by a stochastic 
simulation fluctuates with very low amplitude around 
the average level predicted by a deterministic simula-
tion. Correspondingly, the relative deviation from the 
average, measured by the ratio η of the standard 
deviation σ to the mean N, is quite small. This ratio η 
(or, alternatively, η2) is typically referred to as the 
coefficient of variation, or the noise.

When the conditions required for good agreement 
between deterministic and stochastic simulations are 
not fulfilled, the effects of molecular-level noise can 

Figure 1 | A model of the expression of a single gene. Each step represents several biochemical reactions, which are 
associated with mRNA and protein production, transitions between promoter states and the decay of mRNA and protein. kon, 
koff, sA, sR, sP, δM and δP are the rate constants associated with these steps, as indicated. These reactions involve binding and 
dissociation events that occur at random at the molecular level. This is ignored in deterministic models of gene expression, 
which typically describe the different steps in terms of reaction rates. Stochastic models generally describe each step as a 
single random event, with a reaction time that shows an exponential distribution. All steps are assumed to obey first-order 
kinetics. The ratios sP /δM (the average number of proteins produced per mRNA) and sA/koff (the average number of mRNA 
produced between successive promoter activation and inactivation events) are referred to as the translational and 
transcriptional efficiency, respectively. 

Box 1 | Deterministic rate equations and stochastic models of gene expression

Rate equations 
One mathematical framework for describing gene expression uses deterministic rate equations to calculate the 
concentrations of mRNA [M] and proteins [P]. For the model in FIG. 1, with a single gene copy, these equations are:

 (1)

 (2)

where V is the cell volume; the terms δM[M] and δP[P] are the degradation rates for mRNA and proteins, 
respectively; and the term sP[M] is the rate of protein synthesis. The rate constants kon and koff govern transitions 
between the active and repressed states of the promoter. Therefore, the ratios kon/(koff + kon) and koff /(kon + koff) in 
equation 1 are the fraction of time that the gene spends in the active and repressed states, respectively (that is, the 
promoter is assumed to be in chemical equilibrium). Consequently, mRNA production occurs at a constant rate, which 
is given by the weighted average of the activated synthesis (sA) and repressed synthesis (sR) mRNA synthesis rates.

The macroscopic limit and promoter kinetics
The above equations represent a valid approximation of the stochastic description when two limits are satisfied 
(FIG. 2a). The first is the macroscopic limit in which sR, sA and V become large, with the ratios sR/V and sA/V remaining 
constant. The second is the limit of fast chemical kinetics in which kon and koff become large, with their ratio 
remaining constant. Note that these limits do not alter equations 1 and 2. In FIG. 2b, the limit of fast chemical kinetics 
is satisfied, whereas fluctuations that are due to small system size are large (see main text). The reverse is true in 
FIGS 3a,b, where the number of expressed molecules is high, but the transitions between promoter states occur less 
frequently. Typically, concentration fluctuations scale in the form 1/√V for small system size effects (corresponding 
to 1/√N scaling, as [N] = N/V), and in the form 1/√koff + kon for slow chemical kinetic effects19.
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Motor-driven intracellular transport
(PCB/Newby 2011),

lengths or velocities, as observed by mutating dynein on lipid-
droplets (13, 14) and kinesin on axonal protein carrying vesicles
(19). However, in melanophores, kinesin inactivation leads to
breakdown of plus motion and increased minus run lengths (11).

Interfering with the dynein–cofactor dynactin impairs trans-
port in both directions in melanophores (16), but impairs minus
and enhances plus transport of adenovirus particles (20). In the
only in vitro experiment concerning bidirectional transport (21),
a motility assay of kinesin and dynein, it was observed that
increasing the number of dyneins enhances minus and impairs
plus end transport.

As shown here, all of these experimental observations are
consistent with the tug-of-war mechanism. In fact, we present an
explicit tug-of-war model that takes into account the experi-
mentally known single motor properties and makes quantitative
predictions for bidirectional transport. In our model, the motors
act independently and interact only mechanically via their
common cargo. We find seven possible motility regimes for cargo
transport. Three of these regimes are dominated by the three
configurations (0), (�), and (�) in Fig. 1 and represent no
motion, fast plus motion, and fast minus motion of the cargo,
respectively. The other motility states are combinations thereof;
in particular, there are the two regimes, (��) and (�0�), where
the cargo displays fast bidirectional transport without and with
pauses, respectively. During fast plus or minus motion, only one
motor type is pulling most of the time and the tug-of-war appears
to be coordinated.

The different motility regimes are found for certain ranges of
single-motor parameters such as stall force and MT affinity.
Small changes in these parameters lead to drastic changes in
cargo transport, e.g., from fast plus motion to bidirectional
motion or no motion. We propose that cells could use the
sensitivity of the transport to the single-motor properties to
regulate its traffic in a very efficient manner. We illustrate this
general proposal by providing an explicit and quantitative tug-
of-war model for the lipid-droplet system.

Results
Model. To study the bidirectional transport of cargos, we devel-
oped a model for a cargo to which N� plus and N� minus motors
are attached. Typically these numbers will be in the range of 1
to 10 motors as observed for many cargos in vivo (12, 22, 23). For
N� � 0 or N� � 0, we recover the model for cooperative
transport by a single motor species as studied in ref. 24. We
characterize each motor species by six parameters as measured
in single molecule experiments [see Table 1 and supporting
information (SI) Text] as follows: it binds to a MT with the
binding rate �0 and unbinds with the unbinding rate �0, which
increases exponentially under external force, with the force scale
given by the detachment force Fd. When bound to the MT, the
motor walks forward with the velocity vF, which decreases with
external force and reaches zero at the stall force Fs. Under
superstall external forces, the motor walks backward slowly with
backward velocity vB.

The motors on the cargo bind to and unbind from a MT in a

stochastic fashion, so that the cargo is pulled by n� � N� plus
and n� � N� minus motors, where n� and n� f luctuate with time
(see Fig. 2). We have derived the rates for unbinding of one of
the bound motors and for binding of an additional motor on the
cargo from the single motor rates under the assumption that: (i)
the presence of opposing motors induces a load force, and (ii)
this load force is shared equally by the bound motors belonging
to the same species (see SI Text). We obtain a Master equation
for the motor number probability p(n�, n�) that the cargo is
pulled by n� plus and n� minus motors. The observable cargo
motion is characterized by the motor states (n�, n�) with high
probability. If there is high probability for a state (n�, 0) or (0,
n�) with only one motor species bound, corresponding to Fig.
1(�) and (�), the cargo exhibits fast plus or minus motion,
respectively. If there is high probability for a state with both
motor species active, i.e., n� � 0 and n� � 0, the cargo displays
only negligible motion into the direction of the motors that ‘‘win’’
the tug-of-war, because the losing motors walk backward only
very slowly. This corresponds to the blockade situation depicted
in Fig. 1 (0).

Motility States for the Symmetric Case. We first studied the instruc-
tive symmetric case, for which the number of plus and minus motors
are the same and where plus and minus motors have identical
single-motor parameters except for their preferred direction of
motion. Apart from being theoretically appealing, this symmetric
situation can be realized in vitro if cargos are transported by a single
motor species along antiparallel MT bundles, and can also be used
in vivo provided plus and minus end transport exhibit sufficiently
similar transport characteristics.

We solved our model for fixed motor numbers N� � N� and
fixed single-motor parameters and determined the probability
distribution p(n�, n�) (see SI Text). Depending on the values of

(0) (−)

− − − ++ +

(+)

Fig. 1. Cargo transport by 2 plus (blue) and 2 minus (yellow) motors: possible
configurations (0), (�), and (�) of motors bound to the MT. For configuration
(0), the motors block each other so that the cargo does not move. For
configuration (�) and (�), the cargo exhibits fast plus and minus motion,
respectively.

Table 1. Values of the single-motor parameters for kinesin 1,
cytoplasmic dynein, and an unknown plus motor (kin?) that
transports Drosophila lipid droplets

Parameter Kinesin 1 Dynein kin?

Stall force Fs, pN 6 (29, 30) 1.1* (12, 27) 7 (31) 1.1* (12)
Detachment force Fd, pN 3 (30) 0.75* 0.82*
Unbinding rate �0, s�1 1 (30, 32) 0.27* (27, 33) 0.26*
Binding rate �0, s�1 5 (34) 1.6* (33, 35) 1.6*
Forward velocity vF, �m/s 1 (32, 36) 0.65* (33, 37) 0.55*
Back velocity vB, nm/s 6 (36) 72* 67*

The kinesin 1 values have been taken from the cited references. The starred
values are obtained by fitting experimental data of Drosophila lipid-droplet
transport and are consistent with the cited references.

Fig. 2. A cargo with N� � 3 plus (blue) motors and N� � 2 minus (yellow)
motors is pulled by a fluctuating number of motors bound to the MT. The
configuration in the middle corresponds to (n�, n�) � (2, 1). Only five of 12
possible (n�, n�) configurations are displayed.

4610 � www.pnas.org�cgi�doi�10.1073�pnas.0706825105 Müller et al.

Dendritic NMDA spikes (PCB/Newby
2014)
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1D STOCHASTIC HYBRID SYSTEM

Consider the 1D system

dx
dt

=
1
τx

Fn(x), x ∈ R, n = 0, . . . ,K − 1

Jump Markov process n′ → n with transition rates Wnn′(x)/τn.

Set τx = 1 and introduce the small parameter ε = τn/τx

CK equation is

∂p
∂t

= −∂[Fn(x)pn(x, t)]
∂x

+
1
ε

K−1∑
n′=0

Ann′(x)pn′(x, t)

where

Ann′(x) = Wnn′(x)−
K−1∑
m=0

Wmn(x)δn′,n.

In the limit ε→ 0, obtain mean-field equation

dx
dt

= F(x) ≡
K−1∑
n=0

Fn(x)ρn(x),

where
∑

m∈I Anm(x)ρm(x) = 0.



PATH-INTEGRAL I

Discretize time by dividing a given interval [0,T] into N equal
subintervals of size ∆t such that T = N∆t and set

xj = x(j∆t), nj = n(j∆t)

The conditional probability density for x1, . . . , xN given x0 and a par-
ticular realization of the stochastic discrete variables nj, j = 0, . . . ,N−1, is

P(x1, . . . , xN|x0, n0, . . . , nN−1) =

N−1∏
j=0

δ
(

xj+1 − xj − Fnj (xj)∆t
)

Using the Fourier representation of the Dirac delta function,

P(x1, . . . , xN|x0, n0,n) =

N−1∏
j=0

[∫ ∞
−∞

e
−ipj

(
xj+1 − xj − Fnj (xj)∆t

)
dpj

2π

]

≡
N−1∏
j=0

[∫ ∞
−∞

Hnj (xj+1, xj, pj)
dpj

2π

]



PATH-INTEGRAL II

On averaging with respect to the intermediate states n = (nq, . . . , nK−1),
we have

P(x1, . . . , xN|x0, n0) =

N−1∏
j=0

∫ ∞
−∞

dpj

2π

 ∑
n1,...,nN−1

N−1∏
j=0

Tnj+1,nj (xj)Hnj (xj+1, xj, pj)

where

Tnj+1,nj (xj) ∼ Anj+1,nj (xj)
∆t
ε

+ δnj+1,nj

(
1−

∑
m

Am,nj (xj)
∆t
ε

)
+ o(∆t)

=

(
δnj+1,nj + Anj+1,nj (xj)

∆t
ε

)
.



PATH-INTEGRAL III

Consider the eigenvalue equation

∑
m

[Anm(x) + qδn,mFm(x)] R(s)
m (x, q) = λs(x, q)R(s)

n (x, q),

and let ξ(s)
m be the adjoint eigenvector.

Insert multiple copies of the identity∑
s

ξ
(s)
m (x, q)R(s)

n (x, q) = δm,n

into the discrtetized path-integral with (x, q) = (xj, qj) at the jth time-step



PATH-INTEGRAL IV

Find that

P(xN, nN|x0, n0) ≡
N−1∏
j=1

∫ ∞
−∞

dxjP(x1, . . . , xN, nN|x0, n0)

=

N−1∏
j=1

∫ ∞
−∞

∫ ∞
−∞

dxj
dpj

2π

 ∑
n1,...,nN−1

∑
s0,...,sN−1

N−1∏
j=0

R
(sj)
nj+1 (xj, qj)ξ

(sj)
nj (xj, qj)


exp

∑
j

[
λsj (xj, qj)− iεpj

xj+1 − xj

∆t

]
∆t
ε

 exp
(

[iεpjFnj (xj)− qjFnj (xj)]
∆t
ε

)
.

Discretized path integral is independent of the qj. Set qj = iεpj for all j
and eliminate the final exponential factor.

Sum over the intermediate discrete states nj using the orthogonality
relation ∑

n

R(s)
n (x, q)ξ

(s′)
n (x, q) = δs,s′ .



PATH-INTEGRAL V (PCB AND NEWBY 2014)

Perron-Frobenius theorem shows that there exists a real, simple Perron
eigenvalue labeled by s = 0, say, such that λ0 > Re(λs) for all s > 0

Hence, set sj = 0 and take the continuum limit to obtain the following
path-integral from x(0) = x0 to x(τ) = x (after performing the change of
variables iεpj → pj (complex contour deformation):

P(x, n, τ |x0, n0, 0) =

x(τ)=x∫
x(0)=x0

exp
(
−1
ε

∫ τ

0
[pẋ− λ0(x, p)]dt

)
D[p]D[x]

Dropped factor R(s)
0 (x, p(τ))ξ

(0)
n0 (x0, p(0))



VARIATIONAL PRINCIPLE

Applying steepest descents to path integral yields a variational principle
in which optimal paths minimize the action

S[x, p] =

∫ τ

0
[pẋ− λ0(x, p)] dt.

Hence, we can identify the Perron eigenvalue λ0(x, p) as a Hamiltonian
and the optimal paths are solutions to Hamilton’s equations

ẋ =
∂H
∂p

, ṗ = −∂H
∂x

, H(x, p) = λ0(x, p)

Deterministic mean field equations and optimal paths of escape from a
metastable state both correspond to zero energy solutions.

Setting λ0 = 0 in eigenvalue equation gives

∑
m

[Anm(x) + pδn,mFm(x)] R(0)
m (x, p) = 0



“ZERO ENERGY” PATHS

Ω

∂Ω

separatrix

xs

Ω

∂Ω

xs

a b

(a) Deterministic trajectories converging to a stable fixed point xS.
Boundary of basin of attraction formed by a union of separatrices

(b) Noise-induced paths of escape



MEAN-FIELD EQUATIONS

We have the trivial solution p = 0 and R(0)
m (x, 0) = ρm(x) with

∑
m

Anm(x)ρm(x) = 0

Differentiating the eigenvalue equation with respect to p and then
setting p = 0, λ0 = 0 shows that

∂λ0(x, p)

∂p

∣∣∣∣
p=0

ρn(x) = Fn(x)ρn(x) +
∑

m

Anm(x)
∂R(0)

m (x, p)

∂p

∣∣∣∣∣
p=0

Summing both sides wrt n and using
∑

n Anm = 0,

∂λ0(x)

∂p

∣∣∣∣
p=0

=
∑

n

Fn(x)ρn(x)

Hamilton’s equation ẋ = ∂λ0(x, p)/∂p recovers mean-field equation

ẋ =
∑

n

Fn(x)ρn(x).



MAXIMUM-LIKELIHOOD PATHS OF ESCAPE

Unique non-trivial solution p = µ(x) with positive eigenvector
R(0)

m (x, µ(x)) = ψm(x):

∑
m

[Anm(x) + µ(x)δn,mFm(x)]ψm(x) = 0

Recovers leading order equation for WKB quasipotential Φ(x) with
Φ′(x) = µ(x) and

S[x, p] ≡
∫ τ

−∞
[pẋ− λ0(x, p)] dt =

∫ x

xs

Φ′(x)dx.



Part III. Stochastic ion-channels revisited



STOCHASTIC MORRIS-LECAR MODEL

Let n, n = 0, . . . ,N be the number of open sodium channels:

dv
dt

= Fn(v) ≡ 1
N

f (v)n− g(v),

with f (v) = gNa(VNa − v) and g(v) = −geff[Veff − v] + Iext.

The opening and closing of the ion channels is described by a
birth-death process according to

n→ n± 1,

with rates

ω+(n) = α(v)(N − n), ω−(n) = βn

Take

α(v) = β exp
(

2(v− v1)

v2

)
for constants β, v1, v2.



CHAPMAN-KOLMOGOROV EQUATION I

Introduce the joint probability density

Prob{v(t) ∈ (v, v + dv), n(t) = n} = pn(v, t)dv,

for given initial data

Differential Chapman-Kolmogorov (CK) equation (dropping the
explicit dependence on initial conditions)

∂pn

∂t
= −∂[Fn(v)pn(v, t)]

∂v

+
1
ε

[ω+(n− 1)pn−1(v, t) + ω−(n + 1)pn+1(v, t)− (ω+(n) + ω−(n))pn(v, t)]

Introduced small parameter ε - opening and closing of sodium channels
much faster than relaxation dynamics of voltage



CHAPMAN-KOLMOGOROV EQUATION II

Rewrite CK equation in the more compact form

∂pn

∂t
= −∂[Fn(v)pn(v, t)]

∂v
+

1
ε

∑
n′

Anm(v)pm(v, t),

An,n−1 = ω+(n− 1), Ann = −ω+(n)− ω−(n), An,n+1 = ω−(n + 1).

There exists a unique steady state density ρn(v) for which∑
m

Anm(v)ρm(v) = 0

where

ρn(v) =
N!

(N − n)!n!
a(v)nb(v)N−n, a(v) =

α(v)

α(v) + β
, b(v) = 1− a(v).



MEAN-FIELD LIMIT

In the limit ε→ 0, we obtain the mean-field equation

dv
dt

=
∑

n

Fn(v)ρn(v) = a(v)f (v)− g(v) ≡ −dΨ

dv
,

Assume deterministic system operates in a bistable regime

Ψ(v)

v [mV]

v- v*

v+

-100 -80 -60 -40 -20 0 20 40 60 80 100

Iext = I*

Iext < I*



PERRON EIGENVALUE

Eigenvalue equation for λ0 and R(0) = ψ:

(N − n + 1)αψn−1 − [λ0 + nβ + (N − n)α]ψn + (n + 1)βψn+1

= −p
( n

N
f − g

)
ψn

Consider the trial solution

ψn(x, p) =
Λ(x, p)n

(N − n)!n!
,

Yields the following equation relating Λ and µ:

nα
Λ

+ Λβ(N − n)− λ0 − nβ − (N − n)α = −p
( n

N
f − g

)
.

Collecting terms independent of n and terms linear in n yields

p = − N
f (x)

(
1

Λ(x, p)
+ 1
)

(α(x)− β(x)Λ(x, p)) ,

and

λ0(x, p) = −N(α(x)− Λ(x, p)β(x))− pg(x).



PERRON EIGENVALUE II

Eliminating Λ from these equation gives

p =
1

f (x)

(
Nβ(x)

λ0(x, p) + Nα(x) + pg(x)
+ 1
)

(λ0(x, p) + pg(x))

Obtain a quadratic equation for λ0:

λ2
0 + σ(x)λ0 − h(x, p) = 0.

with

σ(x) = (2g(x)− f (x)) + N(α(x) + β(x)),

h(x, p) = p[−Nβ(x)g(x) + (Nα(x) + pg(x))(f (x)− g(x))].

The “zero energy” solutions imply that h(x, p) = 0



RECOVERS WKB QUASIPOTENTIAL

Non-trivial solution recovers result of WKB analysis

p = µ(x) ≡ N
α(x)f (x)− (α(x) + β)g(x)

g(x)(f (x)− g(x))
.

The corresponding quasipotential Φ is given by

Φ(x) =

∫ x

µ(y)dy.

Analogous result in full ML model



Part IV. Higher-dimensional systems



D-DIMENSIONAL STOCHASTIC HYBRID SYSTEM

Consider the system

dxi

dt
=

1
τx

F(i)
n (x), x ∈ RD, i = 1, . . . ,D

Jump Markov process n′ → n with transition rates Wnn′(x)/τn.

Set τx = 1 and introduce the small parameter ε = τn/τx

CK equation is

∂pn

∂t
= −

∑
i

∂[F(i)
n (x)pn(x, t)]

∂xi
+

1
ε

∑
n′

Ann′(x)pn′(x, t)

Ann′(x) = Wnn′(x)−
∑

m

Wmn(x)δn′,n.

In the limit ε→ 0, obtain mean-field equation

dxi

dt
= Fi(x) ≡

∑
n

F(i)
n (x)ρn(x),

where
∑

m∈I Anm(x)ρm(x) = 0.



PATH-INTEGRAL

Proceeding as in the 1D case find that

pn(x, τ |x0,n0, 0) =

x(τ)=x∫
x(0)=x0

D[p]D[x] exp
(
−1
ε

S[x,p]

)

×R(0)
n (x,p(τ))ξ

(0)
n0 (x0,p(0))

with action

S[x,p] =

∫ τ

0

[
D∑

i=1

piẋi − λ0(x,p)

]
dt.

Here λ0 is the Perron eigenvalue of the following linear operator equation

∑
m

[
Anm(x)Rm

(0)(x,p) + δn,m

D∑
i=1

piF
(i)
m (x)

]
R(0)

m (x,p) = λ0(x,p)R(0)
n (x,p),

and ξ(0) is the corresponding adjoint eigenvector.



STOCHASTIC MORRIS-LECAR MODEL REVISITED

Take n ≤ N open Na+ channels and m ≤ M open K+ channels:

dv
dt

= F(v,m, n) ≡ n
N

fNa(v) +
m
M

fK(v)− g(v).

Each channel satisfies the kinetic scheme

C
αi(v)
−→
←−
βi(v)

O, i = Na, K,

The Na+ channels fast relative to voltage and K+ dynamics.

Chapman–Kolmogorov (CK) equation,

∂p
∂t

= −∂(Fp)

∂v
+ LKp + LNap.

The jump operators Lj, j = Na,K, are defined according to

Lj = (E+
n − 1)ω+

j (n) + (E−n − 1)ω−j (n),

with E±n f (n) = f (n± 1), ω−j (n) = nβj and ω+
j (n) = (N − n)αj(v).



SMALL NOISE LIMIT

Introduce a small parameter ε� 1 such that (in dimensionless units)

β−1
Na = ε, M−1 = λMε,

Set w = m/M and write (m± 1)/M = w±M−1

Perturbation expansion in ε combines a system size expansion with a
slow/fast analysis

We would like to determine the most probable or optimal paths of
escape from the resting state in the (v,w)-plane for small ε

For chemical master equations, the quasipotential of the WKB
approximation satisfies a Hamilton-Jacobi equation - the optimal paths
given by solutions to an effective Hamiltonian dynamical system

There is an underlying variational principle derived using large
deviation theory or path-integrals



WKB APPROXIMATION

Introduce quasistationary solution of the form

ϕ(v,w, n) = Rn(v,w) exp
(
−1
ε

Φ(v,w)

)
,

where Φ(v,w) is the quasipotential

To leading order,

[LNa + pv + h(v,w, pw)] Rn(v,w) = 0,

where

pv =
∂Φ

∂v
, pw =

∂Φ

∂w
and

h(v,w, pw) =
βK

MλM

[
(e−λMpw − 1)ω+

K (Mw, v) + (eλMpw − 1)ω−K (Mw, v)
]



HAMILTON-JACOBI EQUATION

Introducing the ansatz

Rn(v,w) =
Λ(v,w)n

(N − n)!n!
,

yields a Hamilton-Jacobi equation for Φ:

0 = H(v,w, pw, pv) ≡ (a(v)fNa(v) + g(v))pv + h(v,w, pw)

− b(v)

N

[
((2g(v) + fNa(v))pvh(v,w, pw) + (fNa(v) + g(v))g(v)p2

v + h(v,w, pw)2
)

Solve for Φ using method of characteristics. Satisfy Hamilton’s equations

ẋ = ∇pH(x,p), ṗ = −∇xH(x,p).

for x = (v,w) and p = (pv, pw)

Interpret Φ(t) as the action with Φ̇(t) = p(t) · ẋ(t), is a strictly increasing
function of t, and the quasipotential is given by Φ(v,w) = Φ(t) at the
point (v,w) = x(t).
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FIG. 2. Orange curves are SAP trajectories, shown until they
reach the metastable separatrix (S). The dashed red curve
is a SAP that reaches S near the bottleneck (BN). All of
the SAP trajectories that enter the shaded region are visu-
ally indistinguishable from the dashed red line before crossing
S. Deterministic trajectories are shown as black streamlines.
The upper left inset is a close up of the caustic formation
point (CP) with overlapping metastable trajectories. Level
curves of Φ are shown inside the potential well region with
grey lines. Also shown are the caustic (C), v nullcline (VN),
and w nullcline (WN). Parameter values are N = M = 40
and λM = 0.25.

at the fixed point as a single trajectory and then fan out
just before reaching the metastable separatrix (Fig. 2).
After crossing the separatrix, all of the SAP trajecto-
ries eventually reach the caustic. Although all SAPs are
equally likely to reach the separatrix, their likelihood of
reaching the caustic depends on their amplitude. Large
amplitude SAPs are less likely and reach the caustic far
from the caustic formation point. Strictly speaking, the
most probable SAP strikes the caustic formation point,
but Φ increases by a very small amount in the shaded re-
gion of Fig. 2 because SAP trajectories are very close to
deterministic trajectories (black streamlines). (The rela-
tive difference is |∆Φ| /Φc ≈ 0.01.) Hence, the stationary
density (7) is nearly constant in the shaded region.

SAPs that cover the shaded region cross a very small
segment of the separatrix, the center of which acts as
a bottleneck for SAPs. The shaded region represents
the most likely, experimentally observable SAP trajecto-
ries; it excludes the small amplitude SAPs that (crossing
above the bottleneck) strike very close to the caustic for-
mation point and the far less probable SAPs that (cross-
ing below the bottleneck) strike the caustic above or be-
hind the potential well region. The portion of the SAP
trajectory between the fixed point and the bottleneck
(see Fig. 2 dashed curve) represents the initiation phase;
it is not constant and remains below the voltage nullcline.
This behavior is confirmed by Monte-Carlo simulations
(see supplementary material for details).

To summarize our results, we find that fluctuations in
the slow recovery dynamics of K+ channels significantly

affect spontaneous activity in the ML model. The max-
imum likelihood trajectory during initiation of a SAP
can be thought of as a path of least resistance, drop-
ping below the voltage nullcline where voltage increases
deterministically. Hence, SAP initiation is more likely
to occur using the second of the two mechanisms men-
tioned in the introduction: a burst of simultaneously-
closing K+ channels causes v to increase. If one takes
w to be constant, only the first mechanism is available
and the path is artificially constrained, which alters the
quasipotential. In other words, constraining the path al-
ters the effective energy barrier for SAP initiation, which
significantly affects determination of the spontaneous fir-
ing rate. Although it is more difficult to construct an
exit time problem in an excitable system, this can now
be done using the metastable separatrix. The methods
used here are general and may lead to future studies of
noise-induced dynamics in other nonlinear stochastic sys-
tems. In particular, it would be interesting to extend the
current analysis to the Hodgkin-Huxley model, where the
Na+ channels have a slow inactivating component.
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PATH-INTEGRAL FOR STOCHASTIC ML

Path-integral action is

S[x,w, px, pw] =

∫ τ

0
[pxẋ + pwẇ− λ0(x,w, px, pw)]dt

where λ0 is the Perron eigenvalue of the following linear operator
equation

λ0Rn = [LNa + Fn(x,w)px + h(x,w, pw)] R(0)
n .

with Fn(x,w) = F(x,Mw, n)

The path-integral representation of the stationary density is then

pn(x,w, τ |x0,w0, 0) =

x(τ)=x∫∫
x(0)=x0

exp
(
−1
ε

S[x,w, px, pw]

)

R(0)
n (x,p(τ))ξ

(s)
n0 (x0,p(0))D[p]D[x]



PERRON EIGENVALUE DIFFERS FROM WKB HAMILTONIAN

Introduce the ansatz

R(0)
n (v,w) =

Λ(v,w)n

(N − n)!n!

into eigenvalue equation.

Collecting terms linear in n gives

A(x,w) = αNa(x)

− 1
N

(pxg(x,w) + h(x,w, pw)− λ0(x,w, px, pw)),

Collecting terms independent of n
and substituting for A(x,w) gives the following quadratic equation for λ0:

λ2
0 − (2h(x,w, pw) + σ(x,w, px))λ0 +H(x,w, px, pw) = 0,

with

σ(x,w, px) = (2g(x) + f (x))px −N/(1− w∞(x))

andH the WKB Hamiltonian.



REFERENCES

1 PCB. Mean field theory and effects of fluctuations in stochastic hybrid
neural networks. (2014)

2 PCB and J. M. Newby. Path-integrals and large deviations in stochastic
hybrid systems. Phys. Rev. E (2014)

3 PCB and J. M. Newby. Stochastic hybrid model of spontaneous dendritic
NMDA spikes. Phys. Biol. 11 016006 (2014).

4 J. M. Newby, PCB and J. P. Keeener. The effect of Potassium channels on
spontaneous action potential initiation by stochastic ion channels. Phys.
Rev. Lett. 111 128101 (2013).

5 PCB and J. M. Newby. Metastability in a stochastic neural network
modeled as a jump velocity Markov process SIAM J. Appl. Dyn. Syst. 12
1394-1435 (2013).


