
Introduction to high performance scientific computing
Parallel computing

MAM5 - INUM, Polytech Nice Sophia

Stéphane Lanteri
Stephane.Lanteri@inria.fr

Nachos project-team
Inria Sophia Antipolis - Méditerranée research center, France

January 2017

S. Lanteri (Inria) High performance scientific computing 1 / 78



Outline

1 Preamble

2 Overview

3 Concepts and terminology

4 Parallel computer memory architectures

5 Parallel programming models

6 Designing parallel programs

S. Lanteri (Inria) High performance scientific computing 2 / 78



Outline

1 Preamble

2 Overview

3 Concepts and terminology

4 Parallel computer memory architectures

5 Parallel programming models

6 Designing parallel programs

S. Lanteri (Inria) High performance scientific computing 3 / 78



Preamble

This introductory lecture is for a major part

extracted from the tutorial of

Blaise Barney, Lawrence Livermore National Laboratory

https://computing.llnl.gov/tutorials/parallel comp

S. Lanteri (Inria) High performance scientific computing 4 / 78



Outline

1 Preamble

2 Overview

3 Concepts and terminology

4 Parallel computer memory architectures

5 Parallel programming models

6 Designing parallel programs

S. Lanteri (Inria) High performance scientific computing 5 / 78



What is parallel computing ?

Traditionally, software has been written for serial computation:
a problem is run on a single computer having a single Central Processing Unit (CPU),

it is is broken into a discrete series of instructions,

instructions are executed one after another,

only one instruction may execute at any moment in time.

S. Lanteri (Inria) High performance scientific computing 6 / 78



What is parallel computing ?

In the simplest sense, parallel computing is the simultaneous use of multiple
compute resources to solve a computational problem:

to be run using multiple CPUs,

a problem is broken into discrete parts that can be solved concurrently,

each part is further broken down to a series of instructions,

instructions from each part execute simultaneously on different CPUs.

S. Lanteri (Inria) High performance scientific computing 7 / 78



What is parallel computing ?

The compute resources can include:
a single computer with multiple processors,

an arbitrary number of computers connected by a network,

a combination of both.

The computational problem usually demonstrates characteristics such as
the ability to be:

broken apart into discrete pieces of work that can be solved simultaneously,

execute multiple program instructions at any moment in time,

solved in less time with multiple compute resources than with a single
compute resource.

S. Lanteri (Inria) High performance scientific computing 8 / 78



Use of parallel computing

Historically, parallel computing has been considered to be the high end of
computing, and has been used to model difficult scientific and engineering
problems found in the real world

Atmosphere, earth, environment
Physics - applied, nuclear, particle, condensed matter, high pressure, fusion, photonics
Bioscience, biotechnology, genetics
Chemistry, molecular sciences
Geology, seismology
Mechanical Engineering - from prosthetics to spacecraft
Electrical Engineering, circuit design, microelectronics
Computer Science, mathematics

S. Lanteri (Inria) High performance scientific computing 9 / 78



Use of parallel computing

Today, commercial applications provide an equal or greater driving force in the
development of faster computers

These applications require the processing of large amounts of data
in sophisticated ways

Databases, data mining
Web search engines, web based business services
Medical imaging and diagnosis
Financial and economic modeling
Advanced graphics and virtual reality, particularly in the entertainment industry
Networked video and multi-media technologies
Collaborative work environments

S. Lanteri (Inria) High performance scientific computing 10 / 78



Why use of parallel computing ?

Main Reasons:
Save time and/or money - in theory, throwing more resources at a task will
shorten its time to completion, with potential cost savings, and parallel clusters
can be built from cheap, commodity components

Solve larger problems - many problems are so large and/or complex that it is
impractical or impossible to solve them on a single computer, especially
given limited computer memory

Provide concurrency:

a single compute resource can only do one thing at a time,

multiple computing resources can be doing many things simultaneously

Example: the Access Grid provides a global collaboration network where people
from around the world can meet and conduct work virtually

S. Lanteri (Inria) High performance scientific computing 11 / 78



Why use of parallel computing ?

Limits to serial computing - both physical and practical reasons pose significant
constraints to simply building ever faster serial computers

Transmission speeds:
the speed of a serial computer is directly dependent upon how fast data can
move through hardware;
absolute limits are the speed of light (30 cm/nanosecond) and the transmission
limit of copper wire (9 cm/nanosecond);
increasing speeds necessitate increasing proximity of processing elements.

Limits to miniaturization:
processor technology is allowing an increasing number of transistors to be
placed on a chip;
however, even with molecular or atomic-level components, a limit will be
reached on how small components can be.

Economic limitations:
it is increasingly expensive to make a single processor faster;
using a larger number of moderately fast commodity processors to achieve the
same (or better) performance is less expensive.

Current computer architectures are increasingly relying upon hardware level
parallelism to improve performance: multiple execution units, pipelined
instructions, multi-core

S. Lanteri (Inria) High performance scientific computing 12 / 78



Who and what ?

Top500.org provides statistics on parallel computing users

S. Lanteri (Inria) High performance scientific computing 13 / 78



Outline

1 Preamble

2 Overview

3 Concepts and terminology

4 Parallel computer memory architectures

5 Parallel programming models

6 Designing parallel programs

S. Lanteri (Inria) High performance scientific computing 14 / 78



Concepts and terminology
von Neumann architecture

Named after the Hungarian mathematician John von Neumann who first authored
the general requirements for an electronic computer in his 1945 papers

Since then, virtually all computers have followed this basic design, which differed
from earlier computers programmed through hard wiring

S. Lanteri (Inria) High performance scientific computing 15 / 78



Concepts and terminology
von Neumann architecture

Comprised of four main components: memory, control unit, arithmetic logic unit,
input/output
Read/write, random access memory is used to store both program
instructions and data:

program instructions are coded data which tell the computer to do something,
data is simply information to be used by the program.

Control unit fetches instructions/data from memory, decodes the instructions
and then sequentially coordinates operations to accomplish the programmed task
Aritmetic unit performs basic arithmetic operations
Input/output is the interface to the human operator

S. Lanteri (Inria) High performance scientific computing 16 / 78



Concepts and terminology
Flynn’s classical taxonomy

There are different ways to classify parallel computers

One of the more widely used classifications, in use since 1966, is called
Flynn’s Taxonomy

Flynn’s taxonomy distinguishes multi-processor computer architectures
according to how they can be classified along the two independent dimensions
of instruction and data

Each of these dimensions can have only one of two possible states: single or multiple

The matrix below defines the 4 possible classifications according to Flynn:
SISD: Single Instruction Single Data

SIMD: Single Instruction Multiple Data

MISD: Multiple Instruction Single Data

MIMD: Multiple Instruction Multiple Data

S. Lanteri (Inria) High performance scientific computing 17 / 78



Concepts and terminology
Single Instruction Single Data (SISD)

A serial (non-parallel) computer

Single instruction: only one instruction stream is being acted on by the
CPU during any one clock cycle

Single data: only one data stream is being used as input during any one clock cycle:
deterministic execution,

this is the oldest and even today the most common type of computer.

Examples: older generation mainframes, minicomputers and workstations
most modern day PCs

S. Lanteri (Inria) High performance scientific computing 18 / 78



Concepts and terminology
Single Instruction Single Data (SISD)

CDC 7600 CRAY 1 PDP 1

IBM 360 UNIVAC 1 DELL laptop

S. Lanteri (Inria) High performance scientific computing 19 / 78



Concepts and terminology
Single Instruction Multiple Data (SIMD)

A type of parallel computer

Single instruction: all processing units execute the same instruction at
any given clock cycle

Multiple data: each processing unit can operate on a different data element

Best suited for specialized problems characterized by a high degree of
regularity, such as graphics/image processing

Synchronous (lockstep) and deterministic execution

Two varieties: processor arrays and vector pipelines
Processor arrays: Connection Machine CM-2, MasPar MP-1 and MP-2, ILLIAC IV

Vector Pipelines: IBM 9000, Cray X-MP, Y-MP and C90, Fujitsu VP, NEC SX-2,
Hitachi S820, ETA10

Most modern computers, particularly those with graphics processor units (GPUs)
employ SIMD instructions and execution units

S. Lanteri (Inria) High performance scientific computing 20 / 78



Concepts and terminology
Single Instruction Multiple Data (SIMD)

S. Lanteri (Inria) High performance scientific computing 21 / 78



Concepts and terminology
Single Instruction Multiple Data (SIMD)

MasPar Cray X-MP Cray Y-MP

ILLIAC IV CM-2 Cell Processor (GPU)

S. Lanteri (Inria) High performance scientific computing 22 / 78



Concepts and terminology
Multiple Instruction Single Data (MISD)

A single data stream is fed into multiple processing units

Each processing unit operates on the data independently via independent
instruction streams

Few actual examples of this class of parallel computer have ever existed
(one is the experimental Carnegie-Mellon C.mmp computer (1971))

Some conceivable uses might be:
multiple frequency filters operating on a single signal stream,

multiple cryptography algorithms attempting to crack a single coded message.

S. Lanteri (Inria) High performance scientific computing 23 / 78



Concepts and terminology
Multiple Instruction Multiple Data (MIMD)

Currently, the most common type of parallel computer

Most modern computers fall into this category

Multiple instruction: every processor may be executing a different instruction stream

Multiple data: every processor may be working with a different data stream

Execution can be synchronous or asynchronous, deterministic or non-deterministic

Examples: most current supercomputers, networked parallel computer clusters and
grids, multi-processor SMP computers, multi-core PCs

Note: many MIMD architectures also include SIMD execution sub-components

S. Lanteri (Inria) High performance scientific computing 24 / 78



Concepts and terminology
Multiple Instruction Multiple Data (MIMD)

S. Lanteri (Inria) High performance scientific computing 25 / 78



Concepts and terminology
Multiple Instruction Multiple Data (MIMD)

HP/Compaq Alphaserver Intel IA32 cluster IBM POWER5

AMD Opteron cluster Cray XT3 IBM BG/L

S. Lanteri (Inria) High performance scientific computing 26 / 78



Concepts and terminology
Some general parallel terminology

Task
A logically discrete section of computational work

A task is typically a program or program-like set of instructions that
is executed by a processor

Parallel task: a task that can be executed by multiple processors safely
(yields correct results)

Serial execution
Execution of a program sequentially, one statement at a time

In the simplest sense, this is what happens on a one processor machine

However, virtually all parallel tasks will have sections of a parallel program that
must be executed serially

Parallel execution: execution of a program by more than one task, with each task
being able to execute the same or different statement at the same moment in time

Shared memory
From a strictly hardware point of view, describes a computer architecture where all
processors have direct (usually bus based) access to common physical memory

In a programming sense, it describes a model where parallel tasks all have the same
picture of memory and can directly address and access the same logical memory
locations regardless of where the physical memory actually exists

S. Lanteri (Inria) High performance scientific computing 27 / 78



Concepts and terminology
Some general parallel terminology

Task
A logically discrete section of computational work

A task is typically a program or program-like set of instructions that
is executed by a processor

Parallel task: a task that can be executed by multiple processors safely
(yields correct results)

Serial execution
Execution of a program sequentially, one statement at a time

In the simplest sense, this is what happens on a one processor machine

However, virtually all parallel tasks will have sections of a parallel program that
must be executed serially

Parallel execution: execution of a program by more than one task, with each task
being able to execute the same or different statement at the same moment in time

Shared memory
From a strictly hardware point of view, describes a computer architecture where all
processors have direct (usually bus based) access to common physical memory

In a programming sense, it describes a model where parallel tasks all have the same
picture of memory and can directly address and access the same logical memory
locations regardless of where the physical memory actually exists

S. Lanteri (Inria) High performance scientific computing 27 / 78



Concepts and terminology
Some general parallel terminology

Task
A logically discrete section of computational work

A task is typically a program or program-like set of instructions that
is executed by a processor

Parallel task: a task that can be executed by multiple processors safely
(yields correct results)

Serial execution
Execution of a program sequentially, one statement at a time

In the simplest sense, this is what happens on a one processor machine

However, virtually all parallel tasks will have sections of a parallel program that
must be executed serially

Parallel execution: execution of a program by more than one task, with each task
being able to execute the same or different statement at the same moment in time

Shared memory
From a strictly hardware point of view, describes a computer architecture where all
processors have direct (usually bus based) access to common physical memory

In a programming sense, it describes a model where parallel tasks all have the same
picture of memory and can directly address and access the same logical memory
locations regardless of where the physical memory actually exists

S. Lanteri (Inria) High performance scientific computing 27 / 78



Concepts and terminology
Some general parallel terminology

Symmetric Multi-Processor (SMP)
Hardware architecture where multiple processors share a single address
space and access to all resources

Distributed memory
In hardware, refers to network based memory access for physical memory
that is not common

As a programming model, tasks can only logically see local machine memory
and must use communications to access memory on other machines where
other tasks are executing

Communications
Parallel tasks typically need to exchange data

There are several ways this can be accomplished, such as through a shared
memory bus or over a network, however the actual event of data exchange is
commonly referred to as communications regardless of the method employed

S. Lanteri (Inria) High performance scientific computing 28 / 78



Concepts and terminology
Some general parallel terminology

Symmetric Multi-Processor (SMP)
Hardware architecture where multiple processors share a single address
space and access to all resources

Distributed memory
In hardware, refers to network based memory access for physical memory
that is not common

As a programming model, tasks can only logically see local machine memory
and must use communications to access memory on other machines where
other tasks are executing

Communications
Parallel tasks typically need to exchange data

There are several ways this can be accomplished, such as through a shared
memory bus or over a network, however the actual event of data exchange is
commonly referred to as communications regardless of the method employed

S. Lanteri (Inria) High performance scientific computing 28 / 78



Concepts and terminology
Some general parallel terminology

Symmetric Multi-Processor (SMP)
Hardware architecture where multiple processors share a single address
space and access to all resources

Distributed memory
In hardware, refers to network based memory access for physical memory
that is not common

As a programming model, tasks can only logically see local machine memory
and must use communications to access memory on other machines where
other tasks are executing

Communications
Parallel tasks typically need to exchange data

There are several ways this can be accomplished, such as through a shared
memory bus or over a network, however the actual event of data exchange is
commonly referred to as communications regardless of the method employed

S. Lanteri (Inria) High performance scientific computing 28 / 78



Concepts and terminology
Some general parallel terminology

Synchronization
The coordination of parallel tasks in real time, very often associated with
communications

Often implemented by establishing a synchronization point within an application
where a task may not proceed further until another task(s) reaches the same
or logically equivalent point

Synchronization usually involves waiting by at least one task, and can therefore
cause a parallel application’s wall clock execution time to increase

Granularity
In parallel computing, granularity is a qualitative measure of the ratio of
computation to communication

Coarse: relatively large amounts of computational work are done between
communication events

Fine: relatively small amounts of computational work are done between
communication events

Observed speedup
Observed speedup of a code which has been parallelized, defined as: wall-clock
time of serial execution/wall-clock time of parallel execution

One of the simplest and most widely used indicators for a parallel program’s
performance

S. Lanteri (Inria) High performance scientific computing 29 / 78



Concepts and terminology
Some general parallel terminology

Synchronization
The coordination of parallel tasks in real time, very often associated with
communications

Often implemented by establishing a synchronization point within an application
where a task may not proceed further until another task(s) reaches the same
or logically equivalent point

Synchronization usually involves waiting by at least one task, and can therefore
cause a parallel application’s wall clock execution time to increase

Granularity
In parallel computing, granularity is a qualitative measure of the ratio of
computation to communication

Coarse: relatively large amounts of computational work are done between
communication events

Fine: relatively small amounts of computational work are done between
communication events

Observed speedup
Observed speedup of a code which has been parallelized, defined as: wall-clock
time of serial execution/wall-clock time of parallel execution

One of the simplest and most widely used indicators for a parallel program’s
performance

S. Lanteri (Inria) High performance scientific computing 29 / 78



Concepts and terminology
Some general parallel terminology

Synchronization
The coordination of parallel tasks in real time, very often associated with
communications

Often implemented by establishing a synchronization point within an application
where a task may not proceed further until another task(s) reaches the same
or logically equivalent point

Synchronization usually involves waiting by at least one task, and can therefore
cause a parallel application’s wall clock execution time to increase

Granularity
In parallel computing, granularity is a qualitative measure of the ratio of
computation to communication

Coarse: relatively large amounts of computational work are done between
communication events

Fine: relatively small amounts of computational work are done between
communication events

Observed speedup
Observed speedup of a code which has been parallelized, defined as: wall-clock
time of serial execution/wall-clock time of parallel execution

One of the simplest and most widely used indicators for a parallel program’s
performance

S. Lanteri (Inria) High performance scientific computing 29 / 78



Concepts and terminology
Some general parallel terminology

Parallel overhead
The amount of time required to coordinate parallel tasks, as opposed to
doing useful work

Parallel overhead can include factors such as task start-up time, synchronizations,
data communications, software overhead imposed by parallel compilers,
libraries, tools, operating system, etc. and task termination time

Massively parallel
Refers to the hardware that comprises a given parallel system having
many processors

The meaning of many keeps increasing, but currently, the largest parallel computers
can be comprised of processors numbering in the hundreds of thousands

Embarrassingly Parallel
Solving many similar, but independent tasks simultaneously

Little to no need for coordination between the tasks

S. Lanteri (Inria) High performance scientific computing 30 / 78



Concepts and terminology
Some general parallel terminology

Parallel overhead
The amount of time required to coordinate parallel tasks, as opposed to
doing useful work

Parallel overhead can include factors such as task start-up time, synchronizations,
data communications, software overhead imposed by parallel compilers,
libraries, tools, operating system, etc. and task termination time

Massively parallel
Refers to the hardware that comprises a given parallel system having
many processors

The meaning of many keeps increasing, but currently, the largest parallel computers
can be comprised of processors numbering in the hundreds of thousands

Embarrassingly Parallel
Solving many similar, but independent tasks simultaneously

Little to no need for coordination between the tasks

S. Lanteri (Inria) High performance scientific computing 30 / 78



Concepts and terminology
Some general parallel terminology

Scalability
Refers to a parallel system’s (hardware and/or software) ability to demonstrate a
proportionate increase in parallel speedup with the addition of more processors

Factors that contribute to scalability include hardware (particularly memory-cpu
bandwidths and network communications), application algorithm, parallel
overhead related issues and characteristics of the specific application and coding

Multi-core processors
Multiple processors (cores) on a single chip

Cluster computing
Use of a combination of commodity units (processors, networks or SMPs)
to build a parallel system

Supercomputing/high performance computing
Use of large machines to solve large problems

S. Lanteri (Inria) High performance scientific computing 31 / 78



Concepts and terminology
Some general parallel terminology

Scalability
Refers to a parallel system’s (hardware and/or software) ability to demonstrate a
proportionate increase in parallel speedup with the addition of more processors

Factors that contribute to scalability include hardware (particularly memory-cpu
bandwidths and network communications), application algorithm, parallel
overhead related issues and characteristics of the specific application and coding

Multi-core processors
Multiple processors (cores) on a single chip

Cluster computing
Use of a combination of commodity units (processors, networks or SMPs)
to build a parallel system

Supercomputing/high performance computing
Use of large machines to solve large problems

S. Lanteri (Inria) High performance scientific computing 31 / 78



Outline

1 Preamble

2 Overview

3 Concepts and terminology

4 Parallel computer memory architectures

5 Parallel programming models

6 Designing parallel programs

S. Lanteri (Inria) High performance scientific computing 32 / 78



Parallel computer memory architectures
Shared memory

General characteristics
Shared memory parallel computers vary widely, but generally have
in common the ability for all processors to access all memory as
global address space

Multiple processors can operate independently but share the same
memory resources

Changes in a memory location effected by one processor are visible to all
other processors

Shared memory machines can be divided into two main classes based upon
memory access times: UMA and NUMA

S. Lanteri (Inria) High performance scientific computing 33 / 78



Parallel computer memory architectures
Shared memory

Uniform Memory Access (UMA)
Most commonly represented today by Symmetric Multiprocessor (SMP) machines

Identical processors

Equal access and access times to memory

Sometimes called CC-UMA - Cache Coherent UMA
Cache coherent means if one processor updates a location in shared memory, all the
other processors know about the update

Cache coherency is accomplished at the hardware level

S. Lanteri (Inria) High performance scientific computing 34 / 78



Parallel computer memory architectures
Shared memory

Non-Uniform Memory Access (NUMA)
Often made by physically linking two or more SMPs

One SMP can directly access memory of another SMP

Not all processors have equal access time to all memories

Memory access across link is slower

If cache coherency is maintained, then may also be called CC-NUMA
(Cache Coherent NUMA)

S. Lanteri (Inria) High performance scientific computing 35 / 78



Parallel computer memory architectures
Shared memory

Advantages
Global address space provides a user-friendly programming perspective
to memory

Data sharing between tasks is both fast and uniform due to the proximity
of memory to CPUs

Disadvantages
Primary disadvantage is the lack of scalability between memory and CPUs

Adding more CPUs can geometrically increases traffic on the shared memory-CPU
path, and for cache coherent systems, geometrically increase traffic associated with
cache/memory management

Programmer responsibility for synchronization constructs that insure correct
access of global memory

Expensive: it becomes increasingly difficult and expensive to design and produce
shared memory machines with ever increasing numbers of processors

S. Lanteri (Inria) High performance scientific computing 36 / 78



Parallel computer memory architectures
Distributed memory

General characteristics
Like shared memory systems, distributed memory systems vary widely but share
a common characteristic

Distributed memory systems require a communication network to connect
inter-processor memory

S. Lanteri (Inria) High performance scientific computing 37 / 78



Parallel computer memory architectures
Distributed memory

General characteristics
Processors have their own local memory

Memory addresses in one processor do not map to another processor, so there is
no concept of global address space across all processors

Because each processor has its own local memory, it operates independently

Changes it makes to its local memory have no effect on the memory of other processors

Hence, the concept of cache coherency does not apply

When a processor needs access to data in another processor, it is usually the task
of the programmer to explicitly define how and when data is communicated

Synchronization between tasks is likewise the programmer’s responsibility

The network fabric used for data transfer varies widely, though it can can be
as simple as Ethernet

S. Lanteri (Inria) High performance scientific computing 38 / 78



Parallel computer memory architectures
Distributed memory

Advantages
Memory is scalable with number of processors i.e. increase the number
of processors and the size of memory increases proportionately

Each processor can rapidly access its own memory without interference
and without the overhead incurred with trying to maintain cache coherency

Cost effectiveness: can use commodity, off-the-shelf processors and networking

Disadvantages
The programmer is responsible for many of the details associated with data
communication between processors

It may be difficult to map existing data structures, based on global memory,
to this memory organization

Non-uniform memory access (NUMA) times

S. Lanteri (Inria) High performance scientific computing 39 / 78



Parallel computer memory architectures
Hybrid distributed-shared memory

The largest and fastest computers in the world today employ both shared
and distributed memory architectures

The shared memory component is usually a cache coherent SMP machine
(processors on a given SMP can address that machine’s memory as global)

The distributed memory component is the networking of multiple SMPs
SMPs know only about their own memory - not the memory on another SMP

Therefore, network communications are required to move data from
one SMP to another

Current trends seem to indicate that this type of memory architecture will continue
to prevail and increase at the high end of computing for the foreseeable future

S. Lanteri (Inria) High performance scientific computing 40 / 78



Outline

1 Preamble

2 Overview

3 Concepts and terminology

4 Parallel computer memory architectures

5 Parallel programming models

6 Designing parallel programs

S. Lanteri (Inria) High performance scientific computing 41 / 78



Parallel programming models
Overview

There are several parallel programming models in common use:
shared memory,
threads,
message passing,
data parallel,
hybrid.

Parallel programming models exist as an abstraction above hardware
and memory architectures

Although it might not seem apparent, these models are NOT specific to a
particular type of machine or memory architecture; in fact, any of these models
can (theoretically) be implemented on any underlying hardware

Which model to use is often a combination of what is available and
personal choice

There is no best model, although there certainly are better implementations
of some models over others

S. Lanteri (Inria) High performance scientific computing 42 / 78



Parallel programming models
Shared memory model

In the shared-memory programming model, tasks share a common address
space, which they read and write asynchronously

Various mechanisms such as locks/semaphores may be used to control
access to the shared memory

An advantage of this model from the programmer’s point of view is that the
notion of data ownership is lacking, so there is no need to specify
explicitly the communication of data between tasks, and program development
can often be simplified

An important disadvantage in terms of performance is that it becomes
more difficult to understand and manage data locality

Keeping data local to the processor that works on it conserves memory
accesses, cache refreshes and bus traffic that occurs when multiple processors
use the same data

Unfortunately, controlling data locality is hard to understand and beyond the
control of the average user

Implementations
On shared memory platforms, the native compilers translate user program variables
into actual memory addresses, which are global

No common distributed memory platform implementations currently exist

S. Lanteri (Inria) High performance scientific computing 43 / 78



Parallel programming models
Threads model

In the threads model of parallel programming, a single process can have
multiple, concurrent execution paths

Perhaps the most simple analogy that can be used to describe threads is the
concept of a single program that includes a number of subroutines

The main program a.out is scheduled to run by the native operating system. a.out
loads and acquires all of the necessary system and user resources to run

a.out performs some serial work, and then creates a number of tasks (threads) that
can be scheduled and run by the operating system concurrently

Each thread has local data, but also, shares the entire resources of a.out;
this saves the overhead associated with replicating a program’s resources for each
thread, while Each thread also benefits from a global memory view because
it shares the memory space of a.out

A thread’s work may best be described as a subroutine within the main program;
any thread can execute any subroutine at the same time as other threads

Threads communicate with each other through global memory (updating address
locations); this requires synchronization constructs to insure that more than one
thread is not updating the same global address at any time

Threads can come and go, but a.out remains present to provide the necessary
shared resources until the application has completed

S. Lanteri (Inria) High performance scientific computing 44 / 78



Parallel programming models
Threads model

Threads are commonly associated with shared memory architectures
and operating systems

S. Lanteri (Inria) High performance scientific computing 45 / 78



Parallel programming models
Threads model: implementations

From a programming perspective, threads implementations
commonly comprise:

a library of subroutines that are called from within parallel source code,

a set of compiler directives imbedded in either serial or parallel source code.

In both cases, the programmer is responsible for determining all parallelism

Threaded implementations are not new in computing:
historically, hardware vendors have implemented their own proprietary
versions of threads;

these implementations differed substantially from each other making
it difficult for programmers to develop portable threaded applications.

Unrelated standardization efforts have resulted in two very different
implementations of threads: POSIX Threads and OpenMP

S. Lanteri (Inria) High performance scientific computing 46 / 78



Parallel programming models
Threads model: implementations

POSIX threads
Library based; requires parallel coding

Specified by the IEEE POSIX 1003.1c standard (1995)

C Language only

Commonly referred to as Pthreads

Most hardware vendors now offer Pthreads in addition to their proprietary
threads implementations

Very explicit parallelism; requires significant programmer attention to detail

POSIX threads tutorial: computing.llnl.gov/tutorials/pthreads

OpenMP
Compiler directive based; can use serial code

Jointly defined and endorsed by a group of major computer hardware and software
vendors (the OpenMP Fortran API was released October 28, 1997, the C/C++ API
was released in late 1998)

Portable/multi-platform, including Unix and Windows NT platforms

Available in C/C++ and Fortran implementations

Can be very easy and simple to use - provides for incremental parallelism

OpenMP tutorial: computing.llnl.gov/tutorials/openMP

S. Lanteri (Inria) High performance scientific computing 47 / 78



Parallel programming models
Threads model: implementations

POSIX threads
Library based; requires parallel coding

Specified by the IEEE POSIX 1003.1c standard (1995)

C Language only

Commonly referred to as Pthreads

Most hardware vendors now offer Pthreads in addition to their proprietary
threads implementations

Very explicit parallelism; requires significant programmer attention to detail

POSIX threads tutorial: computing.llnl.gov/tutorials/pthreads

OpenMP
Compiler directive based; can use serial code

Jointly defined and endorsed by a group of major computer hardware and software
vendors (the OpenMP Fortran API was released October 28, 1997, the C/C++ API
was released in late 1998)

Portable/multi-platform, including Unix and Windows NT platforms

Available in C/C++ and Fortran implementations

Can be very easy and simple to use - provides for incremental parallelism

OpenMP tutorial: computing.llnl.gov/tutorials/openMP

S. Lanteri (Inria) High performance scientific computing 47 / 78



Parallel programming models
Message passing model

The message passing model demonstrates the following characteristics:
a set of tasks that use their own local memory during computation,

multiple tasks can reside on the same physical machine as well across an arbitrary
number of machines,

tasks exchange data through communications by sending and receiving messages,

data transfer usually requires cooperative operations to be performed by each process
(for example, a send operation must have a matching receive operation).

S. Lanteri (Inria) High performance scientific computing 48 / 78



Parallel programming models
Message passing model: implementations

From a programming perspective, message passing implementations commonly
comprise a library of subroutines that are imbedded in source code, and the
programmer is responsible for determining all parallelism

Historically, a variety of message passing libraries have been available since the
1980s; these implementations differed substantially from each other making it
difficult for programmers to develop portable applications

In 1992, the MPI Forum was formed with the primary goal of establishing a
standard interface for message passing implementations

Part 1 of the Message Passing Interface (MPI) was released in 1994

Part 2 (MPI-2) was released in 1996. Both MPI specifications are available
on the web at http://www-unix.mcs.anl.gov/mpi/

MPI is now the de facto industry standard for message passing, replacing virtually
all other message passing implementations used for production work

For shared memory architectures, MPI implementations usually don’t use a network
for task communications and instead use shared memory (memory copies) for
performance reasons

MPI tutorial: computing.llnl.gov/tutorials/mpi

S. Lanteri (Inria) High performance scientific computing 49 / 78



Parallel programming models
Data parallel model

The data parallel model demonstrates the following characteristics:
most of the parallel work focuses on performing operations on a data set,

the data set is typically organized into a common structure, such as an array or cube,

a set of tasks work collectively on the same data structure, however, each task
works on a different partition of the same data structure,

tasks perform the same operation on their partition of work.

On shared memory architectures, all tasks may have access to the data structure
through global memory

On distributed memory architectures the data structure is split up and resides as
chunks in the local memory of each task

S. Lanteri (Inria) High performance scientific computing 50 / 78



Parallel programming models
Data parallel model

S. Lanteri (Inria) High performance scientific computing 51 / 78



Parallel programming models
Data parallel model: implementations

Programming with the data parallel model is usually accomplished by writing a
program with data parallel constructs

The constructs can be calls to a data parallel subroutine library or, compiler
directives recognized by a data parallel compiler

Fortran 90 and 95 (F90, F95) - ISO/ANSI standard extensions to Fortran 77
Contains everything that is in Fortran 77

New source code format; additions to character set

Additions to program structure and commands

Variable additions - methods and arguments

Pointers and dynamic memory allocation added

Array processing (arrays treated as objects) added

Recursive and new intrinsic functions added

Many other new features

Implementations are available for most common parallel platforms

S. Lanteri (Inria) High performance scientific computing 52 / 78



Parallel programming models
Data parallel model: implementations

High Performance Fortran (HPF) - extensions to Fortran 90 to support
data parallel programming

Contains everything in Fortran 90

Directives to tell compiler how to distribute data added

Assertions that can improve optimization of generated code added

Data parallel constructs added (now part of Fortran 95)

Implementations are available for most common parallel platforms

Compiler directives: allow the programmer to specify the distribution and
alignment of data (Fortran implementations are available for most
common parallel platforms)

Distributed memory implementations of this model usually have the compiler
convert the program into standard code with calls to a message passing library
(MPI usually) to distribute the data to all the processes; all message passing
is done invisibly to the programmer

S. Lanteri (Inria) High performance scientific computing 53 / 78



Parallel programming models
Other models

Other parallel programming models besides those previously mentioned
certainly exist, and will continue to evolve along with the ever changing
world of computer hardware and software

Hybrid
In this model, any two or more parallel programming models are combined

Currently, a common example of a hybrid model is the combination of the
message passing model (MPI) with either the threads model (POSIX threads)
or the shared memory model (OpenMP)

Another common example of a hybrid model is combining data parallel with
message passing (data parallel implementations (F90, HPF) on distributed
memory architectures actually use message passing to transmit data
between tasks, transparently to the programmer)

S. Lanteri (Inria) High performance scientific computing 54 / 78



Parallel programming models
Other models

Single Program Multiple Data (SPMD)
SPMD is actually a high level programming model that can be built
upon any combination of the previously mentioned parallel programming models

A single program is executed by all tasks simultaneously

At any moment in time, tasks can be executing the same or different instructions
within the same program

SPMD programs usually have the necessary logic programmed into them to allow
different tasks to branch or conditionally execute only those parts of the program
they are designed to execute (that is, tasks do not necessarily have to execute
the entire program - perhaps only a portion of it)

All tasks may use different data

S. Lanteri (Inria) High performance scientific computing 55 / 78



Parallel programming models
Other models

Multiple Program Multiple Data (MPMD)
Like SPMD, MPMD is actually a high level programming model that can be built
upon any combination of the previously mentioned parallel programming models

MPMD applications typically have multiple executable object files (programs)

While the application is being run in parallel, each task can be executing the
same or different program as other tasks

All tasks may use different data

S. Lanteri (Inria) High performance scientific computing 56 / 78



Outline

1 Preamble

2 Overview

3 Concepts and terminology

4 Parallel computer memory architectures

5 Parallel programming models

6 Designing parallel programs

S. Lanteri (Inria) High performance scientific computing 57 / 78



Designing parallel programs
Automatic vs. manual parallelization

Designing and developing parallel programs has characteristically been
a very manual process

The programmer is typically responsible for both identifying and actually
implementing parallelism

Very often, manually developing parallel codes is a time consuming, complex,
error-prone and iterative process

For a number of years now, various tools have been available to assist the
programmer with converting serial programs into parallel programs

The most common type of tool used to automatically parallelize a serial
program is a parallelizing compiler or pre-processor

S. Lanteri (Inria) High performance scientific computing 58 / 78



Designing parallel programs
Automatic vs. manual parallelization

A parallelizing compiler generally works in two different ways

Fully automatic:
the compiler analyzes the source code and identifies opportunities
for parallelism,

the analysis includes identifying inhibitors to parallelism and possibly
a cost weighting on whether or not the parallelism would actually
improve performance,

loops (do, for) are the most frequent target for automatic parallelization.

Programmer directed:
using compiler directives or possibly compiler flags, the programmer
explicitly tells the compiler how to parallelize the code,

may be able to be used in conjunction with some degree of automatic
parallelization also.

S. Lanteri (Inria) High performance scientific computing 59 / 78



Designing parallel programs
Automatic vs. manual parallelization

There are several important caveats that apply to automatic parallelization:
wrong results may be produced,

performance may actually degrade,

much less flexible than manual parallelization,

limited to a subset (mostly loops) of code,

may actually not parallelize code if the analysis suggests there are inhibitors
or the code is too complex.

S. Lanteri (Inria) High performance scientific computing 60 / 78



Designing parallel programs
Automatic vs. manual parallelization

Partitioning
One of the first steps in designing a parallel program is to break the problem into
discrete chunks of work that can be distributed to multiple tasks - this is known
as decomposition or partitioning

There are two basic ways to partition computational work among parallel tasks:
domain decomposition and functional decomposition

Domain decomposition

In this type of partitioning, the data associated with a problem is decomposed

Each parallel task then works on a portion of of the data

S. Lanteri (Inria) High performance scientific computing 61 / 78



Designing parallel programs
Automatic vs. manual parallelization

Partitioning: domain decomposition
There are different ways to partition data

S. Lanteri (Inria) High performance scientific computing 62 / 78



Designing parallel programs
Automatic vs. manual parallelization

Partitioning: functional decomposition
In this approach, the focus is on the computation that is to be performed rather
than on the data manipulated by the computation

The problem is decomposed according to the work that must be done and
each task then performs a portion of the overall work

S. Lanteri (Inria) High performance scientific computing 63 / 78



Designing parallel programs
Automatic vs. manual parallelization

Partitioning: functional decomposition
Functional decomposition lends itself well to problems that can be split
into different tasks

Ecosystem modeling

Each program calculates the population of a
given group, where each group’s growth depends on that of its neighbors.

As time progresses, each process calculates its current state, then exchanges
information with the neighbor populations.

All tasks then progress to calculate the state at the next time step.

S. Lanteri (Inria) High performance scientific computing 64 / 78



Designing parallel programs
Automatic vs. manual parallelization

Partitioning: functional decomposition
Functional decomposition lends itself well to problems that can be split
into different tasks

Signal processing

An audio signal data set is passed through four distinct computational filters.

Each filter is a separate process.

The first segment of data must pass through the first filter before
progressing to the second.

When it does, the second segment of data passes through the first filter.

By the time the fourth segment of data is in the first filter, all four tasks are busy.

S. Lanteri (Inria) High performance scientific computing 65 / 78



Designing parallel programs
Automatic vs. manual parallelization

Partitioning: functional decomposition
Functional decomposition lends itself well to problems that can be split
into different tasks

Climate modeling

Each model component can be thought of as a separate task.

Arrows represent exchanges of data between components during computation: the
atmosphere model generates wind velocity data that are used by the ocean
model, the ocean model generates sea surface temperature data that
are used by the atmosphere model, and so on.

S. Lanteri (Inria) High performance scientific computing 66 / 78



Designing parallel programs
Communications: who needs communications ?

The need for communications between tasks depends upon your problem
You DON’T need communications

Some types of problems can be decomposed and executed in parallel
with virtually no need for tasks to share data

For example, imagine an image processing operation where every pixel
in a black and white image needs to have its color reversed.

The image data can easily be distributed to multiple tasks that then act
independently of each other to do their portion of the work.

These types of problems are often called embarrassingly parallel because
they are so straight-forward.

Very little inter-task communication is required.

You DO need communications:

Most parallel applications are not quite so simple, and do require tasks to
share data with each other.

For example, a 3-D heat diffusion problem requires a task to know the
temperatures calculated by the tasks that have neighboring data.

Changes to neighboring data has a direct effect on that task’s data.

S. Lanteri (Inria) High performance scientific computing 67 / 78



Designing parallel programs
Communications: factors to consider

Cost of communications
Inter-task communication virtually always implies overhead

Machine cycles and resources that could be used for computation are instead
used to package and transmit data

Communications frequently require some type of synchronization between
tasks, which can result in tasks spending time waiting instead of doing work

Competing communication traffic can saturate the available network bandwidth,
further aggravating performance problems

Latency vs. bandwidth
Latency is the time it takes to send a minimal (0 byte) message from point A
to point B (commonly expressed as microseconds)

Bandwidth is the amount of data that can be communicated per unit of time
(commonly expressed as megabytes/sec or gigabytes/sec)

Sending many small messages can cause latency to dominate communication
overheads

Often it is more efficient to package small messages into a larger message, thus
increasing the effective communications bandwidth

S. Lanteri (Inria) High performance scientific computing 68 / 78



Designing parallel programs
Communications: factors to consider

Cost of communications
Inter-task communication virtually always implies overhead

Machine cycles and resources that could be used for computation are instead
used to package and transmit data

Communications frequently require some type of synchronization between
tasks, which can result in tasks spending time waiting instead of doing work

Competing communication traffic can saturate the available network bandwidth,
further aggravating performance problems

Latency vs. bandwidth
Latency is the time it takes to send a minimal (0 byte) message from point A
to point B (commonly expressed as microseconds)

Bandwidth is the amount of data that can be communicated per unit of time
(commonly expressed as megabytes/sec or gigabytes/sec)

Sending many small messages can cause latency to dominate communication
overheads

Often it is more efficient to package small messages into a larger message, thus
increasing the effective communications bandwidth

S. Lanteri (Inria) High performance scientific computing 68 / 78



Designing parallel programs
Communications: factors to consider

Visibility of communications
With the message passing model, communications are explicit and generally quite
visible and under the control of the programmer

With the data parallel model, communications often occur transparently to the
programmer, particularly on distributed memory architectures (the programmer may
not even be able to know exactly how inter-task communications are being
accomplished)

Synchronous vs. asynchronous communications
Synchronous communications require some type of handshaking between
tasks that are sharing data; this can be explicitly structured in code by the programmer,
or it may happen at a lower level unknown to the programmer

Synchronous communications are often referred to as blocking communications
since other work must wait until the communications have completed

Asynchronous communications allow tasks to transfer data independently from
one another (for example, task 1 can prepare and send a message to task 2,
and then immediately begin doing other work; when task 2 actually receives
the data doesn’t matter)

Asynchronous communications are often referred to as non-blocking communications
since other work can be done while the communications are taking place

Interleaving computation with communication is the single greatest benefit for
using asynchronous communications

S. Lanteri (Inria) High performance scientific computing 69 / 78



Designing parallel programs
Communications: factors to consider

Visibility of communications
With the message passing model, communications are explicit and generally quite
visible and under the control of the programmer

With the data parallel model, communications often occur transparently to the
programmer, particularly on distributed memory architectures (the programmer may
not even be able to know exactly how inter-task communications are being
accomplished)

Synchronous vs. asynchronous communications
Synchronous communications require some type of handshaking between
tasks that are sharing data; this can be explicitly structured in code by the programmer,
or it may happen at a lower level unknown to the programmer

Synchronous communications are often referred to as blocking communications
since other work must wait until the communications have completed

Asynchronous communications allow tasks to transfer data independently from
one another (for example, task 1 can prepare and send a message to task 2,
and then immediately begin doing other work; when task 2 actually receives
the data doesn’t matter)

Asynchronous communications are often referred to as non-blocking communications
since other work can be done while the communications are taking place

Interleaving computation with communication is the single greatest benefit for
using asynchronous communications

S. Lanteri (Inria) High performance scientific computing 69 / 78



Designing parallel programs
Communications: factors to consider

Scope of communications
Knowing which tasks must communicate with each other is critical during
the design stage of a parallel code

Point-to-point - involves two tasks with one task acting as the sender/producer
of data, and the other acting as the receiver/consumer

Collective - involves data sharing between more than two tasks, which are
often specified as being members in a common group, or collective

S. Lanteri (Inria) High performance scientific computing 70 / 78



Designing parallel programs
Synchronizations

Barrier
Usually implies that all tasks are involved

Each task performs its work until it reaches the barrier, and then stops, or blocks

When the last task reaches the barrier, all tasks are synchronized

Lock/semaphore
Can involve any number of tasks

Typically used to serialize (protect) access to global data or a section of code

Only one task at a time may use (own) the lock/semaphore/flag

The first task to acquire the lock sets it and can then safely (serially) access the
protected data or code

Other tasks can attempt to acquire the lock but must wait until the task that
owns the lock releases it

Synchronous communication operations
Involves only those tasks executing a communication operation

When a task performs a communication operation, some form of coordination is
required with the other task(s) participating in the communication (for example,
before a task can perform a send operation, it must first receive an acknowledgment
from the receiving task that it is OK to send)

S. Lanteri (Inria) High performance scientific computing 71 / 78



Designing parallel programs
Synchronizations

Barrier
Usually implies that all tasks are involved

Each task performs its work until it reaches the barrier, and then stops, or blocks

When the last task reaches the barrier, all tasks are synchronized

Lock/semaphore
Can involve any number of tasks

Typically used to serialize (protect) access to global data or a section of code

Only one task at a time may use (own) the lock/semaphore/flag

The first task to acquire the lock sets it and can then safely (serially) access the
protected data or code

Other tasks can attempt to acquire the lock but must wait until the task that
owns the lock releases it

Synchronous communication operations
Involves only those tasks executing a communication operation

When a task performs a communication operation, some form of coordination is
required with the other task(s) participating in the communication (for example,
before a task can perform a send operation, it must first receive an acknowledgment
from the receiving task that it is OK to send)

S. Lanteri (Inria) High performance scientific computing 71 / 78



Designing parallel programs
Synchronizations

Barrier
Usually implies that all tasks are involved

Each task performs its work until it reaches the barrier, and then stops, or blocks

When the last task reaches the barrier, all tasks are synchronized

Lock/semaphore
Can involve any number of tasks

Typically used to serialize (protect) access to global data or a section of code

Only one task at a time may use (own) the lock/semaphore/flag

The first task to acquire the lock sets it and can then safely (serially) access the
protected data or code

Other tasks can attempt to acquire the lock but must wait until the task that
owns the lock releases it

Synchronous communication operations
Involves only those tasks executing a communication operation

When a task performs a communication operation, some form of coordination is
required with the other task(s) participating in the communication (for example,
before a task can perform a send operation, it must first receive an acknowledgment
from the receiving task that it is OK to send)

S. Lanteri (Inria) High performance scientific computing 71 / 78



Designing parallel programs
Data dependencies

Definition
A dependence exists between program statements when the order of statement
execution affects the results of the program

A data dependence results from multiple use of the same location(s) in storage by
different tasks

Dependencies are important to parallel programming because they are one of the
primary inhibitors to parallelism

How to handle data dependencies ?
Distributed memory architectures: communicate required data at synchronization
points

Shared memory architectures: synchronize read/write operations between tasks

S. Lanteri (Inria) High performance scientific computing 72 / 78



Designing parallel programs
Load balancing

Load balancing refers to the practice of distributing work among tasks so that all
tasks are kept busy all of the time

It can be considered a minimization of task idle time

Load balancing is important to parallel programs for performance reasons (for
example, if all tasks are subject to a barrier synchronization point, the slowest task
will determine the overall performance)

S. Lanteri (Inria) High performance scientific computing 73 / 78



Designing parallel programs
Load balancing

How to achieve load balance ?
Equally partition the work each task receives

For array/matrix operations where each task performs similar work, evenly distribute
the data set among the tasks.

For loop iterations where the work done in each iteration is similar, evenly distribute
the iterations across the tasks.

If a heterogeneous mix of machines with varying performance characteristics are being
used, be sure to use some type of performance analysis tool to detect any load
imbalances and adjust work accordingly.

Use dynamic work assignment

Certain classes of problems result in load imbalances even if data is evenly distributed
among tasks e.g. sparse arrays (some tasks will have actual data to work on while
others have mostly zeros), adaptive grid methods (some tasks may need to refine their
mesh while others don’t), etc.

When the amount of work each task will perform is intentionally variable, or is unable
to be predicted, it may be helpful to use a scheduler - task pool approach: as each
task finishes its work, it queues to get a new piece of work.

It may become necessary to design an algorithm which detects and handles load
imbalances as they occur dynamically within the code.

S. Lanteri (Inria) High performance scientific computing 74 / 78



Designing parallel programs
Load balancing

How to achieve load balance ?
Equally partition the work each task receives

For array/matrix operations where each task performs similar work, evenly distribute
the data set among the tasks.

For loop iterations where the work done in each iteration is similar, evenly distribute
the iterations across the tasks.

If a heterogeneous mix of machines with varying performance characteristics are being
used, be sure to use some type of performance analysis tool to detect any load
imbalances and adjust work accordingly.

Use dynamic work assignment

Certain classes of problems result in load imbalances even if data is evenly distributed
among tasks e.g. sparse arrays (some tasks will have actual data to work on while
others have mostly zeros), adaptive grid methods (some tasks may need to refine their
mesh while others don’t), etc.

When the amount of work each task will perform is intentionally variable, or is unable
to be predicted, it may be helpful to use a scheduler - task pool approach: as each
task finishes its work, it queues to get a new piece of work.

It may become necessary to design an algorithm which detects and handles load
imbalances as they occur dynamically within the code.

S. Lanteri (Inria) High performance scientific computing 74 / 78



Designing parallel programs
Granularity

Computation/Communication ratio
In parallel computing, granularity is a qualitative measure of the ratio of
computation to communication

Periods of computation are typically separated from periods of communication
by synchronization events

Fine-grain parallelism

Relatively small amounts of computational work are done between
communication events.

Low computation to communication ratio.

Facilitates load balancing.

Implies high communication overhead and less opportunity for performance
enhancement.

If granularity is too fine it is possible that the overhead required for communications
and synchronization between tasks takes longer than the computation.

Coarse-grain parallelism:

Relatively large amounts of computational work are done between
communication/synchronization events.

High computation to communication ratio.

Implies more opportunity for performance increase.

Harder to load balance efficiently.

S. Lanteri (Inria) High performance scientific computing 75 / 78



Designing parallel programs
Granularity

Computation/Communication ratio
In parallel computing, granularity is a qualitative measure of the ratio of
computation to communication

Periods of computation are typically separated from periods of communication
by synchronization events

Fine-grain parallelism

Relatively small amounts of computational work are done between
communication events.

Low computation to communication ratio.

Facilitates load balancing.

Implies high communication overhead and less opportunity for performance
enhancement.

If granularity is too fine it is possible that the overhead required for communications
and synchronization between tasks takes longer than the computation.

Coarse-grain parallelism:

Relatively large amounts of computational work are done between
communication/synchronization events.

High computation to communication ratio.

Implies more opportunity for performance increase.

Harder to load balance efficiently.

S. Lanteri (Inria) High performance scientific computing 75 / 78



Designing parallel programs
Granularity

Computation/Communication ratio
In parallel computing, granularity is a qualitative measure of the ratio of
computation to communication

Periods of computation are typically separated from periods of communication
by synchronization events

Fine-grain parallelism

Relatively small amounts of computational work are done between
communication events.

Low computation to communication ratio.

Facilitates load balancing.

Implies high communication overhead and less opportunity for performance
enhancement.

If granularity is too fine it is possible that the overhead required for communications
and synchronization between tasks takes longer than the computation.

Coarse-grain parallelism:

Relatively large amounts of computational work are done between
communication/synchronization events.

High computation to communication ratio.

Implies more opportunity for performance increase.

Harder to load balance efficiently.

S. Lanteri (Inria) High performance scientific computing 75 / 78



Designing parallel programs
Granularity

Which is best ?

The most efficient granularity is dependent on the algorithm and the hardware
environment in which it runs.

In most cases the overhead associated with communications and synchronization
is high relative to execution speed so it is advantageous to have
coarse granularity.

Fine-grain parallelism can help reduce overheads due to load imbalance

S. Lanteri (Inria) High performance scientific computing 76 / 78



Designing parallel programs
Parallel performance evaluation

Parallel speedup :
Ts

Tp

Amdahl’s law
Amdahl’s law states that potential program speedup is defined by the fraction
of code (P) that can be parallelized:

Parallel speedup =
1

1 − P
.

If none of the code can be parallelized, P = 0 and the speedup = 1 (no speedup)

If all of the code is parallelized, P = 1 and the speedup is infinite (in theory)

If 50% of the code can be parallelized, maximum speedup = 2, meaning the code
will run twice as fast

Introducing the number of processors performing the parallel fraction of work, the
relationship can be modeled by:

Parallel speedup =
1

P

N
+ S

,

where P = parallel fraction, N = number of processors and S = serial fraction.

It soon becomes obvious that there are limits to the scalability of parallelism

S. Lanteri (Inria) High performance scientific computing 77 / 78



Designing parallel programs
Parallel performance evaluation

S. Lanteri (Inria) High performance scientific computing 78 / 78


	Preamble
	Overview
	Concepts and terminology
	Parallel computer memory architectures
	Parallel programming models
	Designing parallel programs

