
Introduction to high performance scientific computing
Numerical linear algebra

MAM5 - INUM, Polytech Nice Sophia

Stéphane Lanteri
Stephane.Lanteri@inria.fr

Nachos project-team
Inria Sophia Antipolis - Méditerranée research center, France

December 28, 2016

S. Lanteri (Inria) High performance scientific computing December 28, 2016 1 / 131



Scientific computing
Numerical simulation of complex physical phenomena

Physical phenomenon

⇓

Mathematical (continuous) model (system of PDEs)

⇓

Formulation of a discrete model (discretization in space, time integration, etc.)
and numerical analysis (stability, convergence, etc.)

⇓

Numerical algorithms and computer implementation

S. Lanteri (Inria) High performance scientific computing December 28, 2016 2 / 131



Scientific computing
Numerical linear algebra

The operations Ax = b and Ax = λx are central numerical kernels
in the solution of numerous scientific computing problems

Numerical solution of systems of PDEs:
finite difference, finite element and finite volume methods,
boundary element methods,
structured (cartesian, body-fitted) grids,
unstructured grids.

Relevant topics:
sparse versus dense systems,
symmetric versus non-symmetric systems,
definite versus indefinite systems,
arithmetic types (real versus complex),
etc.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 3 / 131



References

Numerical linear algebra

Numerical linear algebra

Grégoire Allaire and Sidi Mahmoud Kaber

Numerical linear algebra

Grégoire Allaire and Sidi Mahmoud Kaber
Texts in Applied Mathematics, Vo. 55
Springer, 2008

Computer solution of large linear systems

Gérard Meurant
Studies in Mathematics and its Applications, Vol. 28
North Holland, 1999

Iterative methods for sparse linear systems

Yousef Saad
SIAM, 2003

S. Lanteri (Inria) High performance scientific computing December 28, 2016 4 / 131



Outline

1 Numerical linear algebra background

2 Linear systems

3 Direct methods

4 Iterative methods
Relaxation methods
Krylov methods

5 Preconditioning techniques

6 Domain decomposition methods

S. Lanteri (Inria) High performance scientific computing December 28, 2016 5 / 131



Definition and properties of matrices

K = R or C

Definition 1.1

A matrix A is a rectangular array (ai,j)1≤i≤n,1≤j≤p where ai,j ∈ K is the entry
in row i and column j ,

A =

a1,1 · · · a1,p

...
...

an,1 · · · an,p

 .

The set of all matrices of size n × p (n rows and p columns) is denoted Mn,p(K).

Definition 1.2

Let A and B be two matrices in Mn,p(K).

The sum A + B is the matrix in Mn,p(K) defined by,

A + B = (ai,j + bi,j)1≤i≤n,1≤j≤p.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 6 / 131



Definition and properties of matrices

K = R or C

Definition 1.1

A matrix A is a rectangular array (ai,j)1≤i≤n,1≤j≤p where ai,j ∈ K is the entry
in row i and column j ,

A =

a1,1 · · · a1,p

...
...

an,1 · · · an,p

 .

The set of all matrices of size n × p (n rows and p columns) is denoted Mn,p(K).

Definition 1.2

Let A and B be two matrices in Mn,p(K).

The sum A + B is the matrix in Mn,p(K) defined by,

A + B = (ai,j + bi,j)1≤i≤n,1≤j≤p.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 6 / 131



Definition and properties of matrices

Definition 1.3

Let A be a matrix in Mn,p(K) and λ ∈ R.

The scalar multiplication of A by λ is the matrix in Mn,p(K) defined by,

λA = (λai,j)1≤i≤n,1≤j≤p.

Definition 1.4

Let A and B be two matrices respectively in Mn,p(K) and Mp,q(K).

The product AB is the matrix in Mn,q(K) defined by,

AB = (

p∑
k=1

ai,kbk,j)1≤i≤n,1≤j≤q.

Associativity: (MN)P = M(NP).

In general, AB 6= BA.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 7 / 131



Definition and properties of matrices

Definition 1.3

Let A be a matrix in Mn,p(K) and λ ∈ R.

The scalar multiplication of A by λ is the matrix in Mn,p(K) defined by,

λA = (λai,j)1≤i≤n,1≤j≤p.

Definition 1.4

Let A and B be two matrices respectively in Mn,p(K) and Mp,q(K).

The product AB is the matrix in Mn,q(K) defined by,

AB = (

p∑
k=1

ai,kbk,j)1≤i≤n,1≤j≤q.

Associativity: (MN)P = M(NP).

In general, AB 6= BA.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 7 / 131



Definition and properties of matrices

Definition 1.3

Let A be a matrix in Mn,p(K) and λ ∈ R.

The scalar multiplication of A by λ is the matrix in Mn,p(K) defined by,

λA = (λai,j)1≤i≤n,1≤j≤p.

Definition 1.4

Let A and B be two matrices respectively in Mn,p(K) and Mp,q(K).

The product AB is the matrix in Mn,q(K) defined by,

AB = (

p∑
k=1

ai,kbk,j)1≤i≤n,1≤j≤q.

Associativity: (MN)P = M(NP).

In general, AB 6= BA.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 7 / 131



Definition and properties of matrices

Definition 1.5

Let A be a matrix in Mn,p(K).

The transpose matrix At is the matrix in Mp,n(K) defined by,

At = (aj,i )1≤j≤p,1≤i≤n =

a1,1 · · · an,1
...

...
a1,p · · · an,p

 .

If A = At (which can happen only if A is a square matrix, i.e. if n = p), then A is
said to be symmetric.

Definition 1.6

A square matrix A ∈Mn(K) is said to be invertible (or nonsingular) if there exists a
matrix B ∈Mn(K) such that AB = BA = In where (In)1≤i,j≤n = δi,j is the identity
matrix of A ∈Mn(K).

This matrix B is denoted by A−1 and is called the inverse matrix of A.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 8 / 131



Definition and properties of matrices

Definition 1.5

Let A be a matrix in Mn,p(K).

The transpose matrix At is the matrix in Mp,n(K) defined by,

At = (aj,i )1≤j≤p,1≤i≤n =

a1,1 · · · an,1
...

...
a1,p · · · an,p

 .

If A = At (which can happen only if A is a square matrix, i.e. if n = p), then A is
said to be symmetric.

Definition 1.6

A square matrix A ∈Mn(K) is said to be invertible (or nonsingular) if there exists a
matrix B ∈Mn(K) such that AB = BA = In where (In)1≤i,j≤n = δi,j is the identity
matrix of A ∈Mn(K).

This matrix B is denoted by A−1 and is called the inverse matrix of A.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 8 / 131



Definition and properties of matrices

A noninvertible matrix is said to be singular.

The kernel, or null space, of a matrix A ∈Mn,p(K) is the set of vectors x ∈ Kp

such that Ax = 0, and is denoted by Ker A.

The image, or range, of A is the set of vectors y ∈ Kn such that y = Ax , with
x ∈ Kp, and is denoted by Im A.

The dimension of the linear space Im A is called the rank of A, and is denoted
by rk A.

Lemma 1.7

For any matrix A ∈Mn(K) the following statements are equivalent:

1 A is invertible,

2 Ker A = 0,

3 Im A = Kn,

4 there exists B ∈Mn(K) such that AB = In,

5 there exists B ∈Mn(K) such that BA = In.

In the last two cases the matrix B is precisely equal to A−1.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 9 / 131



Definition and properties of matrices

A noninvertible matrix is said to be singular.

The kernel, or null space, of a matrix A ∈Mn,p(K) is the set of vectors x ∈ Kp

such that Ax = 0, and is denoted by Ker A.

The image, or range, of A is the set of vectors y ∈ Kn such that y = Ax , with
x ∈ Kp, and is denoted by Im A.

The dimension of the linear space Im A is called the rank of A, and is denoted
by rk A.

Lemma 1.7

For any matrix A ∈Mn(K) the following statements are equivalent:

1 A is invertible,

2 Ker A = 0,

3 Im A = Kn,

4 there exists B ∈Mn(K) such that AB = In,

5 there exists B ∈Mn(K) such that BA = In.

In the last two cases the matrix B is precisely equal to A−1.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 9 / 131



Definition and properties of matrices

Lemma 1.8

Let A and B be two invertible matrices in Mn(K). Then,

(AB)−1 = B−1A−1.

Definition 1.9

A permutation of order n is a one-to-one mapping from the set {1, 2, · · · , n} into itself.
We denote by Sn the set of all permutations of order n. The signature of a permutation
σ is the number ε(σ), equal to +1 or -1 defined by,

ε(σ) = (−1)p(σ) with p(σ) =
∑

1≤i≤j≤n

Invσ(i , j),

where the number Invσ(i , j) indicates whether the order between i and j is inverted or
not by the permutation σ, and is defined for i ≤ j by,

Invσ(i , j) =

{
0 if σ(i) ≤ σ(j),
1 if σ(i) > σ(j).

S. Lanteri (Inria) High performance scientific computing December 28, 2016 10 / 131



Definition and properties of matrices

Lemma 1.8

Let A and B be two invertible matrices in Mn(K). Then,

(AB)−1 = B−1A−1.

Definition 1.9

A permutation of order n is a one-to-one mapping from the set {1, 2, · · · , n} into itself.
We denote by Sn the set of all permutations of order n. The signature of a permutation
σ is the number ε(σ), equal to +1 or -1 defined by,

ε(σ) = (−1)p(σ) with p(σ) =
∑

1≤i≤j≤n

Invσ(i , j),

where the number Invσ(i , j) indicates whether the order between i and j is inverted or
not by the permutation σ, and is defined for i ≤ j by,

Invσ(i , j) =

{
0 if σ(i) ≤ σ(j),
1 if σ(i) > σ(j).

S. Lanteri (Inria) High performance scientific computing December 28, 2016 10 / 131



Definition and properties of matrices

Definition 1.10

The determinant of a square matrix A ∈Mn(K) is,

det(A) =
∑
σ∈Sn

ε(σ)
n∏

i=1

ai,σ(i).

Lemma 1.11

Let A and B be two square matrices in Mn(K). Then,

1 det(AB) = det(A)det(B) = det(BA),

2 det(At) = det(A),

3 A is invertible if and only if det(A) 6= 0.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 11 / 131



Definition and properties of matrices

Definition 1.10

The determinant of a square matrix A ∈Mn(K) is,

det(A) =
∑
σ∈Sn

ε(σ)
n∏

i=1

ai,σ(i).

Lemma 1.11

Let A and B be two square matrices in Mn(K). Then,

1 det(AB) = det(A)det(B) = det(BA),

2 det(At) = det(A),

3 A is invertible if and only if det(A) 6= 0.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 11 / 131



Definition and properties of matrices

Definition 1.12

A square matrix A ∈Mn(K) is said to be diagonal if its entries satisfy ai,j = 0 for i 6= j .
A diagonal matrix is often denoted by A = diag(a1,1, · · · , an,n).

Definition 1.13

Let T be a matrix in Mn,p(K). It is said to be an upper triangular matrix if ti,j = 0 for
all indices (i , j) such that i > j . It is said to be a lower triangular matrix if ti,j = 0 for all
indices (i , j) such that i < j .

Lemma 1.14

Let T be a lower triangular matrix (respectively, upper triangular) in Mn(K). Its inverse
(when it exists) is also a lower triangular matrix (respectively, upper triangular matrix)
with diagonal entries equal to the inverse of the diagonal entries of T .

Let T
′

be another lower triangular matrix (respectively, upper triangular) in Mn(K).

The product TT
′

is also a lower triangular matrix (respectively, upper triangular) with

diagonal entries equal to the product of the diagonal entries of T and T
′
.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 12 / 131



Definition and properties of matrices

Definition 1.12

A square matrix A ∈Mn(K) is said to be diagonal if its entries satisfy ai,j = 0 for i 6= j .
A diagonal matrix is often denoted by A = diag(a1,1, · · · , an,n).

Definition 1.13

Let T be a matrix in Mn,p(K). It is said to be an upper triangular matrix if ti,j = 0 for
all indices (i , j) such that i > j . It is said to be a lower triangular matrix if ti,j = 0 for all
indices (i , j) such that i < j .

Lemma 1.14

Let T be a lower triangular matrix (respectively, upper triangular) in Mn(K). Its inverse
(when it exists) is also a lower triangular matrix (respectively, upper triangular matrix)
with diagonal entries equal to the inverse of the diagonal entries of T .

Let T
′

be another lower triangular matrix (respectively, upper triangular) in Mn(K).

The product TT
′

is also a lower triangular matrix (respectively, upper triangular) with

diagonal entries equal to the product of the diagonal entries of T and T
′
.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 12 / 131



Definition and properties of matrices

Definition 1.12

A square matrix A ∈Mn(K) is said to be diagonal if its entries satisfy ai,j = 0 for i 6= j .
A diagonal matrix is often denoted by A = diag(a1,1, · · · , an,n).

Definition 1.13

Let T be a matrix in Mn,p(K). It is said to be an upper triangular matrix if ti,j = 0 for
all indices (i , j) such that i > j . It is said to be a lower triangular matrix if ti,j = 0 for all
indices (i , j) such that i < j .

Lemma 1.14

Let T be a lower triangular matrix (respectively, upper triangular) in Mn(K). Its inverse
(when it exists) is also a lower triangular matrix (respectively, upper triangular matrix)
with diagonal entries equal to the inverse of the diagonal entries of T .

Let T
′

be another lower triangular matrix (respectively, upper triangular) in Mn(K).

The product TT
′

is also a lower triangular matrix (respectively, upper triangular) with

diagonal entries equal to the product of the diagonal entries of T and T
′
.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 12 / 131



Definition and properties of matrices

Definition 1.15

Let A ∈Mn(C) be a complex square matrix. The matrix A? ∈Mn(C) defined by,

A? = A
t

= (aj,i )1≤i,j≤n,

is the adjoint matrix of A.

Definition 1.16

Let A ∈Mn(C) be a complex square matrix. Then,

1 A is self-adjoint or Hermitian if A = A?,

2 A is unitary if A−1 = A?,

3 A is normal if AA? = A?A.

Definition 1.17

Let A ∈Mn(R) be a real square matrix. Then,

1 A is symmetric or self-adjoint if A = At ,

2 A is orthogonal or unitary if A−1 = At ,

3 A is normal if AAt = AtA.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 13 / 131



Definition and properties of matrices

Definition 1.15

Let A ∈Mn(C) be a complex square matrix. The matrix A? ∈Mn(C) defined by,

A? = A
t

= (aj,i )1≤i,j≤n,

is the adjoint matrix of A.

Definition 1.16

Let A ∈Mn(C) be a complex square matrix. Then,

1 A is self-adjoint or Hermitian if A = A?,

2 A is unitary if A−1 = A?,

3 A is normal if AA? = A?A.

Definition 1.17

Let A ∈Mn(R) be a real square matrix. Then,

1 A is symmetric or self-adjoint if A = At ,

2 A is orthogonal or unitary if A−1 = At ,

3 A is normal if AAt = AtA.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 13 / 131



Definition and properties of matrices

Definition 1.15

Let A ∈Mn(C) be a complex square matrix. The matrix A? ∈Mn(C) defined by,

A? = A
t

= (aj,i )1≤i,j≤n,

is the adjoint matrix of A.

Definition 1.16

Let A ∈Mn(C) be a complex square matrix. Then,

1 A is self-adjoint or Hermitian if A = A?,

2 A is unitary if A−1 = A?,

3 A is normal if AA? = A?A.

Definition 1.17

Let A ∈Mn(R) be a real square matrix. Then,

1 A is symmetric or self-adjoint if A = At ,

2 A is orthogonal or unitary if A−1 = At ,

3 A is normal if AAt = AtA.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 13 / 131



Definition and properties of matrices
Gram-Schmidt orthonormalization process

We consider the vector space Kd with the scalar product < x , y >=
d∑

i=1

xiyi

if K = R, or the Hermitian product < x , y >=
d∑

i=1

xiy i if K = C

The Gram-Schmidt orthonormalization process constructs an orthonormal family
out of a family of linearly independent vectors in Kd

Theorem 1.18

Let (x1, · · · , xn) be a linearly independent family in Kd . There exists an orthonormal
family (y1, · · · , yn) such that span(y1, · · · , yp) = span(x1, · · · , xp) for any index p
in the range 1 ≤ p ≤ n.

If K = R, this family is unique up to a change of sign of each vector yp.

If K = C, this family is unique up to a multiplicative factor of unit modulus for each
vector yp.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 14 / 131



Definition and properties of matrices
Gram-Schmidt orthonormalization process

We consider the vector space Kd with the scalar product < x , y >=
d∑

i=1

xiyi

if K = R, or the Hermitian product < x , y >=
d∑

i=1

xiy i if K = C

The Gram-Schmidt orthonormalization process constructs an orthonormal family
out of a family of linearly independent vectors in Kd

Theorem 1.18

Let (x1, · · · , xn) be a linearly independent family in Kd . There exists an orthonormal
family (y1, · · · , yn) such that span(y1, · · · , yp) = span(x1, · · · , xp) for any index p
in the range 1 ≤ p ≤ n.

If K = R, this family is unique up to a change of sign of each vector yp.

If K = C, this family is unique up to a multiplicative factor of unit modulus for each
vector yp.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 14 / 131



Definition and properties of matrices

Definition 1.19

Let A ∈Mn(C) be a complex square matrix. The characteristic polynomial of A is
the polynomial PA(λ) defined on C by,

PA(λ) = det(A− λIn)a.

It is a polynomial of degree equal to n and has thus n roots in C which are called the
eigenvalues of A. The algebraic multiplicity of an eigenvalue is its multiplicity as a
root of PA(λ).

A nonzero vector x ∈ Cn such that Ax = λx is called an eigenvector of A associated
to the eigenvalue λ.

ap1-r1

Definition 1.20

We call the maximum of the moduli of the eigenvalues of a matrix A ∈Mn(C) the
spectral radius of A, and we denote it by %(A).

S. Lanteri (Inria) High performance scientific computing December 28, 2016 15 / 131



Definition and properties of matrices

Definition 1.19

Let A ∈Mn(C) be a complex square matrix. The characteristic polynomial of A is
the polynomial PA(λ) defined on C by,

PA(λ) = det(A− λIn)a.

It is a polynomial of degree equal to n and has thus n roots in C which are called the
eigenvalues of A. The algebraic multiplicity of an eigenvalue is its multiplicity as a
root of PA(λ).

A nonzero vector x ∈ Cn such that Ax = λx is called an eigenvector of A associated
to the eigenvalue λ.

ap1-r1

Definition 1.20

We call the maximum of the moduli of the eigenvalues of a matrix A ∈Mn(C) the
spectral radius of A, and we denote it by %(A).

S. Lanteri (Inria) High performance scientific computing December 28, 2016 15 / 131



Definition and properties of matrices

Definition 1.21

Let A ∈Mn(C) be a complex square matrix. Let λ be an eigenvalue of A. The vector
subspace defined by,

Eλ = Ker (A− λIn),

is the eigenspace associated with the eigenvalue λ.

We call the vector subspace defined by,

Fλ =
⋃

1≤k≤k0

Ker (A− λIn)k ,

the generalized eigenspace associated with λ.

Definition 1.22

Let P(x) =
d∑

i=0

aix
i be a polynomial on C and A ∈Mn(C) be a complex square matrix.

The corresponding matrix polynomial is defined by P(A) =
d∑

i=0

aiA
i .

S. Lanteri (Inria) High performance scientific computing December 28, 2016 16 / 131



Definition and properties of matrices

Definition 1.21

Let A ∈Mn(C) be a complex square matrix. Let λ be an eigenvalue of A. The vector
subspace defined by,

Eλ = Ker (A− λIn),

is the eigenspace associated with the eigenvalue λ.

We call the vector subspace defined by,

Fλ =
⋃

1≤k≤k0

Ker (A− λIn)k ,

the generalized eigenspace associated with λ.

Definition 1.22

Let P(x) =
d∑

i=0

aix
i be a polynomial on C and A ∈Mn(C) be a complex square matrix.

The corresponding matrix polynomial is defined by P(A) =
d∑

i=0

aiA
i .

S. Lanteri (Inria) High performance scientific computing December 28, 2016 16 / 131



Definition and properties of matrices

Lemma 1.23

Let A ∈Mn(C) be a complex square matrix. If Ax = λx with x 6= 0 then
P(A)x = P(λ)x for all polynomials P(x) that is, if λ is an eigenvalue of A then
P(λ) is an eigenvalue of P(A).

Theorem 1.24

(Spectral decomposition)
Consider a matrix A ∈Mn(C) that has p distinct eigenvalues (λ1, · · · , λp), with

1 ≤ p ≤ n, of algebraic multiplicity n1, · · · , np, with 1 ≤ ni ≤ n and

p∑
i=1

ni = n.

Then its generalized eigenspaces satisfy,

Cn =

p⊕
i=1

Fλi , Fλi = Ker (A− λIn)ni and dim Fλi = ni .

S. Lanteri (Inria) High performance scientific computing December 28, 2016 17 / 131



Definition and properties of matrices

Lemma 1.23

Let A ∈Mn(C) be a complex square matrix. If Ax = λx with x 6= 0 then
P(A)x = P(λ)x for all polynomials P(x) that is, if λ is an eigenvalue of A then
P(λ) is an eigenvalue of P(A).

Theorem 1.24

(Spectral decomposition)
Consider a matrix A ∈Mn(C) that has p distinct eigenvalues (λ1, · · · , λp), with

1 ≤ p ≤ n, of algebraic multiplicity n1, · · · , np, with 1 ≤ ni ≤ n and

p∑
i=1

ni = n.

Then its generalized eigenspaces satisfy,

Cn =

p⊕
i=1

Fλi , Fλi = Ker (A− λIn)ni and dim Fλi = ni .

S. Lanteri (Inria) High performance scientific computing December 28, 2016 17 / 131



Definition and properties of matrices

Definition 1.25

A complex square matrix A ∈Mn(C) can be reduced to triangular form (respectively,
diagonal form) if there exists a nonsingular matrix P and a triangular matrix T
(respectively, a diagonal matrix D) such that,

A = PTP−1 (respectively, A = PDP−1).

If A can be reduced to triangular or diagonal form, then the eigenvalues of A,
repeated with their algebraic multiplicities, appear on the diagonal of T or D.

When A can be diagonalized, the column vectors of P are eigenvectors of A.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 18 / 131



Definition and properties of matrices

Definition 1.25

A complex square matrix A ∈Mn(C) can be reduced to triangular form (respectively,
diagonal form) if there exists a nonsingular matrix P and a triangular matrix T
(respectively, a diagonal matrix D) such that,

A = PTP−1 (respectively, A = PDP−1).

If A can be reduced to triangular or diagonal form, then the eigenvalues of A,
repeated with their algebraic multiplicities, appear on the diagonal of T or D.

When A can be diagonalized, the column vectors of P are eigenvectors of A.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 18 / 131



Definition and properties of matrices

Proposition 1.26

Any matrix A ∈Mn(C) can be reduced to triangular form a.

ap1-d1

Theorem 1.27

(Schur factorization)
For any complex square matrix A ∈Mn(C) there exists a unitary matrix U
(i.e. U−1 = U?) such that U−1AU is triangulara.

ap1-d2

S. Lanteri (Inria) High performance scientific computing December 28, 2016 19 / 131



Definition and properties of matrices

Proposition 1.26

Any matrix A ∈Mn(C) can be reduced to triangular form a.

ap1-d1

Theorem 1.27

(Schur factorization)
For any complex square matrix A ∈Mn(C) there exists a unitary matrix U
(i.e. U−1 = U?) such that U−1AU is triangulara.

ap1-d2

S. Lanteri (Inria) High performance scientific computing December 28, 2016 19 / 131



Definition and properties of matrices

Proposition 1.28

Let A ∈Mn(C) be a complex square matrix with distinct eigenvalues (λ1, · · · , λp),
1 ≤ p ≤ n. The matrix A is diagonalizable if and only if,

Cn =

p⊕
i=1

Eλi ,

or equivalently, if and only if Fλi = Eλi for any 1 ≤ i ≤ pa.

ap1-d3

Theorem 1.29

(Diagonalization)
A matrix A ∈Mn(C) is normal (i.e. AA? = A?A) if and only if there exists a unitary
matrix U such that,

A = U diag(λ1, · · · , λn) U−1,

where (λ1, · · · , λn) are the eigenvalues of Aa.

ap1-d4

S. Lanteri (Inria) High performance scientific computing December 28, 2016 20 / 131



Definition and properties of matrices

Proposition 1.28

Let A ∈Mn(C) be a complex square matrix with distinct eigenvalues (λ1, · · · , λp),
1 ≤ p ≤ n. The matrix A is diagonalizable if and only if,

Cn =

p⊕
i=1

Eλi ,

or equivalently, if and only if Fλi = Eλi for any 1 ≤ i ≤ pa.

ap1-d3

Theorem 1.29

(Diagonalization)
A matrix A ∈Mn(C) is normal (i.e. AA? = A?A) if and only if there exists a unitary
matrix U such that,

A = U diag(λ1, · · · , λn) U−1,

where (λ1, · · · , λn) are the eigenvalues of Aa.

ap1-d4

S. Lanteri (Inria) High performance scientific computing December 28, 2016 20 / 131



Definition and properties of matrices

Theorem 1.30

A matrix A ∈Mn(C) is self-adjoint (or Hermitian, i.e. A? = A) if and only if it is
diagonalizable in an orthonormal basis with real eigenvalues. In other words, there exists
a unitary matrix U such that,

A = U diag(λ1, · · · , λn) U−1 with λi ∈ Ra.

ap1-d5

Corollary 1.31

A matrix A ∈Mn(R) is real symmetric (i.e. At = A) if and only there exists a unitary
matrix Q (also called orthogonal, i.e. Q−1 = Qt) and real eigenvalues (λ1, · · · , λn) such
that,

A = Q diag(λ1, · · · , λn) Q−1 with λi ∈ R.

A self-adjoint matrix A ∈Mn(C) is said to be positive definite if all its eigenvalues
are strictly positive. It is said to be nonnegative definite (or positive semidefinite)
if all its eigenvalues are are nonnegative.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 21 / 131



Definition and properties of matrices

Theorem 1.30

A matrix A ∈Mn(C) is self-adjoint (or Hermitian, i.e. A? = A) if and only if it is
diagonalizable in an orthonormal basis with real eigenvalues. In other words, there exists
a unitary matrix U such that,

A = U diag(λ1, · · · , λn) U−1 with λi ∈ Ra.

ap1-d5

Corollary 1.31

A matrix A ∈Mn(R) is real symmetric (i.e. At = A) if and only there exists a unitary
matrix Q (also called orthogonal, i.e. Q−1 = Qt) and real eigenvalues (λ1, · · · , λn) such
that,

A = Q diag(λ1, · · · , λn) Q−1 with λi ∈ R.

A self-adjoint matrix A ∈Mn(C) is said to be positive definite if all its eigenvalues
are strictly positive. It is said to be nonnegative definite (or positive semidefinite)
if all its eigenvalues are are nonnegative.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 21 / 131



Definition and properties of matrices

Theorem 1.30

A matrix A ∈Mn(C) is self-adjoint (or Hermitian, i.e. A? = A) if and only if it is
diagonalizable in an orthonormal basis with real eigenvalues. In other words, there exists
a unitary matrix U such that,

A = U diag(λ1, · · · , λn) U−1 with λi ∈ Ra.

ap1-d5

Corollary 1.31

A matrix A ∈Mn(R) is real symmetric (i.e. At = A) if and only there exists a unitary
matrix Q (also called orthogonal, i.e. Q−1 = Qt) and real eigenvalues (λ1, · · · , λn) such
that,

A = Q diag(λ1, · · · , λn) Q−1 with λi ∈ R.

A self-adjoint matrix A ∈Mn(C) is said to be positive definite if all its eigenvalues
are strictly positive. It is said to be nonnegative definite (or positive semidefinite)
if all its eigenvalues are are nonnegative.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 21 / 131



Definition and properties of matrices

Lemma 1.32

For any matrix A ∈Mm,n(C), the matrix A?A is Hermitian and has real, nonnegative
eigenvaluesa.

ap1-d6

Lemma 1.33

Let A ∈Mm,n(C) and B ∈Mn,m(C). The nonzero eigenvalues of the matrices AB
and BA are the samea.

ap1-d7

Definition 1.34

The singular values of a matrix A ∈Mm,n(C) are the nonnegative square roots of
the n eigenvalues of A?A.

Proposition 1.35

The singular values of a normal matrix are the moduli of its eigenvaluesa.

ap1-d8

S. Lanteri (Inria) High performance scientific computing December 28, 2016 22 / 131



Definition and properties of matrices

Lemma 1.32

For any matrix A ∈Mm,n(C), the matrix A?A is Hermitian and has real, nonnegative
eigenvaluesa.

ap1-d6

Lemma 1.33

Let A ∈Mm,n(C) and B ∈Mn,m(C). The nonzero eigenvalues of the matrices AB
and BA are the samea.

ap1-d7

Definition 1.34

The singular values of a matrix A ∈Mm,n(C) are the nonnegative square roots of
the n eigenvalues of A?A.

Proposition 1.35

The singular values of a normal matrix are the moduli of its eigenvaluesa.

ap1-d8

S. Lanteri (Inria) High performance scientific computing December 28, 2016 22 / 131



Definition and properties of matrices

Lemma 1.32

For any matrix A ∈Mm,n(C), the matrix A?A is Hermitian and has real, nonnegative
eigenvaluesa.

ap1-d6

Lemma 1.33

Let A ∈Mm,n(C) and B ∈Mn,m(C). The nonzero eigenvalues of the matrices AB
and BA are the samea.

ap1-d7

Definition 1.34

The singular values of a matrix A ∈Mm,n(C) are the nonnegative square roots of
the n eigenvalues of A?A.

Proposition 1.35

The singular values of a normal matrix are the moduli of its eigenvaluesa.

ap1-d8

S. Lanteri (Inria) High performance scientific computing December 28, 2016 22 / 131



Definition and properties of matrices

Lemma 1.32

For any matrix A ∈Mm,n(C), the matrix A?A is Hermitian and has real, nonnegative
eigenvaluesa.

ap1-d6

Lemma 1.33

Let A ∈Mm,n(C) and B ∈Mn,m(C). The nonzero eigenvalues of the matrices AB
and BA are the samea.

ap1-d7

Definition 1.34

The singular values of a matrix A ∈Mm,n(C) are the nonnegative square roots of
the n eigenvalues of A?A.

Proposition 1.35

The singular values of a normal matrix are the moduli of its eigenvaluesa.

ap1-d8

S. Lanteri (Inria) High performance scientific computing December 28, 2016 22 / 131



Definition and properties of matrices

Theorem 1.36

(SVD factorization)
Let A ∈Mm,n(C) be a matrix having r positive singular values. There exist two unitary
matrices U ∈Mn(C) and V ∈Mm(C), and a diagonal matrix Σ̃ ∈Mm,n(R), such that,

A = V Σ̃U? and Σ̃ =

(
Σ 0
0 0

)
,

where Σ = diag(µ1, · · · , µr ) and µ1 ≥ µ2 ≥ · · · ≥ µr > 0 are the positive
singular values of Aa.

ap1-d9

Definition 1.37

Let A = V Σ̃U? be the SVD factorization of some matrix A ∈Mm,n(C) having r
nonzero singular values. We call the matrix A† ∈Mn,m(C) defined by A† = UΣ̃†V ? with,

Σ̃† =

(
Σ−1 0

0 0

)
∈Mn,m(R),

the pseudoinverse matrix of A.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 23 / 131



Definition and properties of matrices

Theorem 1.36

(SVD factorization)
Let A ∈Mm,n(C) be a matrix having r positive singular values. There exist two unitary
matrices U ∈Mn(C) and V ∈Mm(C), and a diagonal matrix Σ̃ ∈Mm,n(R), such that,

A = V Σ̃U? and Σ̃ =

(
Σ 0
0 0

)
,

where Σ = diag(µ1, · · · , µr ) and µ1 ≥ µ2 ≥ · · · ≥ µr > 0 are the positive
singular values of Aa.

ap1-d9

Definition 1.37

Let A = V Σ̃U? be the SVD factorization of some matrix A ∈Mm,n(C) having r
nonzero singular values. We call the matrix A† ∈Mn,m(C) defined by A† = UΣ̃†V ? with,

Σ̃† =

(
Σ−1 0

0 0

)
∈Mn,m(R),

the pseudoinverse matrix of A.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 23 / 131



Definition and properties of matrices
Matrix norms, sequences and series

Definition 1.38

We call a mapping denoted by ‖ . ‖, from Kn into R+, satisfying the following
properties, a norm on Kn,

1 ∀x ∈ Kn, ‖ x ‖= 0 =⇒ x = 0,

2 ∀x ∈ Kn, ∀λ ∈ K, ‖ λx ‖= |λ| ‖ x ‖,
3 ∀x ∈ Kn, ∀y ∈ Kn, ‖ x + y ‖≤‖ x ‖ + ‖ y ‖.

If ∀x ∈ Kn is endowed with a scalar (or Hermitian) product < ., . >, then the

mapping x 7−→< x , x >
1
2 defines a norm on Kn.

The most common norms on Kn are (xi denotes the coordinates of a vector x
in the canonical basis of Kn):

the Euclidean norm, ‖ x ‖2=

(
n∑

i=1

|xi |2
) 1

2

;

the lp norm, ‖ x ‖p=

(
n∑

i=1

|xi |p
) 1

p

;

the l∞ norm, ‖ x ‖∞= max
1≤i≤n

|xi |.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 24 / 131



Definition and properties of matrices
Matrix norms, sequences and series

Definition 1.38

We call a mapping denoted by ‖ . ‖, from Kn into R+, satisfying the following
properties, a norm on Kn,

1 ∀x ∈ Kn, ‖ x ‖= 0 =⇒ x = 0,

2 ∀x ∈ Kn, ∀λ ∈ K, ‖ λx ‖= |λ| ‖ x ‖,
3 ∀x ∈ Kn, ∀y ∈ Kn, ‖ x + y ‖≤‖ x ‖ + ‖ y ‖.

If ∀x ∈ Kn is endowed with a scalar (or Hermitian) product < ., . >, then the

mapping x 7−→< x , x >
1
2 defines a norm on Kn.

The most common norms on Kn are (xi denotes the coordinates of a vector x
in the canonical basis of Kn):

the Euclidean norm, ‖ x ‖2=

(
n∑

i=1

|xi |2
) 1

2

;

the lp norm, ‖ x ‖p=

(
n∑

i=1

|xi |p
) 1

p

;

the l∞ norm, ‖ x ‖∞= max
1≤i≤n

|xi |.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 24 / 131



Definition and properties of matrices
Matrix norms, sequences and series

Theorem 1.39

If E is a vector space of finite dimension then all norms are equivalent on E .
That is, for all pairs of norms ‖ . ‖ and ‖ . ‖

′
there exists two constants c and C such

that 0 < c ≤ C and for all x ∈ E ,

c ‖ x ‖≤‖ x ‖
′
≤ C ‖ x ‖ .

Definition 1.40

A norm ‖ . ‖ defined on Mn(K) (i.e. the vector space of square matrices of size n with
entries in K) is a matrix norm if for all matrices A and B in Mn(K),

‖ AB ‖≤‖ A ‖‖ B ‖ .

Definition 1.41

Let ‖ . ‖ be a vector norm on Kn. It induces a matrix norm defined by,

‖ A ‖= sup
x∈Kn , x 6=0

‖ Ax ‖
‖ x ‖ ,

which is said to be subordinate to this vector norm.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 25 / 131



Definition and properties of matrices
Matrix norms, sequences and series

Theorem 1.39

If E is a vector space of finite dimension then all norms are equivalent on E .
That is, for all pairs of norms ‖ . ‖ and ‖ . ‖

′
there exists two constants c and C such

that 0 < c ≤ C and for all x ∈ E ,

c ‖ x ‖≤‖ x ‖
′
≤ C ‖ x ‖ .

Definition 1.40

A norm ‖ . ‖ defined on Mn(K) (i.e. the vector space of square matrices of size n with
entries in K) is a matrix norm if for all matrices A and B in Mn(K),

‖ AB ‖≤‖ A ‖‖ B ‖ .

Definition 1.41

Let ‖ . ‖ be a vector norm on Kn. It induces a matrix norm defined by,

‖ A ‖= sup
x∈Kn , x 6=0

‖ Ax ‖
‖ x ‖ ,

which is said to be subordinate to this vector norm.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 25 / 131



Definition and properties of matrices
Matrix norms, sequences and series

Theorem 1.39

If E is a vector space of finite dimension then all norms are equivalent on E .
That is, for all pairs of norms ‖ . ‖ and ‖ . ‖

′
there exists two constants c and C such

that 0 < c ≤ C and for all x ∈ E ,

c ‖ x ‖≤‖ x ‖
′
≤ C ‖ x ‖ .

Definition 1.40

A norm ‖ . ‖ defined on Mn(K) (i.e. the vector space of square matrices of size n with
entries in K) is a matrix norm if for all matrices A and B in Mn(K),

‖ AB ‖≤‖ A ‖‖ B ‖ .

Definition 1.41

Let ‖ . ‖ be a vector norm on Kn. It induces a matrix norm defined by,

‖ A ‖= sup
x∈Kn , x 6=0

‖ Ax ‖
‖ x ‖ ,

which is said to be subordinate to this vector norm.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 25 / 131



Definition and properties of matrices
Matrix norms, sequences and series

Proposition 1.42

Let ‖ . ‖ be a subordinate matrix norm on Mn(K).

1 For all matrices A in Mn(K), the norm ‖ A ‖ is also defined by,

‖ A ‖= sup
x∈Kn , ‖x‖=1

‖ Ax ‖= sup
x∈Kn , ‖x‖≤1

‖ Ax ‖ .

2 There exists xA ∈ Kn, xa 6= 0 such that,

‖ A ‖= ‖ AxA ‖‖ xA ‖
,

and sup can be replaced by max in the definition of ‖ A ‖.
3 The identity matrix satisfies ‖ In ‖= 1.

4 A subordinate norm is indeed a matrix norm: for all matrices A and B in Mn(K)
we have,

‖ AB ‖≤‖ A ‖‖ B ‖ .

S. Lanteri (Inria) High performance scientific computing December 28, 2016 26 / 131



Definition and properties of matrices
Matrix norms, sequences and series

Proposition 1.43

We consider matrices in Mn(K).

1 The matrix norm ‖ A ‖1, subordinate to the l1 norm on Kn, satisfies,

‖ A ‖1= max
1≤j≤n

(
n∑

i=1

|ai,j |

)
.

2 The matrix norm ‖ A ‖∞, subordinate to the l∞ norm on Kn, satisfies,

‖ A ‖∞= max
1≤i≤n

(
n∑

j=1

|ai,j |

)
.

3 Let ‖ A ‖2 be the marix norm subordinate to the l2 norm on Kn. We have,

‖ A ‖2=‖ A? ‖2= the largest singular value of Aa.

ap1-d10

S. Lanteri (Inria) High performance scientific computing December 28, 2016 27 / 131



Definition and properties of matrices
Matrix norms, sequences and series

Lemma 1.44

Let U be a unitary matrix (i.e. U? = U−1). We have,

‖ UA ‖2=‖ AU ‖2=‖ A ‖2 .

Consequently, if A is a normal matrix, then ‖ A ‖2= %(A)a.

ap1-d11

Proposition 1.45

Let ‖ . ‖ be a matrix norm on Mn(C). It satisfies,

%(A) ≤‖ A ‖ .

Conversely, for any matrix A ∈Mn(C) and for any real number ε > 0, there exists a
subordinate norm ‖ . ‖ (which depends on A and ε) such that,

‖ A ‖≤ %(A) + ε.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 28 / 131



Definition and properties of matrices
Matrix norms, sequences and series

Lemma 1.44

Let U be a unitary matrix (i.e. U? = U−1). We have,

‖ UA ‖2=‖ AU ‖2=‖ A ‖2 .

Consequently, if A is a normal matrix, then ‖ A ‖2= %(A)a.

ap1-d11

Proposition 1.45

Let ‖ . ‖ be a matrix norm on Mn(C). It satisfies,

%(A) ≤‖ A ‖ .

Conversely, for any matrix A ∈Mn(C) and for any real number ε > 0, there exists a
subordinate norm ‖ . ‖ (which depends on A and ε) such that,

‖ A ‖≤ %(A) + ε.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 28 / 131



Definition and properties of matrices
Matrix norms, sequences and series

Definition 1.46

A sequence of matrices (Ai )i≥1 in Mn(C) converges to a limit A if for a matrix norm
‖ . ‖ we have,

lim
i 7−→+∞

‖ Ai − A ‖= 0,

and we write A = lim
i 7−→+∞

Ai .

Lemma 1.47

Let A be a matrix in Mn(C). The following four conditions are equivalent:

1 lim
i 7−→+∞

Ai = 0,

2 lim
i 7−→+∞

Aix = 0 for all vectors x ∈ Cn,

3 %(A) < 1,

4 there exists at least one subordinate matrix norm such that ‖ A ‖< 1a.

ap1-d12

S. Lanteri (Inria) High performance scientific computing December 28, 2016 29 / 131



Definition and properties of matrices
Matrix norms, sequences and series

Definition 1.46

A sequence of matrices (Ai )i≥1 in Mn(C) converges to a limit A if for a matrix norm
‖ . ‖ we have,

lim
i 7−→+∞

‖ Ai − A ‖= 0,

and we write A = lim
i 7−→+∞

Ai .

Lemma 1.47

Let A be a matrix in Mn(C). The following four conditions are equivalent:

1 lim
i 7−→+∞

Ai = 0,

2 lim
i 7−→+∞

Aix = 0 for all vectors x ∈ Cn,

3 %(A) < 1,

4 there exists at least one subordinate matrix norm such that ‖ A ‖< 1a.

ap1-d12

S. Lanteri (Inria) High performance scientific computing December 28, 2016 29 / 131



Definition and properties of matrices
Matrix norms, sequences and series

Theorem 1.48

Consider a power series on C of positive radius of convergence R,∣∣∣∣∣
+∞∑
i=0

aiz
i

∣∣∣∣∣ < +∞, ∀z ∈ C such that |z | < R.

For any matrix A ∈Mn(C) such that %(A) < R, the series (aiA
i )i≥0 is convergent

i.e.
+∞∑
i=0

aiA
i is well defined in Mn(C).

Proposition 1.49

Let A be a matrix in Mn(C) with spectral radius %(A) < 1. The matrix (I − A) is
nonsingular and its inverse is given by,

(In − A)−1 =
+∞∑
i=0

Ai a.

ap1-d13

S. Lanteri (Inria) High performance scientific computing December 28, 2016 30 / 131



Definition and properties of matrices
Matrix norms, sequences and series

Theorem 1.48

Consider a power series on C of positive radius of convergence R,∣∣∣∣∣
+∞∑
i=0

aiz
i

∣∣∣∣∣ < +∞, ∀z ∈ C such that |z | < R.

For any matrix A ∈Mn(C) such that %(A) < R, the series (aiA
i )i≥0 is convergent

i.e.
+∞∑
i=0

aiA
i is well defined in Mn(C).

Proposition 1.49

Let A be a matrix in Mn(C) with spectral radius %(A) < 1. The matrix (I − A) is
nonsingular and its inverse is given by,

(In − A)−1 =
+∞∑
i=0

Ai a.

ap1-d13

S. Lanteri (Inria) High performance scientific computing December 28, 2016 30 / 131



Outline

1 Numerical linear algebra background

2 Linear systems

3 Direct methods

4 Iterative methods
Relaxation methods
Krylov methods

5 Preconditioning techniques

6 Domain decomposition methods

S. Lanteri (Inria) High performance scientific computing December 28, 2016 31 / 131



Linear systems

We call the problem that consists in finding the (possibly multiple)
solution x ∈ Kp, if any, of the following algebraic equation,

Ax = b,

a linear system.

The matrix A ∈Mn,p(K), called the system matrix, and the vector b ∈ Kn,
called the right-hand side, are the data of the problem.

The vector x ∈ Kp is the unknown vector.

Important particular case: square linear system, i.e. n = p.

n < p and n > p respectively correspond to underdetermined and
overdetermined systems.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 32 / 131



Linear systems

Theorem 2.1

If the matrix A is nonsingular, then there exists a unique solution of the linear
system Ax = b.

If A is singular, then one of the following alternatives holds:

the right-hand side b belongs to the range of A and there exists an infinity
of solutions that differ one from the other by addition of an element
of the kernel of A,

the right-hand side b does not belong to the range of A and there are
no solutions.

Particular trivial cases:
A is diagonal,

A is unitary i.e. A−1 = A?.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 33 / 131



Linear systems

Theorem 2.1

If the matrix A is nonsingular, then there exists a unique solution of the linear
system Ax = b.

If A is singular, then one of the following alternatives holds:

the right-hand side b belongs to the range of A and there exists an infinity
of solutions that differ one from the other by addition of an element
of the kernel of A,

the right-hand side b does not belong to the range of A and there are
no solutions.

Particular trivial cases:
A is diagonal,

A is unitary i.e. A−1 = A?.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 33 / 131



Linear systems

If A is a triangular matrix then the solution can be computed by the so-called
forward substitution algorithm1.

Data: A, b. Output: x = A−1.

For i = 1↗ n
s = 0
For j = 1↗ i − 1

s = s + Ai,jxj
End j
xi = (bi − s)/Ai,i

End i

1 + 2 + · · ·+ n − 1 = n(n − 1)/2 multiplications.

n divisions.

Total: n2/2 operations.

In general, solving a linear system does not require computing the inverse matrix
A−1 because it is too expensive.

1p2-r1

S. Lanteri (Inria) High performance scientific computing December 28, 2016 34 / 131



Linear systems

If A is a triangular matrix then the solution can be computed by the so-called
forward substitution algorithm1.

Data: A, b. Output: x = A−1.

For i = 1↗ n
s = 0
For j = 1↗ i − 1

s = s + Ai,jxj
End j
xi = (bi − s)/Ai,i

End i

1 + 2 + · · ·+ n − 1 = n(n − 1)/2 multiplications.

n divisions.

Total: n2/2 operations.

In general, solving a linear system does not require computing the inverse matrix
A−1 because it is too expensive.

1p2-r1

S. Lanteri (Inria) High performance scientific computing December 28, 2016 34 / 131



Linear systems

If A is a triangular matrix then the solution can be computed by the so-called
forward substitution algorithm1.

Data: A, b. Output: x = A−1.

For i = 1↗ n
s = 0
For j = 1↗ i − 1

s = s + Ai,jxj
End j
xi = (bi − s)/Ai,i

End i

1 + 2 + · · ·+ n − 1 = n(n − 1)/2 multiplications.

n divisions.

Total: n2/2 operations.

In general, solving a linear system does not require computing the inverse matrix
A−1 because it is too expensive.

1p2-r1

S. Lanteri (Inria) High performance scientific computing December 28, 2016 34 / 131



Linear systems

Important criteria for the numerical solution of linear systems:
efficiency i.e. algorithms have to be fast (minimizing the number of performed
operations) and spare memory storage,
stability (propagation of rounding errors).

To quantify the rounding error phenomenon, we introduce the notion of
matrix conditioning2.

It helps to measure the sensitivity of the solution x to the perturbation
of the data A and b.

Let ε ≥ 0 be a small parameter of data perturbation,

Aε = A + εB and bε = b + εγ

with B ∈Mn(K) and γ ∈ Kn

The system Aεxε = bε is assumed to be nonsingular

2p2-r2

S. Lanteri (Inria) High performance scientific computing December 28, 2016 35 / 131



Linear systems

Important criteria for the numerical solution of linear systems:
efficiency i.e. algorithms have to be fast (minimizing the number of performed
operations) and spare memory storage,
stability (propagation of rounding errors).

To quantify the rounding error phenomenon, we introduce the notion of
matrix conditioning2.

It helps to measure the sensitivity of the solution x to the perturbation
of the data A and b.

Let ε ≥ 0 be a small parameter of data perturbation,

Aε = A + εB and bε = b + εγ

with B ∈Mn(K) and γ ∈ Kn

The system Aεxε = bε is assumed to be nonsingular

2p2-r2

S. Lanteri (Inria) High performance scientific computing December 28, 2016 35 / 131



Linear systems

Definition 2.2

The condition number of a matrix A ∈Mn(K), relative to a subordinate matrix norm
‖ . ‖, is the quantity defined by,

cond(A) =‖ A ‖‖ A−1 ‖ .

cond(A) ≥ 1 since 1 =‖ I ‖=‖ AA−1 ‖≤‖ A ‖‖ A−1 ‖.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 36 / 131



Linear systems

Proposition 2.3

Let A be a nonsingular matrix in Mn(K) and b 6= 0 in Kn.

1 If x and x + δx are respectively the solutions of the systems,

Ax = b and A(x + δx) = b + δb,

we have,

‖ δx ‖
‖ x ‖ ≤ cond(A)

‖ δb ‖
‖ b ‖ .

2 If x and x + δx are respectively the solutions of the systems,

Ax = b and (A + δA)(x + δx) = b,

we have,

‖ δx ‖
‖ x + δx ‖ ≤ cond(A)

‖ δA ‖
‖ A ‖

a.

ap2-d1

S. Lanteri (Inria) High performance scientific computing December 28, 2016 37 / 131



Linear systems

Proposition 2.4

Let A be a nonsingular matrix in Mn(C).

1 cond(A) = cond(A−1), cond(αA) = cond(A) ∀α 6= 0.

2 For any matrix A,

cond2(A) =
µmax(A)

µmin(A)
,

where µmin(A) and µmax(A) respectively denote the smallest and the largest
singular values of A.

3 For a normal matrix A (i.e. AA? = A?A),

cond2(A) =
|λmax(A)|
|λmin(A)| = %(A)%(A−1),

where λmin(A) and λmax(A) respectively denote the smallest and the
largest eigenvalues of A.

4 For any unitary matrix U, cond2(U) = 1.

5 For any unitary matrix U, cond2(AU) = cond2(UA) = cond2(A).

S. Lanteri (Inria) High performance scientific computing December 28, 2016 38 / 131



Linear systems

A matrix A is said to be well conditioned if, for a given norm, cond(A) ≈ 1

Proposition 2.5

Conditionings cond1, cond2 and cond∞ are equivalent,

n−1cond2(A) ≤ cond1(A) ≤ ncond2(A),
n−1cond∞(A) ≤ cond2(A) ≤ ncond∞(A),
n−2cond1(A) ≤ cond∞(A) ≤ n2cond1(A).

S. Lanteri (Inria) High performance scientific computing December 28, 2016 39 / 131



Outline

1 Numerical linear algebra background

2 Linear systems

3 Direct methods

4 Iterative methods
Relaxation methods
Krylov methods

5 Preconditioning techniques

6 Domain decomposition methods

S. Lanteri (Inria) High performance scientific computing December 28, 2016 40 / 131



Direct methods

This section discusses the solution of Ax = b where A ∈Mn(R) is a square matrix
and b ∈ Rn (here K = R to simplify the presentation).

A direct method computes the solution x in a finite number of operations
(in exact arithmetic).

Gaussian elimination: the goal is to find a nonsingular matrix M such that the
product MA is an upper triangular matrix.

Solution of Ax = b follows a three steps process:

1 elimination - computation of the matrix M,

2 right-hand side update - computation of the product Mb,

3 substitution - solution of the triangular system Tx = Mb.

Theorem 3.1

Let A be a square matrix (invertible or not). There exists at least one nonsingular
matrix M such that the matrix T = MA is upper triangulara.

ap3-d1

S. Lanteri (Inria) High performance scientific computing December 28, 2016 41 / 131



Direct methods

This section discusses the solution of Ax = b where A ∈Mn(R) is a square matrix
and b ∈ Rn (here K = R to simplify the presentation).

A direct method computes the solution x in a finite number of operations
(in exact arithmetic).

Gaussian elimination: the goal is to find a nonsingular matrix M such that the
product MA is an upper triangular matrix.

Solution of Ax = b follows a three steps process:

1 elimination - computation of the matrix M,

2 right-hand side update - computation of the product Mb,

3 substitution - solution of the triangular system Tx = Mb.

Theorem 3.1

Let A be a square matrix (invertible or not). There exists at least one nonsingular
matrix M such that the matrix T = MA is upper triangulara.

ap3-d1

S. Lanteri (Inria) High performance scientific computing December 28, 2016 41 / 131



Direct methods

This section discusses the solution of Ax = b where A ∈Mn(R) is a square matrix
and b ∈ Rn (here K = R to simplify the presentation).

A direct method computes the solution x in a finite number of operations
(in exact arithmetic).

Gaussian elimination: the goal is to find a nonsingular matrix M such that the
product MA is an upper triangular matrix.

Solution of Ax = b follows a three steps process:

1 elimination - computation of the matrix M,

2 right-hand side update - computation of the product Mb,

3 substitution - solution of the triangular system Tx = Mb.

Theorem 3.1

Let A be a square matrix (invertible or not). There exists at least one nonsingular
matrix M such that the matrix T = MA is upper triangulara.

ap3-d1

S. Lanteri (Inria) High performance scientific computing December 28, 2016 41 / 131



Direct methods

LU decomposition method (Gauss method): the goal is to factorize A into a product of
two triangular matrices, A = LU, where L is lower triangular and U is upper triangular.

This decomposition allows us to reduce the solution of the system Ax = b to solving
two triangular systems Ly = b and Ux = y .

It turns out to be nothing else than Gaussian elimination in the case without pivoting.

The matrices defined by,

∆k =

a1,1 · · · a1,k

...
...

ak,1 · · · ak,k

 ,

are called the diagonal submatrices of order k of A ∈Mn(R).

Theorem 3.2

Let A = (ai,j)1≤i,j≤n be a square matrix such that all its diagonal submatrices of order k
are nonsingular. There exists a unique pair of matrices (L,U), with U upper triangular
and L lower triangular with a unit diagonal (i.e. li,i = 1), such that A = LUa.

ap3-d2

S. Lanteri (Inria) High performance scientific computing December 28, 2016 42 / 131



Direct methods

LU decomposition method (Gauss method): the goal is to factorize A into a product of
two triangular matrices, A = LU, where L is lower triangular and U is upper triangular.

This decomposition allows us to reduce the solution of the system Ax = b to solving
two triangular systems Ly = b and Ux = y .

It turns out to be nothing else than Gaussian elimination in the case without pivoting.

The matrices defined by,

∆k =

a1,1 · · · a1,k

...
...

ak,1 · · · ak,k

 ,

are called the diagonal submatrices of order k of A ∈Mn(R).

Theorem 3.2

Let A = (ai,j)1≤i,j≤n be a square matrix such that all its diagonal submatrices of order k
are nonsingular. There exists a unique pair of matrices (L,U), with U upper triangular
and L lower triangular with a unit diagonal (i.e. li,i = 1), such that A = LUa.

ap3-d2

S. Lanteri (Inria) High performance scientific computing December 28, 2016 42 / 131



Direct methods
LU factorization algorithm

The matrix A is scanned column by column

At the kth step, column k is changed such that the entries below the diagonal
vanish by performing linear combinations of the kth row with every row from
the (k + 1)th to the nth

At the kth step, the first k rows and the first k − 1 columns are no longer
modified ⇒ use this space to store the corresponding nonzero entries of Lk

Data: A. Output: A containing U and L (but its diagonal).

For k = 1↗ n − 1
For i = k + 1↗ n

ai,k =
ai,k
ak,k

For j = k + 1↗ n
ai,j = ai,j − ai,kak,j

End For j
End For i

End For k

S. Lanteri (Inria) High performance scientific computing December 28, 2016 43 / 131



Direct methods
LU factorization algorithm

The matrix A is scanned column by column

At the kth step, column k is changed such that the entries below the diagonal
vanish by performing linear combinations of the kth row with every row from
the (k + 1)th to the nth

At the kth step, the first k rows and the first k − 1 columns are no longer
modified ⇒ use this space to store the corresponding nonzero entries of Lk

Data: A. Output: A containing U and L (but its diagonal).

For k = 1↗ n − 1
For i = k + 1↗ n

ai,k =
ai,k
ak,k

For j = k + 1↗ n
ai,j = ai,j − ai,kak,j

End For j
End For i

End For k

S. Lanteri (Inria) High performance scientific computing December 28, 2016 43 / 131



Direct methods
LU factorization algorithm

Operation count (multiplications and divisions only)
LU factorization:

Nop(n) =

n−1∑
k=1

n∑
i=k+1

1 +
n∑

j=k+1

1

 ,

which to first order yields,

Nop(n) ≈
n3

3
.

Back substitution (on a triangular system):

Nop(n) =
n∑

j=1

j ≈
n2

2
.

Solution of a linear system Ax = b: an LU factorization of A is followed by two
substitutions, Ly = b and Ux = y :

Nop(n) ≈
n3

3
(for n large).

Computing det(A): product of the diagonal entries of U

Computing A−1: the columns of the inverse are the solutions of the n systems
Axi = ei where (ei )1≤i≤n is the canonical basis of Rn

S. Lanteri (Inria) High performance scientific computing December 28, 2016 44 / 131



Direct methods
LU factorization algorithm

Operation count (multiplications and divisions only)
LU factorization:

Nop(n) =

n−1∑
k=1

n∑
i=k+1

1 +
n∑

j=k+1

1

 ,

which to first order yields,

Nop(n) ≈
n3

3
.

Back substitution (on a triangular system):

Nop(n) =
n∑

j=1

j ≈
n2

2
.

Solution of a linear system Ax = b: an LU factorization of A is followed by two
substitutions, Ly = b and Ux = y :

Nop(n) ≈
n3

3
(for n large).

Computing det(A): product of the diagonal entries of U

Computing A−1: the columns of the inverse are the solutions of the n systems
Axi = ei where (ei )1≤i≤n is the canonical basis of Rn

S. Lanteri (Inria) High performance scientific computing December 28, 2016 44 / 131



Direct methods
Cholesky method

The Cholesky method applies to real symmetric positive definite matrices.

Theorem 3.3

Let A be a real symmetric positive definite matrix. There exists a unique real lower
triangular matrix B, having positive diagonal entries, such that A = BB?a.

ap3-d3

S. Lanteri (Inria) High performance scientific computing December 28, 2016 45 / 131



Direct methods
Cholesky method

The Cholesky method applies to real symmetric positive definite matrices.

Theorem 3.3

Let A be a real symmetric positive definite matrix. There exists a unique real lower
triangular matrix B, having positive diagonal entries, such that A = BB?a.

ap3-d3

S. Lanteri (Inria) High performance scientific computing December 28, 2016 45 / 131



Direct methods
Cholesky method

Data: A. Output: A containing B in its lower triangular part.

For j = 1↗ n
For k = 1↗ j − 1

aj,j = aj,j − (aj,k)2

End k
aj,j =

√
aj,j

For i = j + 1↗ n
For k = 1↗ j − 1

ai,j = ai,j − aj,kai,k
End k
ai,j =

ai,j
aj,j

End i
End j

S. Lanteri (Inria) High performance scientific computing December 28, 2016 46 / 131



Direct methods
Cholesky method

Operation count (multiplications and divisions only)

Only n square roots ⇒ not taken into account
Cholesky factorization:

Nop(n) =
n∑

j=1

(j − 1) +
n∑

i=j+1

j

 ,

which to first order yields,

Nop(n) ≈
n3

6
.

Substitutions (a forward and a backward substitutions are performed on the
triangular systems associated with B and B?): Nop(n) ≈ n2.

Solution of a linear system Ax = b,

Nop(n) ≈
n3

6
(for n large).

The Cholesky method is approximately twice as fast as the Gauss method
for a positive definite symmetric matrix

S. Lanteri (Inria) High performance scientific computing December 28, 2016 47 / 131



Direct methods
QR factorization

The goal of the QR factorization is to reduce the solution of a linear system
to that of a triangular one.

However, the original matrix A is not factorized as the product of two triangular
matrices but as the product of an upper triangular matrix R and an orthogonal
(unitary) matrix Q (recall that Q−1 = Q?).

Solution of Ax = b follows a three steps process:

1 factorization - find an orthogonal matrix Q such that Q?A = R is upper triangular,

2 right-hand side update - computation of the product Q?b,

3 substitution - solution of the triangular system Rx = Q?b.

Theorem 3.4

Let A be a real nonsingular square matrix. There exists a unique pair (Q,R), where
Q is an orthogonal matrix and R is an upper triangular matrix, whose diagonal entries
are positive, satisfying A = QRa.

ap3-d4

S. Lanteri (Inria) High performance scientific computing December 28, 2016 48 / 131



Direct methods
QR factorization

The goal of the QR factorization is to reduce the solution of a linear system
to that of a triangular one.

However, the original matrix A is not factorized as the product of two triangular
matrices but as the product of an upper triangular matrix R and an orthogonal
(unitary) matrix Q (recall that Q−1 = Q?).

Solution of Ax = b follows a three steps process:

1 factorization - find an orthogonal matrix Q such that Q?A = R is upper triangular,

2 right-hand side update - computation of the product Q?b,

3 substitution - solution of the triangular system Rx = Q?b.

Theorem 3.4

Let A be a real nonsingular square matrix. There exists a unique pair (Q,R), where
Q is an orthogonal matrix and R is an upper triangular matrix, whose diagonal entries
are positive, satisfying A = QRa.

ap3-d4

S. Lanteri (Inria) High performance scientific computing December 28, 2016 48 / 131



Direct methods
QR factorization

The goal of the QR factorization is to reduce the solution of a linear system
to that of a triangular one.

However, the original matrix A is not factorized as the product of two triangular
matrices but as the product of an upper triangular matrix R and an orthogonal
(unitary) matrix Q (recall that Q−1 = Q?).

Solution of Ax = b follows a three steps process:

1 factorization - find an orthogonal matrix Q such that Q?A = R is upper triangular,

2 right-hand side update - computation of the product Q?b,

3 substitution - solution of the triangular system Rx = Q?b.

Theorem 3.4

Let A be a real nonsingular square matrix. There exists a unique pair (Q,R), where
Q is an orthogonal matrix and R is an upper triangular matrix, whose diagonal entries
are positive, satisfying A = QRa.

ap3-d4

S. Lanteri (Inria) High performance scientific computing December 28, 2016 48 / 131



Direct methods
QR factorization

Operation count (multiplications and divisions only)

Only n square roots ⇒ not taken into account
Gram-Schmidt factorizationn

Nop(n) =
n∑

i=1

((i − 1)2n + (n + 1)) ,

which to first order yields,

Nop(n) ≈ n3.

Updating the right-hand side: computation of the matrix-vector product Q?b
requires Nop(n) ≈ n2.

Substitution: solution of the triangular system associated with R

requires Nop(n) ≈
n2

2
.

Solution of a linear system Ax = b,

Nop(n) ≈ n3 (for n large).

The Gram-Schmidt algorithm for the QR method is thus three times slower that the
Gauss method (and is thus rarely used in practice)

S. Lanteri (Inria) High performance scientific computing December 28, 2016 49 / 131



Direct methods
The case of band matrices

Definition 3.5

A matrix A ∈Mn(K) satisfying ai,j = 0 for |i − j | > p with p ∈ N is said to be a band
matrix of bandwitdth 2p + 1.

Proposition 3.6

The LU factorization preserves the band structure of matrices, that is the L and U
factors have same bandwitdth as the original matrix Aa.

ap3-d5

S. Lanteri (Inria) High performance scientific computing December 28, 2016 50 / 131



Direct methods
The case of band matrices

Definition 3.5

A matrix A ∈Mn(K) satisfying ai,j = 0 for |i − j | > p with p ∈ N is said to be a band
matrix of bandwitdth 2p + 1.

Proposition 3.6

The LU factorization preserves the band structure of matrices, that is the L and U
factors have same bandwitdth as the original matrix Aa.

ap3-d5

S. Lanteri (Inria) High performance scientific computing December 28, 2016 50 / 131



Direct methods
The case of band matrices

Symmetric tridiagonal matrix

T =


a1 −b2

−b2 a2 −b3

. . .
. . .

. . .

−bn−1 an−1 −bn
−bn an

 .

We assume bi 6= 0, ∀i
The minus sign in front of the bi ’s is a technical convenience

S. Lanteri (Inria) High performance scientific computing December 28, 2016 51 / 131



Direct methods
Symmetric tridiagonal matrix

The Cholesky factorization is T = LD−1
L Lt with,

L =


δ1

−b2 δ2

. . .
. . .

−bn−1 δn−1

−bn δn

 and DL = diag(δ1, δ2, · · · , δn−1, δn),

δ1 = a1 and δi = ai −
b2
i

δi−1
for i = 2, · · · , n.

An alternative factorization with an upper triangular matrix, is also easily
obtained, that is T = UD−1

U U t with,

U =


d1 −b2

d2 −b3

. . .
. . .

dn−1 −bn
dn

 and DU = diag(d1, d2, · · · , dn−1, dn),

dn = an and di = ai −
b2
i+1

di+1
for i = n − 1, · · · , 1.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 52 / 131



Direct methods
Symmetric tridiagonal matrix

The Cholesky factorization is T = LD−1
L Lt with,

L =


δ1

−b2 δ2

. . .
. . .

−bn−1 δn−1

−bn δn

 and DL = diag(δ1, δ2, · · · , δn−1, δn),

δ1 = a1 and δi = ai −
b2
i

δi−1
for i = 2, · · · , n.

An alternative factorization with an upper triangular matrix, is also easily
obtained, that is T = UD−1

U U t with,

U =


d1 −b2

d2 −b3

. . .
. . .

dn−1 −bn
dn

 and DU = diag(d1, d2, · · · , dn−1, dn),

dn = an and di = ai −
b2
i+1

di+1
for i = n − 1, · · · , 1.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 52 / 131



Direct methods
Symmetric tridiagonal matrix

Theorem 3.7

(G. Meurant, 1992)
The inverse of T is caracterized as,

(T−1)i,j = bi+1 · · · bj
(
dj+1 · · · dn
δi · · · δn

)
, ∀i , ∀j > i ,

(T−1)i,i =

(
di+1 · · · dn
δi · · · δn

)
, ∀i .

where terms that have indices greater that n must be taken equal to 1.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 53 / 131



Direct methods
Other results on the applicability of LU decomposition

Theorem 3.8

Let A ∈Mn(K) be a (row or column) digonally dominant matrix. Then there exists
triangular matrices L (unit lower triangular) and U (upper triangular) such that A = LU.

Suppose that A is row diagonally dominant,

|ai,i | ≥
n∑

j=1,j 6=i

|ai,j |, ∀i ,

then a1,1 6= 0, otherwise all the elements in the first row are 0 and A is singular.

For any other row we have,

a
(2)
i,j = ai,j −

ai,1a1,j

a1,1
, 2 ≤ i ≤ n, 2 ≤ j ≤ n,

a
(2)
i,1 = 0, 2 ≤ i ≤ n,

n∑
j,j 6=i

|a(2)
i,j | =

n∑
j,j 6=i,j 6=1

|a(2)
i,j | ≤

n∑
j,j 6=i,j 6=1

|ai,j |+
∣∣∣∣ ai,1a1,1

∣∣∣∣ n∑
j,j 6=i,j 6=1

|a1,j |.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 54 / 131



Direct methods
Other results on the applicability of LU decomposition

But,

|a1,1| ≥ |a1,i |+
n∑

j,j 6=i,j 6=1

|a1,j |.

Therefore,

n∑
j,j 6=i

|a(2)
i,j | ≤

n∑
j,j 6=i,j 6=1

|ai,j |+
∣∣∣∣ ai,1a1,1

∣∣∣∣ (|a1,1| − |a1,i |)

≤
n∑

j,j 6=i

|ai,j | −
|ai,1a1,i |
|a1,1|

≤ |ai,i | −
|ai,1a1,i |
|a1,1|

(
=

∣∣∣∣|ai,i | − |ai,1a1,i |
|a1,1|

∣∣∣∣)
≤

∣∣∣∣ai,i − ai,1a1,i

a1,1

∣∣∣∣ = |a(2)
i,i |.

The reduced matrix is also diagonally dominant.

All the pivots are non-zero.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 55 / 131



Direct methods
Other results on the applicability of LU decomposition

Definition 3.9

A matrix A ∈Mn(K) which can be written as A = σIn − B with σ > 0, B ≥ 0
(i.e. (Bi,j)1≤i,j≤n ≥ 0) abd such that %(B) ≤ σ is said to be a M-matrix.

Recall that %(B) = max
1≤i≤n

|λi (B)|.

Theorem 3.10

A matrix A ∈Mn(K) is a nonsingular M-matrix if and only if A is nonsingular
with ai,j ≤ 0 for i 6= j , and A−1 ≥ 0.

Theorem 3.11

Let A be M-matrix. Then there exists triangular matrices L (unit lower triangular)
and U (upper triangular) such that A = LU.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 56 / 131



Direct methods
Other results on the applicability of LU decomposition

Definition 3.9

A matrix A ∈Mn(K) which can be written as A = σIn − B with σ > 0, B ≥ 0
(i.e. (Bi,j)1≤i,j≤n ≥ 0) abd such that %(B) ≤ σ is said to be a M-matrix.

Recall that %(B) = max
1≤i≤n

|λi (B)|.

Theorem 3.10

A matrix A ∈Mn(K) is a nonsingular M-matrix if and only if A is nonsingular
with ai,j ≤ 0 for i 6= j , and A−1 ≥ 0.

Theorem 3.11

Let A be M-matrix. Then there exists triangular matrices L (unit lower triangular)
and U (upper triangular) such that A = LU.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 56 / 131



Direct methods
Other results on the applicability of LU decomposition

Definition 3.9

A matrix A ∈Mn(K) which can be written as A = σIn − B with σ > 0, B ≥ 0
(i.e. (Bi,j)1≤i,j≤n ≥ 0) abd such that %(B) ≤ σ is said to be a M-matrix.

Recall that %(B) = max
1≤i≤n

|λi (B)|.

Theorem 3.10

A matrix A ∈Mn(K) is a nonsingular M-matrix if and only if A is nonsingular
with ai,j ≤ 0 for i 6= j , and A−1 ≥ 0.

Theorem 3.11

Let A be M-matrix. Then there exists triangular matrices L (unit lower triangular)
and U (upper triangular) such that A = LU.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 56 / 131



Outline

1 Numerical linear algebra background

2 Linear systems

3 Direct methods

4 Iterative methods
Relaxation methods
Krylov methods

5 Preconditioning techniques

6 Domain decomposition methods

S. Lanteri (Inria) High performance scientific computing December 28, 2016 57 / 131



Relaxation methods

This section discusses the solution of,

Ax = b,

where A ∈Mn(R) is a square matrix and b ∈ Rn (here K = R to simplify the
presentation), by means of iterative methods.

A method for solving the linear system Ax = b is called iterative if it is a numerical
method computing a sequence of approximate solutions xk that converges to the
exact solution x as the number of iterations k goes to +∞.

Relaxation methods: xk+1 is a function of xk only and not of the previous iterates.

Definition 4.1

Lest A be a nonsingular matrix. A pair of matrices (M,N) with M nonsingular
(and easily invertible in practice) satisfying,

A = M − N,

is called a splitting (or regular decomposition) of A.
An iterative method based on the splitting (M,N) is defined by,

x0 given in Rn, Mxk+1 = Nxk + b, ∀k ≥ 1.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 58 / 131



Relaxation methods

This section discusses the solution of,

Ax = b,

where A ∈Mn(R) is a square matrix and b ∈ Rn (here K = R to simplify the
presentation), by means of iterative methods.

A method for solving the linear system Ax = b is called iterative if it is a numerical
method computing a sequence of approximate solutions xk that converges to the
exact solution x as the number of iterations k goes to +∞.

Relaxation methods: xk+1 is a function of xk only and not of the previous iterates.

Definition 4.1

Lest A be a nonsingular matrix. A pair of matrices (M,N) with M nonsingular
(and easily invertible in practice) satisfying,

A = M − N,

is called a splitting (or regular decomposition) of A.
An iterative method based on the splitting (M,N) is defined by,

x0 given in Rn, Mxk+1 = Nxk + b, ∀k ≥ 1.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 58 / 131



Relaxation methods

The task of solving the linear system Ax = b is replaced by a sequence of several
linear systems Mx̃ = b̃ to be solved.

Therefore, M has to be much easier to invert than A.

Definition 4.2

An iterative method is said to converge if for any choice of the initial vector x0 ∈ Rn, the
sequence of approximate solutions xk converges to the exact solution x .

Definition 4.3

We call the vector rk = b − Axk (respectively, ek = xk − x) residual (respectively, error)
at the kth iteration.

Obviously, an iterative method converges if and only if ek converges to 0, which is
equivalent to rk = Aek converging to 0.

Convergence is detected on the residual in practice.

The matrix M−1N is called an iteration matrix or amplification matrix of the
iterative method.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 59 / 131



Relaxation methods

The task of solving the linear system Ax = b is replaced by a sequence of several
linear systems Mx̃ = b̃ to be solved.

Therefore, M has to be much easier to invert than A.

Definition 4.2

An iterative method is said to converge if for any choice of the initial vector x0 ∈ Rn, the
sequence of approximate solutions xk converges to the exact solution x .

Definition 4.3

We call the vector rk = b − Axk (respectively, ek = xk − x) residual (respectively, error)
at the kth iteration.

Obviously, an iterative method converges if and only if ek converges to 0, which is
equivalent to rk = Aek converging to 0.

Convergence is detected on the residual in practice.

The matrix M−1N is called an iteration matrix or amplification matrix of the
iterative method.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 59 / 131



Relaxation methods

The task of solving the linear system Ax = b is replaced by a sequence of several
linear systems Mx̃ = b̃ to be solved.

Therefore, M has to be much easier to invert than A.

Definition 4.2

An iterative method is said to converge if for any choice of the initial vector x0 ∈ Rn, the
sequence of approximate solutions xk converges to the exact solution x .

Definition 4.3

We call the vector rk = b − Axk (respectively, ek = xk − x) residual (respectively, error)
at the kth iteration.

Obviously, an iterative method converges if and only if ek converges to 0, which is
equivalent to rk = Aek converging to 0.

Convergence is detected on the residual in practice.

The matrix M−1N is called an iteration matrix or amplification matrix of the
iterative method.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 59 / 131



Relaxation methods

The task of solving the linear system Ax = b is replaced by a sequence of several
linear systems Mx̃ = b̃ to be solved.

Therefore, M has to be much easier to invert than A.

Definition 4.2

An iterative method is said to converge if for any choice of the initial vector x0 ∈ Rn, the
sequence of approximate solutions xk converges to the exact solution x .

Definition 4.3

We call the vector rk = b − Axk (respectively, ek = xk − x) residual (respectively, error)
at the kth iteration.

Obviously, an iterative method converges if and only if ek converges to 0, which is
equivalent to rk = Aek converging to 0.

Convergence is detected on the residual in practice.

The matrix M−1N is called an iteration matrix or amplification matrix of the
iterative method.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 59 / 131



Relaxation methods

Theorem 4.4

The iterative method defined by 4.1 converges if and only if he spectral radius of M−1N
satisfies,

%(M−1N) < 1a.

ap4-d1

pause

Theorem 4.5

Let A be an Hermitian positive definite matrix. Consider a splitting of A = M − N with
M nonsingular. Then the matrix (M? + N) is Hermitian.

Furthermore, if (M? + N) is also positive definite, we have,

%(M−1N) < 1a.

ap4-d2

S. Lanteri (Inria) High performance scientific computing December 28, 2016 60 / 131



Relaxation methods

Iterative methods are often used with sparse matrices (i.e. matrices that have
relatively few nonzero entries).

Such matrices often result from the discretization of PDEs by finite difference,
finite element or finite volume methods.

Specific storage formats are used for such matrices.

Iterative methods for solving linear systems may require a large number of
iterations to converge.

Thus, one might think that that the accumulation of rounding errors during the
iterations completely destroys the convergence of these methods on computers
(or even worse, makes them converge to wrong solutions).

S. Lanteri (Inria) High performance scientific computing December 28, 2016 61 / 131



Relaxation methods

Iterative methods are often used with sparse matrices (i.e. matrices that have
relatively few nonzero entries).

Such matrices often result from the discretization of PDEs by finite difference,
finite element or finite volume methods.

Specific storage formats are used for such matrices.

Iterative methods for solving linear systems may require a large number of
iterations to converge.

Thus, one might think that that the accumulation of rounding errors during the
iterations completely destroys the convergence of these methods on computers
(or even worse, makes them converge to wrong solutions).

S. Lanteri (Inria) High performance scientific computing December 28, 2016 61 / 131



Relaxation methods

Theorem 4.6

Consider a splitting of A = M − N with A and M nonsingular. Let b ∈ Rn be the
right-hand side, and let x ∈ Rn be the solution of Ax = b.
We assume that at each step k the iterative method is tainted by an error
εk ∈ Rn, meaning that xk+1 is not exactly given by,

xk+1 = M−1Nxk + M−1b,

but rather by,

xk+1 = M−1Nxk + M−1b + εk .

We also assume that %(M−1N) < 1 and that there exist a vector norm and a
positive constant ε such that for all k ≥ 0,

‖ εk ‖≤ ε.

Then, there exists a constant K , which depends on M−1N but not on ε, such that,

lim
x→+∞

sup ‖ xk − x ‖ ≤ Kεa

ap4-d3

S. Lanteri (Inria) High performance scientific computing December 28, 2016 62 / 131



Relaxation methods

Definition 4.7

The Jacobi method is the iterative method defined by the splitting,

M = D , N = D − A.

The iteration matrix of this method is denoted by,

J = M−1N = In − D−1A.

The Jacobi method is well defined if the diagonal part of A is nonsingular

If A is Hermitian, the Jacobi method converges if A and
2D − A are positive definite

S. Lanteri (Inria) High performance scientific computing December 28, 2016 63 / 131



Relaxation methods

Definition 4.7

The Jacobi method is the iterative method defined by the splitting,

M = D , N = D − A.

The iteration matrix of this method is denoted by,

J = M−1N = In − D−1A.

The Jacobi method is well defined if the diagonal part of A is nonsingular

If A is Hermitian, the Jacobi method converges if A and
2D − A are positive definite

S. Lanteri (Inria) High performance scientific computing December 28, 2016 63 / 131



Relaxation methods

For any matrix A = (ai,j)1≤i,j≤n consider the decomposition A = D − E − F , where D is
the diagonal part, −E the lower triangular part and −F the upper triangular part of A.

Definition 4.8

The Gauss-Seidel method is the iterative method defined by the splitting,

M = D − E , N = F .

The iteration matrix of this method is denoted by,

G = M−1N = (D − E)−1F .

The Gauss-Seidel method is well defined if the matrix D − E is nonsingular,
which is equivalent to asking that D be nonsingular

The matrix D − E is easy to invert since it is triangular

If A is Hermitian and positive definite, then M? + N = D is also Hermitian
and positive definite, so the Gauss-Seidel method converges

S. Lanteri (Inria) High performance scientific computing December 28, 2016 64 / 131



Relaxation methods

For any matrix A = (ai,j)1≤i,j≤n consider the decomposition A = D − E − F , where D is
the diagonal part, −E the lower triangular part and −F the upper triangular part of A.

Definition 4.8

The Gauss-Seidel method is the iterative method defined by the splitting,

M = D − E , N = F .

The iteration matrix of this method is denoted by,

G = M−1N = (D − E)−1F .

The Gauss-Seidel method is well defined if the matrix D − E is nonsingular,
which is equivalent to asking that D be nonsingular

The matrix D − E is easy to invert since it is triangular

If A is Hermitian and positive definite, then M? + N = D is also Hermitian
and positive definite, so the Gauss-Seidel method converges

S. Lanteri (Inria) High performance scientific computing December 28, 2016 64 / 131



Relaxation methods

For any matrix A = (ai,j)1≤i,j≤n consider the decomposition A = D − E − F , where D is
the diagonal part, −E the lower triangular part and −F the upper triangular part of A.

Definition 4.8

The Gauss-Seidel method is the iterative method defined by the splitting,

M = D − E , N = F .

The iteration matrix of this method is denoted by,

G = M−1N = (D − E)−1F .

The Gauss-Seidel method is well defined if the matrix D − E is nonsingular,
which is equivalent to asking that D be nonsingular

The matrix D − E is easy to invert since it is triangular

If A is Hermitian and positive definite, then M? + N = D is also Hermitian
and positive definite, so the Gauss-Seidel method converges

S. Lanteri (Inria) High performance scientific computing December 28, 2016 64 / 131



Relaxation methods

Definition 4.9

Let ω ∈ R+. The iterative method defined by the splitting,

M =
D

ω
− E , N =

1− ω
ω

D + F .

is called relaxation method for the parameter ω.

The iteration matrix of this method is denoted by,

Gω = M−1N =

(
D

ω
− E

)−1(
1− ω
ω

D + F

)
.

The relaxation method is well defined if D is nonsingular

If ω = 1, we recover the Gauss-Seidel method

If ω < 1, we talk about an under-relaxation method

If ω > 1, we talk about an over-relaxation method

The idea is to look for an optimal ω that produces the the smallest
spectral radius %(Gω) possible

A relaxation method for the Jacobi method also exists

S. Lanteri (Inria) High performance scientific computing December 28, 2016 65 / 131



Relaxation methods

Definition 4.9

Let ω ∈ R+. The iterative method defined by the splitting,

M =
D

ω
− E , N =

1− ω
ω

D + F .

is called relaxation method for the parameter ω.

The iteration matrix of this method is denoted by,

Gω = M−1N =

(
D

ω
− E

)−1(
1− ω
ω

D + F

)
.

The relaxation method is well defined if D is nonsingular

If ω = 1, we recover the Gauss-Seidel method

If ω < 1, we talk about an under-relaxation method

If ω > 1, we talk about an over-relaxation method

The idea is to look for an optimal ω that produces the the smallest
spectral radius %(Gω) possible

A relaxation method for the Jacobi method also exists

S. Lanteri (Inria) High performance scientific computing December 28, 2016 65 / 131



Relaxation methods

Theorem 4.10

Let A be a Hermitian positive definite matrix.

Then for any ω ∈]0, 2[, the relaxation method convergesa.

ap4-d4

Theorem 4.11

For any matrix A, we always have,

%(Gω) ≥ |1− ω|, ∀ω 6= 0.

Consequently, the relaxation method can converge only if 0 < ω < 2a.

ap4-d5

S. Lanteri (Inria) High performance scientific computing December 28, 2016 66 / 131



Relaxation methods

Theorem 4.10

Let A be a Hermitian positive definite matrix.

Then for any ω ∈]0, 2[, the relaxation method convergesa.

ap4-d4

Theorem 4.11

For any matrix A, we always have,

%(Gω) ≥ |1− ω|, ∀ω 6= 0.

Consequently, the relaxation method can converge only if 0 < ω < 2a.

ap4-d5

S. Lanteri (Inria) High performance scientific computing December 28, 2016 66 / 131



Relaxation methods
The special case of tridiagonal matrices

Theorem 4.12

Let A be a tridiagonal matrix. Then

%(G) = %(J )2,

so the Jacobi and Gauss-Seidel methods converge or diverge simultaneously, but
Gauss-Seidel alway converges faster than Jacobi.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 67 / 131



Relaxation methods
The special case of tridiagonal matrices

Theorem 4.12

Let A be a tridiagonal matrix. Then

%(G) = %(J )2,

so the Jacobi and Gauss-Seidel methods converge or diverge simultaneously, but
Gauss-Seidel alway converges faster than Jacobi.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 67 / 131



Relaxation methods
The special case of tridiagonal matrices

Theorem 4.13

Let A be a tridiagonal Hermitian positive definite matrix.

Then the Jacobi, Gauss-Seidel and relaxation methods converge.

Moreover, there exists a unique optimal parameter ωopt in the sense that,

%(Gωopt ) = min
0<ω<2

%(Gω),

where,

ωopt =
2

1 +
√

1− %(J )2
,

and,

%(Gωopt ) = ωopt − 1.

Thus, for a tridiagonal Hermitian positive definite matrix, we have ωopt ≥ 1 and it is
better to perform over-relaxation than under-relaxation.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 68 / 131



Relaxation methods
The Conjugate Gradient (CG) method

The CG method actually is a direct method used as an iterative one.

For simplicity, we will restrict ourselves throughout this section, to real symmetric
matrices (results extend easily to complex self-adjoint matrices).

Definition 4.14

The iterative method, known as the gradient method, is defined by the following
regular decomposition,

M =
1

α
In , N =

1

α
In − A,

where α is a real nonzero parameter.

In other words, the gradient method consists in computing the sequence xk
defined by,

x0 given in Rn, xk+1 = xk + α(b − Axk), ∀k ≥ 1.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 69 / 131



Relaxation methods
The Conjugate Gradient (CG) method

The CG method actually is a direct method used as an iterative one.

For simplicity, we will restrict ourselves throughout this section, to real symmetric
matrices (results extend easily to complex self-adjoint matrices).

Definition 4.14

The iterative method, known as the gradient method, is defined by the following
regular decomposition,

M =
1

α
In , N =

1

α
In − A,

where α is a real nonzero parameter.

In other words, the gradient method consists in computing the sequence xk
defined by,

x0 given in Rn, xk+1 = xk + α(b − Axk), ∀k ≥ 1.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 69 / 131



Relaxation methods
The Conjugate Gradient (CG) method

Theorem 4.15

Let A be a matrix with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn.

1 If λ1 ≤ 0 ≤ λn, then the gradient method does not converge for any value of α.

2 If 0 < λ1 ≤ · · · ≤ λn, then the gradient method converges if and only if

0 < α <
2

λn
. In this case, the optimal parameter α, which minimizes

%(M−1N) is,

αopt =
2

λn + λ1
and min

α
%(M−1N) =

λn − λ1

λn + λ1
=

cond2(A)− 1

cond2(A) + 1
a.

ap4-d6

A is a normal matrix (AAt = AtA)

The conditioning of a normal invertible matrix A is cond2(A) =
λn

λ1
(with the

assumption of the second point). Thus, for the optimal parameter αopt , the
better the matrix A is conditioned, the faster the gradient method converges.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 70 / 131



Relaxation methods
The Conjugate Gradient (CG) method

Theorem 4.15

Let A be a matrix with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn.

1 If λ1 ≤ 0 ≤ λn, then the gradient method does not converge for any value of α.

2 If 0 < λ1 ≤ · · · ≤ λn, then the gradient method converges if and only if

0 < α <
2

λn
. In this case, the optimal parameter α, which minimizes

%(M−1N) is,

αopt =
2

λn + λ1
and min

α
%(M−1N) =

λn − λ1

λn + λ1
=

cond2(A)− 1

cond2(A) + 1
a.

ap4-d6

A is a normal matrix (AAt = AtA)

The conditioning of a normal invertible matrix A is cond2(A) =
λn

λ1
(with the

assumption of the second point). Thus, for the optimal parameter αopt , the
better the matrix A is conditioned, the faster the gradient method converges.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 70 / 131



Relaxation methods
The Conjugate Gradient (CG) method

Gradient algorithm

Data: A, b. Output: x (approximation of the solution of Ax = b).

Initialization
Choose α
Choose x ∈ Rn

Compute r = b − Ax

While ‖ r ‖2> ε ‖ b ‖2

x = x + αr
r = b − Ax

End While

S. Lanteri (Inria) High performance scientific computing December 28, 2016 71 / 131



Relaxation methods
The Conjugate Gradient (CG) method

Definition 4.16

Let f be a function from Rn into R. We call the vector of partial derivatives at
the point x the gradient (or differential) of the function f at x , which we denote by,

∇f (x) =

(
∂f

∂x1
(x), · · · , ∂f

∂xn
(x)

)t

.

Definition 4.17

The iterative method for solving the linear system Ax = b, known as the gradient
method with variable step size, is defined by,

x0 given in Rn, xk+1 = xk + αk(b − Axk), ∀k ≥ 1.

where αk is chosen as the minimizer of the function,

g(α) = f (xk − α∇f (xk)),

and where f (x) is the quadratic functional
1

2
< Ax , x > − < b, x >.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 72 / 131



Relaxation methods
The Conjugate Gradient (CG) method

Definition 4.16

Let f be a function from Rn into R. We call the vector of partial derivatives at
the point x the gradient (or differential) of the function f at x , which we denote by,

∇f (x) =

(
∂f

∂x1
(x), · · · , ∂f

∂xn
(x)

)t

.

Definition 4.17

The iterative method for solving the linear system Ax = b, known as the gradient
method with variable step size, is defined by,

x0 given in Rn, xk+1 = xk + αk(b − Axk), ∀k ≥ 1.

where αk is chosen as the minimizer of the function,

g(α) = f (xk − α∇f (xk)),

and where f (x) is the quadratic functional
1

2
< Ax , x > − < b, x >.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 72 / 131



Relaxation methods
The Conjugate Gradient (CG) method

Lemma 4.18

Let A be a positive definite symmetric matrix. For the gradient method with variable
step size, there exists a unique optimal step size given by,

αk =
‖ b − Axk ‖2

< A(b − Axk), (b − Axk) >
.

When b − Axk = 0, the method has converged!

S. Lanteri (Inria) High performance scientific computing December 28, 2016 73 / 131



Relaxation methods
The Conjugate Gradient (CG) method

Lemma 4.18

Let A be a positive definite symmetric matrix. For the gradient method with variable
step size, there exists a unique optimal step size given by,

αk =
‖ b − Axk ‖2

< A(b − Axk), (b − Axk) >
.

When b − Axk = 0, the method has converged!

S. Lanteri (Inria) High performance scientific computing December 28, 2016 73 / 131



Relaxation methods
The Conjugate Gradient (CG) method

Gradient algorithm with variable step size

Data: A, b. Output: x (approximation of the solution of Ax = b).

Initialization
Choose x ∈ Rn

Compute r = b − Ax

Compute α =
‖ r ‖2

2

< Ar , r >

While ‖ r ‖2> ε ‖ b ‖2

x = x + αr
r = b − Ax

α =
‖ r ‖2

2

< Ar , r >
End While

S. Lanteri (Inria) High performance scientific computing December 28, 2016 74 / 131



Relaxation methods
The Conjugate Gradient (CG) method

Definition 4.19

Let r be a vector in Rn. We call the vector subspace of Rn spanned by the k + 1 vectors
{r ,Ar , · · · ,Ak r} the Krylov space associated with the vector r (and matrix A), denoted
by Kk(A, r) (or simply Kk).

The Krylov spaces (Kk)k≥0 form by inclusion an increasing sequence of vector subspaces.
Since Kk ⊂ Rn, this sequence becomes stationary from a certain k.

Lemma 4.20

The sequence of Krylov spaces (Kk)k≥0 is increasing,

Kk ⊂ Kk+1, ∀k ≥ 0.

Moreover, for all vectors r0 6= 0, there exists k0 ∈ {0, 1, · · · , n − 1} such that,{
dimKk = k + 1 if 0 ≤ k ≤ k0,
dimKk = k0 + 1 if k ≥ k0.

The integer k0 is called the Krylov critical dimensiona.

ap4-d7

S. Lanteri (Inria) High performance scientific computing December 28, 2016 75 / 131



Relaxation methods
The Conjugate Gradient (CG) method

Definition 4.19

Let r be a vector in Rn. We call the vector subspace of Rn spanned by the k + 1 vectors
{r ,Ar , · · · ,Ak r} the Krylov space associated with the vector r (and matrix A), denoted
by Kk(A, r) (or simply Kk).

The Krylov spaces (Kk)k≥0 form by inclusion an increasing sequence of vector subspaces.
Since Kk ⊂ Rn, this sequence becomes stationary from a certain k.

Lemma 4.20

The sequence of Krylov spaces (Kk)k≥0 is increasing,

Kk ⊂ Kk+1, ∀k ≥ 0.

Moreover, for all vectors r0 6= 0, there exists k0 ∈ {0, 1, · · · , n − 1} such that,{
dimKk = k + 1 if 0 ≤ k ≤ k0,
dimKk = k0 + 1 if k ≥ k0.

The integer k0 is called the Krylov critical dimensiona.

ap4-d7

S. Lanteri (Inria) High performance scientific computing December 28, 2016 75 / 131



Relaxation methods
The Conjugate Gradient (CG) method

Definition 4.19

Let r be a vector in Rn. We call the vector subspace of Rn spanned by the k + 1 vectors
{r ,Ar , · · · ,Ak r} the Krylov space associated with the vector r (and matrix A), denoted
by Kk(A, r) (or simply Kk).

The Krylov spaces (Kk)k≥0 form by inclusion an increasing sequence of vector subspaces.
Since Kk ⊂ Rn, this sequence becomes stationary from a certain k.

Lemma 4.20

The sequence of Krylov spaces (Kk)k≥0 is increasing,

Kk ⊂ Kk+1, ∀k ≥ 0.

Moreover, for all vectors r0 6= 0, there exists k0 ∈ {0, 1, · · · , n − 1} such that,{
dimKk = k + 1 if 0 ≤ k ≤ k0,
dimKk = k0 + 1 if k ≥ k0.

The integer k0 is called the Krylov critical dimensiona.

ap4-d7

S. Lanteri (Inria) High performance scientific computing December 28, 2016 75 / 131



Relaxation methods
The Conjugate Gradient (CG) method

Proposition 4.21

We consider the gradient method (with constant or variable step size),

x0 given in Rn, xk+1 = xk + αk(b − Axk), ∀k ≥ 1.

The vector rk = b − Axk , called the residual, satisfies the following properties:

1 rk belongs to the Krylov space Kk corresponding to the initial residual r0.

2 xk+1 belongs to the affine space [x0 + Kk ] defined as the collection of vectors x
such that x − x0 belongs to the vector subspace Kk

a.

ap4-d8

Lemma 4.22

Let (xk)k≥0 be a sequence in Rn. Let Kk be the Krylov space relative to the vector
r0 = b − Ax0. If xk+1 ∈ [x0 + Kk ], then rk+1 = b − Axk+1 ∈ Kk+1

a.

ap4-d9

S. Lanteri (Inria) High performance scientific computing December 28, 2016 76 / 131



Relaxation methods
The Conjugate Gradient (CG) method

Proposition 4.21

We consider the gradient method (with constant or variable step size),

x0 given in Rn, xk+1 = xk + αk(b − Axk), ∀k ≥ 1.

The vector rk = b − Axk , called the residual, satisfies the following properties:

1 rk belongs to the Krylov space Kk corresponding to the initial residual r0.

2 xk+1 belongs to the affine space [x0 + Kk ] defined as the collection of vectors x
such that x − x0 belongs to the vector subspace Kk

a.

ap4-d8

Lemma 4.22

Let (xk)k≥0 be a sequence in Rn. Let Kk be the Krylov space relative to the vector
r0 = b − Ax0. If xk+1 ∈ [x0 + Kk ], then rk+1 = b − Axk+1 ∈ Kk+1

a.

ap4-d9

S. Lanteri (Inria) High performance scientific computing December 28, 2016 76 / 131



Relaxation methods
The Conjugate Gradient (CG) method

We now assume that all the matrices considered in the sequel are symmetric
positive definite.

To improve the gradient method, we forget, from now on, the induction relation
that gives xk+1 in terms of xk and we keep as the starting point only the relation
xk+1 ∈ [x0 + Kk ] where Kk is the Krylov space relative to the vector r0 = b − Ax0.

Of course, there exists an infinity of possible choices for xk+1 in the affine
space [x0 + Kk ].

To determine xk+1 in a unique fashion, we put forward two simple criteria:

1 1st definition (orthogonalization principle).
We choose xk+1 ∈ [x0 + Kk ] such that rk+1 ⊥ Kk .

2 2nd definition (minimization principle).
We choose xk+1 ∈ [x0 + Kk ] that minimizes in [x0 + Kk ] the functional,

f (x) =
1

2
< Ax , x > − < b, x > .

S. Lanteri (Inria) High performance scientific computing December 28, 2016 77 / 131



Relaxation methods
The Conjugate Gradient (CG) method

We now assume that all the matrices considered in the sequel are symmetric
positive definite.

To improve the gradient method, we forget, from now on, the induction relation
that gives xk+1 in terms of xk and we keep as the starting point only the relation
xk+1 ∈ [x0 + Kk ] where Kk is the Krylov space relative to the vector r0 = b − Ax0.

Of course, there exists an infinity of possible choices for xk+1 in the affine
space [x0 + Kk ].

To determine xk+1 in a unique fashion, we put forward two simple criteria:

1 1st definition (orthogonalization principle).
We choose xk+1 ∈ [x0 + Kk ] such that rk+1 ⊥ Kk .

2 2nd definition (minimization principle).
We choose xk+1 ∈ [x0 + Kk ] that minimizes in [x0 + Kk ] the functional,

f (x) =
1

2
< Ax , x > − < b, x > .

S. Lanteri (Inria) High performance scientific computing December 28, 2016 77 / 131



Relaxation methods
The Conjugate Gradient (CG) method

Theorem 4.23

Let A be a symmetric positive definite matrix.
For the two previous definitions, there exists indeed a unique vector xk+1 ∈ [x0 + Kk ].
Both definitions correspond to the same algorithm in the sense that they lead
to the same value of xk+1.
Furthermore, this algorithm converges to the solution of the linear system Ax = b
in at most n iterations.
We call this method, the Conjugate Gradient (CG) methoda.

ap4-d10

The CG method that we have devised as an iterative method is in fact a direct
method since it converges in a finite number of iterations (precisely k0 + 1 where
k0 is the critical Krylov dimension)

Introducing r = b − Ax , we have,

h(r) =
1

2
< A−1r , r >= f (x) +

1

2
< A−1b, b >,

and the second definition is equivalent to finding xk+1 ∈ [x0 + Kk ] such that its
residual rk+1 = b − Axk+1 minimizes the functional h(r) in Kk+1.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 78 / 131



Relaxation methods
The Conjugate Gradient (CG) method

Theorem 4.23

Let A be a symmetric positive definite matrix.
For the two previous definitions, there exists indeed a unique vector xk+1 ∈ [x0 + Kk ].
Both definitions correspond to the same algorithm in the sense that they lead
to the same value of xk+1.
Furthermore, this algorithm converges to the solution of the linear system Ax = b
in at most n iterations.
We call this method, the Conjugate Gradient (CG) methoda.

ap4-d10

The CG method that we have devised as an iterative method is in fact a direct
method since it converges in a finite number of iterations (precisely k0 + 1 where
k0 is the critical Krylov dimension)

Introducing r = b − Ax , we have,

h(r) =
1

2
< A−1r , r >= f (x) +

1

2
< A−1b, b >,

and the second definition is equivalent to finding xk+1 ∈ [x0 + Kk ] such that its
residual rk+1 = b − Axk+1 minimizes the functional h(r) in Kk+1.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 78 / 131



Relaxation methods
The Conjugate Gradient (CG) method

Theorem 4.23

Let A be a symmetric positive definite matrix.
For the two previous definitions, there exists indeed a unique vector xk+1 ∈ [x0 + Kk ].
Both definitions correspond to the same algorithm in the sense that they lead
to the same value of xk+1.
Furthermore, this algorithm converges to the solution of the linear system Ax = b
in at most n iterations.
We call this method, the Conjugate Gradient (CG) methoda.

ap4-d10

The CG method that we have devised as an iterative method is in fact a direct
method since it converges in a finite number of iterations (precisely k0 + 1 where
k0 is the critical Krylov dimension)

Introducing r = b − Ax , we have,

h(r) =
1

2
< A−1r , r >= f (x) +

1

2
< A−1b, b >,

and the second definition is equivalent to finding xk+1 ∈ [x0 + Kk ] such that its
residual rk+1 = b − Axk+1 minimizes the functional h(r) in Kk+1.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 78 / 131



Relaxation methods
The Conjugate Gradient (CG) method

Proposition 4.24

Let A be a symmetric positive definite matrix.
Let (xk)0≤k≤n be the sequence of approximate solutions obtained by the CG method.
Set,

rk = b − Axk and dk = xk+1 − xk .

Then,

1 the the Krylov space Kk defined by Kk = {r0,Ar0, · · · ,Ak r0} satisfies,

Kk = span{r0, · · · , rk} = span{d0, · · · , dk}.
2 the sequence (rk)0≤k≤n−1 is orthogonal i.e.,

< rk , rl >= 0 for all 0 ≤ l < k ≤ n − 1.

3 the sequence (dk)0≤k≤n−1 is conjugate with respect to A (or A-conjugate) i.e.,

< Adk , dl >= 0 for all 0 ≤ l < k ≤ n − 1.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 79 / 131



Relaxation methods
The Conjugate Gradient (CG) method

Lemma 4.25

Let (ai )1≤i≤p be a family of linearly independent vectors of Rn, and let (bi )1≤i≤p

and (ci )1≤i≤p be two orthogonal families for the same scalar product on Rn such that
for all 1 ≤ i ≤ p,

span{a1, · · · , ai} = span{b1, · · · , bi} = span{c1, · · · , ci}.

Then each vector bi is parallel to ci for 1 ≤ i ≤ p.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 80 / 131



Relaxation methods
The Conjugate Gradient (CG) method

Theorem 4.26

Let A be a symmetric positive definite matrix.
Let (xk) be the sequence of approximate solutions of the CG method.
Let (rk = b − Axk) be the associated residual sequence.
Then there exists an A-conjugate sequence (pk) such that,

(∗) p0 = r0 = b − Ax0 and for 0 ≤ k ≤ k0,


xk+1 = xk + αkpk ,
rk+1 = rk − αkApk ,
pk+1 = rk+1 + βkpk ,

with,

αk =
‖ rk ‖2

< Apk , pk >
and βk =

‖ rk+1 ‖2

‖ rk ‖2
.

Conversely, let (xk , rk , pk) be three sequences defined by the induction relations (∗).
Then (xk) is nothing but the sequence of approximate solutions of the CG methoda.

ap4-r1

S. Lanteri (Inria) High performance scientific computing December 28, 2016 81 / 131



Relaxation methods
The Conjugate Gradient (CG) method

CG algorithm

Data: A, b. Output: x (approximation of the solution of Ax = b).

Initialization
Choose x ∈ Rn

Compute r = b − Ax
Set p = r
Compute γ =‖ r ‖2

While γ > ε
y = Ap

α =
γ

< y , p >
x = x + αp
r = r − αy

β =
‖ r ‖2

γ
γ =‖ r ‖2

p = r + βp
End While

S. Lanteri (Inria) High performance scientific computing December 28, 2016 82 / 131



Outline

1 Numerical linear algebra background

2 Linear systems

3 Direct methods

4 Iterative methods
Relaxation methods
Krylov methods

5 Preconditioning techniques

6 Domain decomposition methods

S. Lanteri (Inria) High performance scientific computing December 28, 2016 83 / 131



The preconditioned CG method

Proposition 5.1

Let A be a symmetric real and positive definite matrix.
Let x be the exact solution to the system Ax = b.
Let (xk)k be the sequence of approximate solutions produced by the CG method.
We have,

‖ xk − x ‖2≤ 2
√
cond2(A)

(√
cond2(A)− 1√
cond2(A) + 1

)k

‖ x0 − x ‖2
a.

ap5-d1

S. Lanteri (Inria) High performance scientific computing December 28, 2016 84 / 131



The preconditioned CG method

Definition 5.2

Let Ax = b be the linear system to be solved. We call a matrix C that is easy to invert
and such that cond2(C−1A) is smaller than cond2(A) a preconditioning of A.
We call the equivalent system C−1Ax = C−1b a preconditioned system.

The goal of preconditioning is that the CG method converges faster for the
preconditioned system than for the original one

The price to pay is the requirement of inverting C

In practice, it is not necessary to form the matrix C−1A and we merely successively
multiply matrices A and C−1 by vectors

Note that the preconditioned matrix C−1A has to be symmetric positive definite

Symmetric preconditioning: if C is a symmetric positive definite matrix then let
C = BB t be the Cholesky decomposition of C and Ax = b is replaced by Ãx̃ = b̃
where Ã = B−1AB−t , b̃ = B−1b and x̃ = B tx .

S. Lanteri (Inria) High performance scientific computing December 28, 2016 85 / 131



The preconditioned CG method

Definition 5.2

Let Ax = b be the linear system to be solved. We call a matrix C that is easy to invert
and such that cond2(C−1A) is smaller than cond2(A) a preconditioning of A.
We call the equivalent system C−1Ax = C−1b a preconditioned system.

The goal of preconditioning is that the CG method converges faster for the
preconditioned system than for the original one

The price to pay is the requirement of inverting C

In practice, it is not necessary to form the matrix C−1A and we merely successively
multiply matrices A and C−1 by vectors

Note that the preconditioned matrix C−1A has to be symmetric positive definite

Symmetric preconditioning: if C is a symmetric positive definite matrix then let
C = BB t be the Cholesky decomposition of C and Ax = b is replaced by Ãx̃ = b̃
where Ã = B−1AB−t , b̃ = B−1b and x̃ = B tx .

S. Lanteri (Inria) High performance scientific computing December 28, 2016 85 / 131



The preconditioned CG method

Definition 5.2

Let Ax = b be the linear system to be solved. We call a matrix C that is easy to invert
and such that cond2(C−1A) is smaller than cond2(A) a preconditioning of A.
We call the equivalent system C−1Ax = C−1b a preconditioned system.

The goal of preconditioning is that the CG method converges faster for the
preconditioned system than for the original one

The price to pay is the requirement of inverting C

In practice, it is not necessary to form the matrix C−1A and we merely successively
multiply matrices A and C−1 by vectors

Note that the preconditioned matrix C−1A has to be symmetric positive definite

Symmetric preconditioning: if C is a symmetric positive definite matrix then let
C = BB t be the Cholesky decomposition of C and Ax = b is replaced by Ãx̃ = b̃
where Ã = B−1AB−t , b̃ = B−1b and x̃ = B tx .

S. Lanteri (Inria) High performance scientific computing December 28, 2016 85 / 131



The preconditioned CG method

PCG algorithm

Data: A, b. Output: x (approximation of the solution of Ax = b).

Initialization
Choose x ∈ Rn

Compute r = b − Ax
Compute z = C−1r
Set p = z
Compute γ =‖ r ‖2

While γ > ε
y = Ap

δ =< z, r >; α =
δ

< y , p >
x = x + αp
r = r − αy
z = C−1r

β =
< z, r >

δ
; γ =‖ r ‖2

p = z + βp
End While

S. Lanteri (Inria) High performance scientific computing December 28, 2016 86 / 131



Incomplete LU factorization preconditioners

Consider a general sparse matrix A whose elements are ai,j with i , j = 1, · · · , n.

A general ILU factorization process computes a sparse lower triangular matrix L and
a sparse upper triangular matrix U so that the residual matrix R = LU − A satisfies
certain consraints.

A general algorithm for building an ILU factorization can be derived by performing
Gaussian elimination and dropping some elements in predetermined nondiagonal
positions.

There exist different variants of ILU factorization preconditioners.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 87 / 131



Incomplete LU factorization preconditioners

Consider a general sparse matrix A whose elements are ai,j with i , j = 1, · · · , n.

A general ILU factorization process computes a sparse lower triangular matrix L and
a sparse upper triangular matrix U so that the residual matrix R = LU − A satisfies
certain consraints.

A general algorithm for building an ILU factorization can be derived by performing
Gaussian elimination and dropping some elements in predetermined nondiagonal
positions.

There exist different variants of ILU factorization preconditioners.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 87 / 131



Incomplete LU factorization preconditioners

Let P be a zero pattern such that P ⊂ {(i , j)|i 6= j ; 1 ≤ i , j ≤ n}

General static pattern ILU algorithm

For (i , j) ∈ P set ai,j = 0

For i = 2↗ n
For k = 1↗ i − 1 and if (i , k) /∈ P

ai,k =
ai,k
ak,k

For j = k + 1↗ n and if (i , j) /∈ P
ai,j = ai,j − ai,kak,j

End For
End For

End For

S. Lanteri (Inria) High performance scientific computing December 28, 2016 88 / 131



Incomplete LU factorization preconditioners

Let P be a zero pattern such that P ⊂ {(i , j)|i 6= j ; 1 ≤ i , j ≤ n}

General static pattern ILU algorithm

For (i , j) ∈ P set ai,j = 0

For i = 2↗ n
For k = 1↗ i − 1 and if (i , k) /∈ P

ai,k =
ai,k
ak,k

For j = k + 1↗ n and if (i , j) /∈ P
ai,j = ai,j − ai,kak,j

End For
End For

End For

S. Lanteri (Inria) High performance scientific computing December 28, 2016 88 / 131



Incomplete LU factorization preconditioners

Theorem 5.3

Let A be an M-matrix and P a given zero pattern.
Then the general static pattern ILU algorithm does not break down and produces an
incomplete factorization,

A = LU − R,

which is a regular splitting of A.

Proposition 5.4

The general static pattern ILU algorithm produces factors L and U such that,

A = LU − R,

in which −R is the matrix of the elements that are dropped during the incomplete
elimination process.
When (i , j) ∈ P, an entry ri,j of R is equal to the value of −ai,j obtained at the
completion of the k loop of the general static pattern ILU algorithm.
Otherwise, ri,j is zero.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 89 / 131



Incomplete LU factorization preconditioners

Theorem 5.3

Let A be an M-matrix and P a given zero pattern.
Then the general static pattern ILU algorithm does not break down and produces an
incomplete factorization,

A = LU − R,

which is a regular splitting of A.

Proposition 5.4

The general static pattern ILU algorithm produces factors L and U such that,

A = LU − R,

in which −R is the matrix of the elements that are dropped during the incomplete
elimination process.
When (i , j) ∈ P, an entry ri,j of R is equal to the value of −ai,j obtained at the
completion of the k loop of the general static pattern ILU algorithm.
Otherwise, ri,j is zero.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 89 / 131



Incomplete LU factorization preconditioners
Zero fill-in ILU (ILU(0))

The ILU factorization technique with no fill-in, denoted by ILU(0), takes the zero pattern
P to be precisely the zero pattern of A,

NZ(A) is the set of pairs (i , j), 1 ≤ i , j ≤ n such that ai,j 6= 0.

ILU(0) algorithm

For i = 2↗ n
For k = 1↗ i − 1 and if (i , k) ∈ NZ(A)

ai,k =
ai,k
ak,k

For j = k + 1↗ n and if (i , j) ∈ NZ(A)
ai,j = ai,j − ai,kak,j

End For
End For

End For

S. Lanteri (Inria) High performance scientific computing December 28, 2016 90 / 131



Incomplete LU factorization preconditioners
Zero fill-in ILU (ILU(0))

The ILU factorization technique with no fill-in, denoted by ILU(0), takes the zero pattern
P to be precisely the zero pattern of A,

NZ(A) is the set of pairs (i , j), 1 ≤ i , j ≤ n such that ai,j 6= 0.

ILU(0) algorithm

For i = 2↗ n
For k = 1↗ i − 1 and if (i , k) ∈ NZ(A)

ai,k =
ai,k
ak,k

For j = k + 1↗ n and if (i , j) ∈ NZ(A)
ai,j = ai,j − ai,kak,j

End For
End For

End For

S. Lanteri (Inria) High performance scientific computing December 28, 2016 90 / 131



Incomplete LU factorization preconditioners
Level of fill and ILU(p)

The accuracy of the ILU(0) incomplete factorization may be insufficient to yield an
adequate rate of convergence.

More accurate ILU factorizations that differ from ILU(0) by allowing some fill-in, are
often more efficient as well as more reliable.

In the ILU(p) method, a level of fill is attributed to each element that is processed by
Gaussian elimination and dropping is based on the value of the level of fill.

The rationale is that the level of fill should be indicative of the size: the higher
the level, the smaller the magnitude of the elements.

A size εk is attributed to any element whose level of fill is k, where ε < 1.

An element ai,j is updated using ai,j = ai,j − ai,kak,j and, if levi,j is the current level
of fill of this element, then the size of the updated element should be,

εlevi,j − εlevi,k εlevk,j = εlevi,j − εlevi,k+levk,j .

S. Lanteri (Inria) High performance scientific computing December 28, 2016 91 / 131



Incomplete LU factorization preconditioners
Level of fill and ILU(p)

The accuracy of the ILU(0) incomplete factorization may be insufficient to yield an
adequate rate of convergence.

More accurate ILU factorizations that differ from ILU(0) by allowing some fill-in, are
often more efficient as well as more reliable.

In the ILU(p) method, a level of fill is attributed to each element that is processed by
Gaussian elimination and dropping is based on the value of the level of fill.

The rationale is that the level of fill should be indicative of the size: the higher
the level, the smaller the magnitude of the elements.

A size εk is attributed to any element whose level of fill is k, where ε < 1.

An element ai,j is updated using ai,j = ai,j − ai,kak,j and, if levi,j is the current level
of fill of this element, then the size of the updated element should be,

εlevi,j − εlevi,k εlevk,j = εlevi,j − εlevi,k+levk,j .

S. Lanteri (Inria) High performance scientific computing December 28, 2016 91 / 131



Incomplete LU factorization preconditioners
Level of fill and ILU(p)

The accuracy of the ILU(0) incomplete factorization may be insufficient to yield an
adequate rate of convergence.

More accurate ILU factorizations that differ from ILU(0) by allowing some fill-in, are
often more efficient as well as more reliable.

In the ILU(p) method, a level of fill is attributed to each element that is processed by
Gaussian elimination and dropping is based on the value of the level of fill.

The rationale is that the level of fill should be indicative of the size: the higher
the level, the smaller the magnitude of the elements.

A size εk is attributed to any element whose level of fill is k, where ε < 1.

An element ai,j is updated using ai,j = ai,j − ai,kak,j and, if levi,j is the current level
of fill of this element, then the size of the updated element should be,

εlevi,j − εlevi,k εlevk,j = εlevi,j − εlevi,k+levk,j .

S. Lanteri (Inria) High performance scientific computing December 28, 2016 91 / 131



Incomplete LU factorization preconditioners
Level of fill and ILU(p)

Therefore, roughly speaking, the size of ai,j will be the maximum of the two
sizes εlevi,j and εlevi,k+levk,j , so it is natiral to define the new level of fill as
min(levi,j , levi,k + levk,j).

In practice, the level of fill is actually shifted by -1 for convenience of notation and to
conform with the definition used for ILU(0) (i.e. levi,j = 0 if ai,j 6= 0 in the matrix A).

Definition 5.5

The initial level of fill of an element ai,j of a sparse matrix A is defined by,

levi,j =

{
0 if ai,j 6= 0 or i = j ,
∞ otherwise.

Each time this element is modified using,

ai,j = ai,j − ai,kak,j ,

its level of fill must be updated by,

levi,j := min(levi,j , levi,k + levk,j + 1).

S. Lanteri (Inria) High performance scientific computing December 28, 2016 92 / 131



Incomplete LU factorization preconditioners
Level of fill and ILU(p)

Therefore, roughly speaking, the size of ai,j will be the maximum of the two
sizes εlevi,j and εlevi,k+levk,j , so it is natiral to define the new level of fill as
min(levi,j , levi,k + levk,j).

In practice, the level of fill is actually shifted by -1 for convenience of notation and to
conform with the definition used for ILU(0) (i.e. levi,j = 0 if ai,j 6= 0 in the matrix A).

Definition 5.5

The initial level of fill of an element ai,j of a sparse matrix A is defined by,

levi,j =

{
0 if ai,j 6= 0 or i = j ,
∞ otherwise.

Each time this element is modified using,

ai,j = ai,j − ai,kak,j ,

its level of fill must be updated by,

levi,j := min(levi,j , levi,k + levk,j + 1).

S. Lanteri (Inria) High performance scientific computing December 28, 2016 92 / 131



Incomplete LU factorization preconditioners
Level of fill and ILU(p)

Therefore, roughly speaking, the size of ai,j will be the maximum of the two
sizes εlevi,j and εlevi,k+levk,j , so it is natiral to define the new level of fill as
min(levi,j , levi,k + levk,j).

In practice, the level of fill is actually shifted by -1 for convenience of notation and to
conform with the definition used for ILU(0) (i.e. levi,j = 0 if ai,j 6= 0 in the matrix A).

Definition 5.5

The initial level of fill of an element ai,j of a sparse matrix A is defined by,

levi,j =

{
0 if ai,j 6= 0 or i = j ,
∞ otherwise.

Each time this element is modified using,

ai,j = ai,j − ai,kak,j ,

its level of fill must be updated by,

levi,j := min(levi,j , levi,k + levk,j + 1).

S. Lanteri (Inria) High performance scientific computing December 28, 2016 92 / 131



Incomplete LU factorization preconditioners
Level of fill and ILU(p)

In the ILU(p) incomplete factorization method, all fill-in elements whose level of fill
does not exceed p are kept.

The zero pattern for ILU(p) is the set,

Pp = {(i , j)|levi,j > p},

where levi,j is the level of fill value after all updates,

levi,j := min(levi,j , levi,k + levk,j + 1) (∗).

Let ai,? denotes the ith row of the matrix A.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 93 / 131



Incomplete LU factorization preconditioners
Level of fill and ILU(p)

In the ILU(p) incomplete factorization method, all fill-in elements whose level of fill
does not exceed p are kept.

The zero pattern for ILU(p) is the set,

Pp = {(i , j)|levi,j > p},

where levi,j is the level of fill value after all updates,

levi,j := min(levi,j , levi,k + levk,j + 1) (∗).

Let ai,? denotes the ith row of the matrix A.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 93 / 131



Incomplete LU factorization preconditioners
Level of fill and ILU(p)

ILU(p) algorithm

For all nonzero elements ai,j define levi,j = 0

For i = 2↗ n
For k = 1↗ i − 1 and for levi,j ≤ p

ai,k =
ai,k
ak,k

ai,? = ai,? − ai,kak,?

Update the levels of fill of the nonzero ai,j ’s using (∗)

End For
Replace anay element in row i with levi,j > p with zero

End For

S. Lanteri (Inria) High performance scientific computing December 28, 2016 94 / 131



Incomplete LU factorization preconditioners
Threshold strategies and incomplete LU with threshold

Incomplete factorization methods that rely on the levels of fill are blind to numerical
values because elements that are dropped depend only on the structure of A.

A few alternative methods are available based on dropping elements in the Gaussian
elimination process according to their magnitude rather than their locations.

A generic ILU algorithm with threshold (ILUT) can be derived by taking into
account a set of rules for dropping small magnitude elements.

In the following, applying a dropping rule to an element will only mean replacing
the element with zero if it satisfies a set of crieria.

A dropping rule can be applied to a whole row by applying the same rule to all the
elements of the row.

In the following algorithm, w is a full-length working row used to accumulate linear
combinations of sparse rows in the elimination and wk is the kth entry of this row.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 95 / 131



Incomplete LU factorization preconditioners
Threshold strategies and incomplete LU with threshold

Incomplete factorization methods that rely on the levels of fill are blind to numerical
values because elements that are dropped depend only on the structure of A.

A few alternative methods are available based on dropping elements in the Gaussian
elimination process according to their magnitude rather than their locations.

A generic ILU algorithm with threshold (ILUT) can be derived by taking into
account a set of rules for dropping small magnitude elements.

In the following, applying a dropping rule to an element will only mean replacing
the element with zero if it satisfies a set of crieria.

A dropping rule can be applied to a whole row by applying the same rule to all the
elements of the row.

In the following algorithm, w is a full-length working row used to accumulate linear
combinations of sparse rows in the elimination and wk is the kth entry of this row.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 95 / 131



Incomplete LU factorization preconditioners
Threshold strategies and incomplete LU with threshold

Incomplete factorization methods that rely on the levels of fill are blind to numerical
values because elements that are dropped depend only on the structure of A.

A few alternative methods are available based on dropping elements in the Gaussian
elimination process according to their magnitude rather than their locations.

A generic ILU algorithm with threshold (ILUT) can be derived by taking into
account a set of rules for dropping small magnitude elements.

In the following, applying a dropping rule to an element will only mean replacing
the element with zero if it satisfies a set of crieria.

A dropping rule can be applied to a whole row by applying the same rule to all the
elements of the row.

In the following algorithm, w is a full-length working row used to accumulate linear
combinations of sparse rows in the elimination and wk is the kth entry of this row.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 95 / 131



Incomplete LU factorization preconditioners
Threshold strategies and incomplete LU with threshold

ILUT algorithm

For i = 1↗ n
w = ai,?
For k = 1↗ i − 1 and when wk 6= 0

wk =
wk

ak,k
Apply a dropping rule to wk (1)

If wk 6= 0 Then
w = w − wk ∗ uk,?

Endif
End For

Apply a dropping rule to row w (2)
For j = 1, · · · , i − 1 : li,j = wj

For j = 1, · · · , n : ui,j = wj

w = 0
End For

S. Lanteri (Inria) High performance scientific computing December 28, 2016 96 / 131



Incomplete LU factorization preconditioners
Threshold strategies and incomplete LU with threshold

ILU(0) can be viewed as a particular case of the ILUT algorithm where the dropping
rule is to drop elements that are in positions not belonging to the original structure
of the matrix A.

In the ILUT(p,τ) factorization method, the following rules are used:

1 for (1), an element wk is dropped (i.e. replaced with zero) if it is less than the
relative tolerance τi obtained by multiplying τ by the original norm of the ith row.

2 for (2), a dropping rule of a different type is applied. First, drop again any element
in the row with a magnitude that is below the relative tolerance τi . Then, keep only
the p largest elements in the L part of the row and the p largest elements in the U
part of the row in addition to the diagonal element, which is always kept.

The goal of the second dropping step is to control the number of elements per row.

Roughly speaking, p can be viewed as a parameter that helps control memory usage,
while τ helps reduce the computational cost.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 97 / 131



Incomplete LU factorization preconditioners
Threshold strategies and incomplete LU with threshold

ILU(0) can be viewed as a particular case of the ILUT algorithm where the dropping
rule is to drop elements that are in positions not belonging to the original structure
of the matrix A.

In the ILUT(p,τ) factorization method, the following rules are used:

1 for (1), an element wk is dropped (i.e. replaced with zero) if it is less than the
relative tolerance τi obtained by multiplying τ by the original norm of the ith row.

2 for (2), a dropping rule of a different type is applied. First, drop again any element
in the row with a magnitude that is below the relative tolerance τi . Then, keep only
the p largest elements in the L part of the row and the p largest elements in the U
part of the row in addition to the diagonal element, which is always kept.

The goal of the second dropping step is to control the number of elements per row.

Roughly speaking, p can be viewed as a parameter that helps control memory usage,
while τ helps reduce the computational cost.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 97 / 131



Incomplete LU factorization preconditioners
Threshold strategies and incomplete LU with threshold

ILU(0) can be viewed as a particular case of the ILUT algorithm where the dropping
rule is to drop elements that are in positions not belonging to the original structure
of the matrix A.

In the ILUT(p,τ) factorization method, the following rules are used:

1 for (1), an element wk is dropped (i.e. replaced with zero) if it is less than the
relative tolerance τi obtained by multiplying τ by the original norm of the ith row.

2 for (2), a dropping rule of a different type is applied. First, drop again any element
in the row with a magnitude that is below the relative tolerance τi . Then, keep only
the p largest elements in the L part of the row and the p largest elements in the U
part of the row in addition to the diagonal element, which is always kept.

The goal of the second dropping step is to control the number of elements per row.

Roughly speaking, p can be viewed as a parameter that helps control memory usage,
while τ helps reduce the computational cost.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 97 / 131



Incomplete LU factorization preconditioners
Threshold strategies and incomplete LU with threshold

ILU(0) can be viewed as a particular case of the ILUT algorithm where the dropping
rule is to drop elements that are in positions not belonging to the original structure
of the matrix A.

In the ILUT(p,τ) factorization method, the following rules are used:

1 for (1), an element wk is dropped (i.e. replaced with zero) if it is less than the
relative tolerance τi obtained by multiplying τ by the original norm of the ith row.

2 for (2), a dropping rule of a different type is applied. First, drop again any element
in the row with a magnitude that is below the relative tolerance τi . Then, keep only
the p largest elements in the L part of the row and the p largest elements in the U
part of the row in addition to the diagonal element, which is always kept.

The goal of the second dropping step is to control the number of elements per row.

Roughly speaking, p can be viewed as a parameter that helps control memory usage,
while τ helps reduce the computational cost.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 97 / 131



Incomplete LU factorization preconditioners
Threshold strategies and incomplete LU with threshold

A variant for the second dropping step is to keep a number of elements equal to nl(i) + p
in the lower part and nu(i) + p in the upper part of the row, where nl(i) and nu(i) are
the number of the nonzero elements in the L part and the U part of the ith row of A.

The ILUT approach may fail for many of the matrices that arise from real applications
for one of the following reasons:

the ILUT procedure encounters a zero pivot,

the ILUT procedure encounters an overflow or underflow condition because of
exponential growth of the entries of the factors,

the ILUT procedure terminates normally but the incomplete factorization
preconditioner that is computed is unstable.

An unstable ILU factorization is one for which M−1 = U−1L−1 has a very large norm
leading to poor convergence or divergence of the outer iteration.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 98 / 131



Incomplete LU factorization preconditioners
Threshold strategies and incomplete LU with threshold

A variant for the second dropping step is to keep a number of elements equal to nl(i) + p
in the lower part and nu(i) + p in the upper part of the row, where nl(i) and nu(i) are
the number of the nonzero elements in the L part and the U part of the ith row of A.

The ILUT approach may fail for many of the matrices that arise from real applications
for one of the following reasons:

the ILUT procedure encounters a zero pivot,

the ILUT procedure encounters an overflow or underflow condition because of
exponential growth of the entries of the factors,

the ILUT procedure terminates normally but the incomplete factorization
preconditioner that is computed is unstable.

An unstable ILU factorization is one for which M−1 = U−1L−1 has a very large norm
leading to poor convergence or divergence of the outer iteration.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 98 / 131



Incomplete LU factorization preconditioners
Threshold strategies and incomplete LU with threshold

A variant for the second dropping step is to keep a number of elements equal to nl(i) + p
in the lower part and nu(i) + p in the upper part of the row, where nl(i) and nu(i) are
the number of the nonzero elements in the L part and the U part of the ith row of A.

The ILUT approach may fail for many of the matrices that arise from real applications
for one of the following reasons:

the ILUT procedure encounters a zero pivot,

the ILUT procedure encounters an overflow or underflow condition because of
exponential growth of the entries of the factors,

the ILUT procedure terminates normally but the incomplete factorization
preconditioner that is computed is unstable.

An unstable ILU factorization is one for which M−1 = U−1L−1 has a very large norm
leading to poor convergence or divergence of the outer iteration.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 98 / 131



Incomplete LU factorization preconditioners
Threshold strategies and incomplete LU with threshold

ILUTP : ILUT with pivoting

ILUTP is based on column pivoting.

ILUTP uses a permutation array to hold the new orderings of the variables, along
with the reverse permutation array.

At step i of the elimination process the largest entry in a row is selected and is defined
to be the new ith variable. The two permutation arrays are then updated accordingly.

The matrix elements of L and U are kept in their original numbering, however when
expanding the LU row that corresponds to the ith outer step of Gaussian elimination,
the elements are loaded with respect to the new labeling using the permutation array.

At the end of the process, ther are two options:

leave all elements labeled with respect to the original labeling but the variables
(system unknowns) must then be permuted at each preconditioning step;

apply the permutation to all elements of A as well as LU but this produces a
permuted solution that must be permuted back at the end of the iteration phase.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 99 / 131



Incomplete LU factorization preconditioners
Threshold strategies and incomplete LU with threshold

ILUTP : ILUT with pivoting

ILUTP is based on column pivoting.

ILUTP uses a permutation array to hold the new orderings of the variables, along
with the reverse permutation array.

At step i of the elimination process the largest entry in a row is selected and is defined
to be the new ith variable. The two permutation arrays are then updated accordingly.

The matrix elements of L and U are kept in their original numbering, however when
expanding the LU row that corresponds to the ith outer step of Gaussian elimination,
the elements are loaded with respect to the new labeling using the permutation array.

At the end of the process, ther are two options:

leave all elements labeled with respect to the original labeling but the variables
(system unknowns) must then be permuted at each preconditioning step;

apply the permutation to all elements of A as well as LU but this produces a
permuted solution that must be permuted back at the end of the iteration phase.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 99 / 131



Incomplete LU factorization preconditioners
Threshold strategies and incomplete LU with threshold

ILUTP : ILUT with pivoting

ILUTP is based on column pivoting.

ILUTP uses a permutation array to hold the new orderings of the variables, along
with the reverse permutation array.

At step i of the elimination process the largest entry in a row is selected and is defined
to be the new ith variable. The two permutation arrays are then updated accordingly.

The matrix elements of L and U are kept in their original numbering, however when
expanding the LU row that corresponds to the ith outer step of Gaussian elimination,
the elements are loaded with respect to the new labeling using the permutation array.

At the end of the process, ther are two options:

leave all elements labeled with respect to the original labeling but the variables
(system unknowns) must then be permuted at each preconditioning step;

apply the permutation to all elements of A as well as LU but this produces a
permuted solution that must be permuted back at the end of the iteration phase.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 99 / 131



Approximate inverse preconditioners

The ILU factorization techniques were developed originally for M-matrices arising from
the discretization of PDEs of elliptic type, usually in one variable.

For the common situation where A is indefinite, standard ILU factorizations may face
several difficulties, of which the best known is the fatal breakdown due to the encounter
of a zero pivot.

However, there are other problems that are just as serious.

Consider an incomplete factorization of the form,

A = LU + E ,

where E is the error.

The preconditioned matrices associated with the different forms of ILU preconditioning
are similar to,

L−1AU−1 = Id + L−1EU−1.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 100 / 131



Approximate inverse preconditioners

The ILU factorization techniques were developed originally for M-matrices arising from
the discretization of PDEs of elliptic type, usually in one variable.

For the common situation where A is indefinite, standard ILU factorizations may face
several difficulties, of which the best known is the fatal breakdown due to the encounter
of a zero pivot.

However, there are other problems that are just as serious.

Consider an incomplete factorization of the form,

A = LU + E ,

where E is the error.

The preconditioned matrices associated with the different forms of ILU preconditioning
are similar to,

L−1AU−1 = Id + L−1EU−1.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 100 / 131



Approximate inverse preconditioners

What is sometimes missed is the fact that the error matrix E is not as important as the
preconditioned error matrix L−1EU−1. Indeed, the original matrix A may lead to L−1 or
U−1 inverse factors with very large norm, causing L−1EU−1 to very large.

It can be observed experimentally that ILU preconditioners can be very poor in these
situations, which often arise when the matrices are indefinite or have large nonsymmetric
parts.

One possible remedy is to try to find a preconditioner that does not require solving a
linear system.

For example, the original system can be preconditioned by a marix M that is a direct
approximation of the inverse of A.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 101 / 131



Approximate inverse preconditioners

What is sometimes missed is the fact that the error matrix E is not as important as the
preconditioned error matrix L−1EU−1. Indeed, the original matrix A may lead to L−1 or
U−1 inverse factors with very large norm, causing L−1EU−1 to very large.

It can be observed experimentally that ILU preconditioners can be very poor in these
situations, which often arise when the matrices are indefinite or have large nonsymmetric
parts.

One possible remedy is to try to find a preconditioner that does not require solving a
linear system.

For example, the original system can be preconditioned by a marix M that is a direct
approximation of the inverse of A.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 101 / 131



Approximate inverse preconditioners

A simple technique for finding approximate inverses of arbitrary sparse matrices is to
attempt to find a sparse matrix M that minimizes the Frobenius norm of the residual
matrix Id− AM,

F (M) =‖ Id− AM ‖2
F .

A matrix M whose value F (M) is small would be a right approximate inverse of A
(similarly a left approximate inverse can be defined by considering Id−MA).

The objective function decouples into the sum of the squares of the 2-norms of the
individual columns of the residual matrix,

F (M) =
n∑

j=1

‖ ej − Amj ‖2
2,

in which ej and mj are the jth columns of the identity matrix and the matrix M
respectively.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 102 / 131



Approximate inverse preconditioners

A simple technique for finding approximate inverses of arbitrary sparse matrices is to
attempt to find a sparse matrix M that minimizes the Frobenius norm of the residual
matrix Id− AM,

F (M) =‖ Id− AM ‖2
F .

A matrix M whose value F (M) is small would be a right approximate inverse of A
(similarly a left approximate inverse can be defined by considering Id−MA).

The objective function decouples into the sum of the squares of the 2-norms of the
individual columns of the residual matrix,

F (M) =
n∑

j=1

‖ ej − Amj ‖2
2,

in which ej and mj are the jth columns of the identity matrix and the matrix M
respectively.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 102 / 131



Approximate inverse preconditioners

There are two different ways to proceed in order to minimize F (M): the function
F (M) can be minimized globally as a function of the sparse matrix M, or the individual
functions,

fj(m) =‖ ej − Amj ‖2
2,

can be minimized.

The second approach is appealing for parallel computers, although there is also
parallelism to be exploited in the first approach.

In the second approach, each minimization can be performed by taking a sparse
initial guess and solving approximately the n parallel linear subproblems,

Amj = ej , j = 1, · · · , n,

with a few steps of a nonsymmetric descent-type method (such as MR or GMRES).

S. Lanteri (Inria) High performance scientific computing December 28, 2016 103 / 131



Approximate inverse preconditioners

There are two different ways to proceed in order to minimize F (M): the function
F (M) can be minimized globally as a function of the sparse matrix M, or the individual
functions,

fj(m) =‖ ej − Amj ‖2
2,

can be minimized.

The second approach is appealing for parallel computers, although there is also
parallelism to be exploited in the first approach.

In the second approach, each minimization can be performed by taking a sparse
initial guess and solving approximately the n parallel linear subproblems,

Amj = ej , j = 1, · · · , n,

with a few steps of a nonsymmetric descent-type method (such as MR or GMRES).

S. Lanteri (Inria) High performance scientific computing December 28, 2016 103 / 131



Approximate inverse preconditioners

Approximate inverse (AINV) algorithm via MR iteration

Set M = M0

For each column j = 1↗ n
Define mj = Mej
For i = 1↗ ni

rj = ej − Amj

αj =
< rj ,Arj >

< Arj ,Arj >

mj = mj + αj rj
Apply numerical dropping to mj

End For
End For

ni is the number of iterations to solve Amj = ej approximately for each column

M0 is a initial guess

S. Lanteri (Inria) High performance scientific computing December 28, 2016 104 / 131



Approximate inverse preconditioners

Approximate inverse (AINV) algorithm via MR iteration

Set M = M0

For each column j = 1↗ n
Define mj = Mej
For i = 1↗ ni

rj = ej − Amj

αj =
< rj ,Arj >

< Arj ,Arj >

mj = mj + αj rj
Apply numerical dropping to mj

End For
End For

ni is the number of iterations to solve Amj = ej approximately for each column

M0 is a initial guess

S. Lanteri (Inria) High performance scientific computing December 28, 2016 104 / 131



Approximate inverse preconditioners

Proposition 5.6

Assume that A is nonsingular and that the residual of the AINV M satisfies
the relation,

‖ Id− AM ‖< 1,

where ‖ . ‖ is any consistent matrix norma. Then M is nonsingular.

a‖ AB ‖≤‖ A ‖‖ B ‖.

The result follows from the equality,

AM = Id− (Id− AM) = Id− N.

Since ‖ N ‖< 1, then Id− N is nonsingular.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 105 / 131



Approximate inverse preconditioners

Proposition 5.6

Assume that A is nonsingular and that the residual of the AINV M satisfies
the relation,

‖ Id− AM ‖< 1,

where ‖ . ‖ is any consistent matrix norma. Then M is nonsingular.

a‖ AB ‖≤‖ A ‖‖ B ‖.

The result follows from the equality,

AM = Id− (Id− AM) = Id− N.

Since ‖ N ‖< 1, then Id− N is nonsingular.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 105 / 131



Outline

1 Numerical linear algebra background

2 Linear systems

3 Direct methods

4 Iterative methods
Relaxation methods
Krylov methods

5 Preconditioning techniques

6 Domain decomposition methods

S. Lanteri (Inria) High performance scientific computing December 28, 2016 106 / 131



Domain decomposition methods

Generalities

Domain decomposition (DD) is a very natural framework in which to develop solution
methods for parallel computers.

Although the idea is quite old and it has been used for many years, mainly in structural
mechanics (substructuring methods), the interest in DD was renewed from the end
of the 80’s, especially with the advent of distributed memory parallel computers.

DD principles can be used for designing,

iterative solvers for linear systems of equations,

algebraic preconditioners for Krylov iterative methods,

coupling strategies for multi-model problems.

DD methods are generally used for the solution of linear systems arising from
the discretization of a PDE and are closely related to a partitioning of the domain
on which the PDE is to be solved.

DD methods can be studied at the continuous or discrete levels.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 107 / 131



Domain decomposition methods

Generalities

Domain decomposition (DD) is a very natural framework in which to develop solution
methods for parallel computers.

Although the idea is quite old and it has been used for many years, mainly in structural
mechanics (substructuring methods), the interest in DD was renewed from the end
of the 80’s, especially with the advent of distributed memory parallel computers.

DD principles can be used for designing,

iterative solvers for linear systems of equations,

algebraic preconditioners for Krylov iterative methods,

coupling strategies for multi-model problems.

DD methods are generally used for the solution of linear systems arising from
the discretization of a PDE and are closely related to a partitioning of the domain
on which the PDE is to be solved.

DD methods can be studied at the continuous or discrete levels.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 107 / 131



Domain decomposition methods

Generalities

Domain decomposition (DD) is a very natural framework in which to develop solution
methods for parallel computers.

Although the idea is quite old and it has been used for many years, mainly in structural
mechanics (substructuring methods), the interest in DD was renewed from the end
of the 80’s, especially with the advent of distributed memory parallel computers.

DD principles can be used for designing,

iterative solvers for linear systems of equations,

algebraic preconditioners for Krylov iterative methods,

coupling strategies for multi-model problems.

DD methods are generally used for the solution of linear systems arising from
the discretization of a PDE and are closely related to a partitioning of the domain
on which the PDE is to be solved.

DD methods can be studied at the continuous or discrete levels.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 107 / 131



Domain decomposition methods

Generalities

For constructing algorithms for parallel computers, a good principle is to divide the
problem into smaller pieces, solve the subproblems in parallel and then paste
the local results together (divide and conquer strategy).

DD methods proceed in a similar way,

1 the domain Ω (or preferably the problem) is split into subdomains (or subproblems),

2 a problem is defined and solved on each subdomain in parallel,

3 the partial solutions are glued together to get the global solution.

DD methods are generally separated into two main categories: overlapping and
non-overlapping methods.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 108 / 131



Domain decomposition methods

Generalities

For constructing algorithms for parallel computers, a good principle is to divide the
problem into smaller pieces, solve the subproblems in parallel and then paste
the local results together (divide and conquer strategy).

DD methods proceed in a similar way,

1 the domain Ω (or preferably the problem) is split into subdomains (or subproblems),

2 a problem is defined and solved on each subdomain in parallel,

3 the partial solutions are glued together to get the global solution.

DD methods are generally separated into two main categories: overlapping and
non-overlapping methods.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 108 / 131



Domain decomposition methods

Generalities

For constructing algorithms for parallel computers, a good principle is to divide the
problem into smaller pieces, solve the subproblems in parallel and then paste
the local results together (divide and conquer strategy).

DD methods proceed in a similar way,

1 the domain Ω (or preferably the problem) is split into subdomains (or subproblems),

2 a problem is defined and solved on each subdomain in parallel,

3 the partial solutions are glued together to get the global solution.

DD methods are generally separated into two main categories: overlapping and
non-overlapping methods.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 108 / 131



Domain decomposition methods

Generalities

When designig a DD method for solving a linear system, a second source of distinction
comes with the strategy used for solving the subproblems: on can use either a direct
method (Gaussian elimination) or a (preconditioned) iterative method.

The ultimate goal is to develop a solution algorithm whose complexity is proportional
to the number of unknowns (numerical efficiency) and whose performance weakly
depends on the number of subdomains (scalability).

In the following, we will consider linear systems resulting from the discretization of
second order elliptic PDEs.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 109 / 131



Domain decomposition methods

Generalities

When designig a DD method for solving a linear system, a second source of distinction
comes with the strategy used for solving the subproblems: on can use either a direct
method (Gaussian elimination) or a (preconditioned) iterative method.

The ultimate goal is to develop a solution algorithm whose complexity is proportional
to the number of unknowns (numerical efficiency) and whose performance weakly
depends on the number of subdomains (scalability).

In the following, we will consider linear systems resulting from the discretization of
second order elliptic PDEs.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 109 / 131



Domain decomposition methods

Generalities

When designig a DD method for solving a linear system, a second source of distinction
comes with the strategy used for solving the subproblems: on can use either a direct
method (Gaussian elimination) or a (preconditioned) iterative method.

The ultimate goal is to develop a solution algorithm whose complexity is proportional
to the number of unknowns (numerical efficiency) and whose performance weakly
depends on the number of subdomains (scalability).

In the following, we will consider linear systems resulting from the discretization of
second order elliptic PDEs.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 109 / 131



Domain decomposition methods

The classical Schwarz alternating method

The domain Ω is split into two overlapping subdomains Ω1 and Ω2.

Let Γi for i = 1, 2 be the part of the boundary Ωi enclosed in Ω.

Roughly speaking, the classical Schwarz alternating algorithm amounts to:

1 guess a value for the unknowns on the inner boundary Γ1,

2 solve exactly the problem in Ω1,

3 use the computed values on the inner boundary Γ2 to solve exactly
the problem in Ω2,

4 repeat the process until convergence.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 110 / 131



Domain decomposition methods

The classical Schwarz alternating method

The domain Ω is split into two overlapping subdomains Ω1 and Ω2.

Let Γi for i = 1, 2 be the part of the boundary Ωi enclosed in Ω.

Roughly speaking, the classical Schwarz alternating algorithm amounts to:

1 guess a value for the unknowns on the inner boundary Γ1,

2 solve exactly the problem in Ω1,

3 use the computed values on the inner boundary Γ2 to solve exactly
the problem in Ω2,

4 repeat the process until convergence.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 110 / 131



Domain decomposition methods

The classical Schwarz alternating method

We consider the Poisson model problem,

−∆u = f in Ω, u|∂Ω = 0.

The Schwarz alternating algorithm can be formulated at the PDE level, assuming
u(1) is given,

1 solve −∆u(2m) = f in Ω1, with u(2m)|Γ1 = u(2m−1)|Γ1 and u(2m)|∂Ω1∩∂Ω = 0.

2 solve −∆u(2m+1) = f in Ω2, with u(2m+1)|Γ2 = u(2m)|Γ2 and u(2m+1)|∂Ω2∩∂Ω = 0.

The variational form of the problem is,

a(u, v) = f (v), ∀v ∈ H1
0 (Ω),

where the bilinear form a is,

a(u, v) =

∫
Ω

∇u.∇vdx

Let V1 = H1
0 (Ω1) and V2 = H1

0 (Ω2), and let the projectors P1 and P2 defined by,

a(Piu,w) = a(u,w), ∀w ∈ Vi , i = 1, 2.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 111 / 131



Domain decomposition methods

The classical Schwarz alternating method

We consider the Poisson model problem,

−∆u = f in Ω, u|∂Ω = 0.

The Schwarz alternating algorithm can be formulated at the PDE level, assuming
u(1) is given,

1 solve −∆u(2m) = f in Ω1, with u(2m)|Γ1 = u(2m−1)|Γ1 and u(2m)|∂Ω1∩∂Ω = 0.

2 solve −∆u(2m+1) = f in Ω2, with u(2m+1)|Γ2 = u(2m)|Γ2 and u(2m+1)|∂Ω2∩∂Ω = 0.

The variational form of the problem is,

a(u, v) = f (v), ∀v ∈ H1
0 (Ω),

where the bilinear form a is,

a(u, v) =

∫
Ω

∇u.∇vdx

Let V1 = H1
0 (Ω1) and V2 = H1

0 (Ω2), and let the projectors P1 and P2 defined by,

a(Piu,w) = a(u,w), ∀w ∈ Vi , i = 1, 2.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 111 / 131



Domain decomposition methods

The classical Schwarz alternating method

We consider the Poisson model problem,

−∆u = f in Ω, u|∂Ω = 0.

The Schwarz alternating algorithm can be formulated at the PDE level, assuming
u(1) is given,

1 solve −∆u(2m) = f in Ω1, with u(2m)|Γ1 = u(2m−1)|Γ1 and u(2m)|∂Ω1∩∂Ω = 0.

2 solve −∆u(2m+1) = f in Ω2, with u(2m+1)|Γ2 = u(2m)|Γ2 and u(2m+1)|∂Ω2∩∂Ω = 0.

The variational form of the problem is,

a(u, v) = f (v), ∀v ∈ H1
0 (Ω),

where the bilinear form a is,

a(u, v) =

∫
Ω

∇u.∇vdx

Let V1 = H1
0 (Ω1) and V2 = H1

0 (Ω2), and let the projectors P1 and P2 defined by,

a(Piu,w) = a(u,w), ∀w ∈ Vi , i = 1, 2.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 111 / 131



Domain decomposition methods

The classical Schwarz alternating method

We consider the Poisson model problem,

−∆u = f in Ω, u|∂Ω = 0.

The Schwarz alternating algorithm can be formulated at the PDE level, assuming
u(1) is given,

1 solve −∆u(2m) = f in Ω1, with u(2m)|Γ1 = u(2m−1)|Γ1 and u(2m)|∂Ω1∩∂Ω = 0.

2 solve −∆u(2m+1) = f in Ω2, with u(2m+1)|Γ2 = u(2m)|Γ2 and u(2m+1)|∂Ω2∩∂Ω = 0.

The variational form of the problem is,

a(u, v) = f (v), ∀v ∈ H1
0 (Ω),

where the bilinear form a is,

a(u, v) =

∫
Ω

∇u.∇vdx

Let V1 = H1
0 (Ω1) and V2 = H1

0 (Ω2), and let the projectors P1 and P2 defined by,

a(Piu,w) = a(u,w), ∀w ∈ Vi , i = 1, 2.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 111 / 131



Domain decomposition methods

The classical Schwarz alternating method

We consider the Poisson model problem,

−∆u = f in Ω, u|∂Ω = 0.

The Schwarz alternating algorithm can be formulated at the PDE level, assuming
u(1) is given,

1 solve −∆u(2m) = f in Ω1, with u(2m)|Γ1 = u(2m−1)|Γ1 and u(2m)|∂Ω1∩∂Ω = 0.

2 solve −∆u(2m+1) = f in Ω2, with u(2m+1)|Γ2 = u(2m)|Γ2 and u(2m+1)|∂Ω2∩∂Ω = 0.

The variational form of the problem is,

a(u, v) = f (v), ∀v ∈ H1
0 (Ω),

where the bilinear form a is,

a(u, v) =

∫
Ω

∇u.∇vdx

Let V1 = H1
0 (Ω1) and V2 = H1

0 (Ω2), and let the projectors P1 and P2 defined by,

a(Piu,w) = a(u,w), ∀w ∈ Vi , i = 1, 2.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 111 / 131



Domain decomposition methods

The classical Schwarz alternating method

The functions defined only on subdomains are extended by 0 to H1
0 (Ω).

Then, 
a(u(2m) − u, v1) = 0, ∀v1 ∈ V1, u(2m) − u(2m−1) ∈ V1,

a(u(2m+1) − u, v2) = 0, ∀v2 ∈ V2, u(2m+1) − u(2m) ∈ V2.

It is easy to see that,  u − u(2m) = (I − P1)(u − u(2m−1)),

u − u(2m+1) = (I − P2)(u − u(2m)).

Therefore,

u − u(2m+1) = (I − P2)(I − P1)(u − u(2m−1)).

showing the multiplicative nature of the alternating Schwarz algorithm.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 112 / 131



Domain decomposition methods

The classical Schwarz alternating method

The functions defined only on subdomains are extended by 0 to H1
0 (Ω).

Then, 
a(u(2m) − u, v1) = 0, ∀v1 ∈ V1, u(2m) − u(2m−1) ∈ V1,

a(u(2m+1) − u, v2) = 0, ∀v2 ∈ V2, u(2m+1) − u(2m) ∈ V2.

It is easy to see that,  u − u(2m) = (I − P1)(u − u(2m−1)),

u − u(2m+1) = (I − P2)(u − u(2m)).

Therefore,

u − u(2m+1) = (I − P2)(I − P1)(u − u(2m−1)).

showing the multiplicative nature of the alternating Schwarz algorithm.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 112 / 131



Domain decomposition methods

The classical Schwarz alternating method

The mathematical formulation of the problem for studying convergence is in terms
of the iterated projections of the error,

e(2m) = (I − P1)e(2m−1), e(2m+1) = (I − P2)e(2m).

Theorem 6.1

(P.L. Lions, 1988)

If V = V1 + V2, where the overbar denotes the closure of the set, then e(k) → 0.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 113 / 131



Domain decomposition methods

The classical Schwarz alternating method

The mathematical formulation of the problem for studying convergence is in terms
of the iterated projections of the error,

e(2m) = (I − P1)e(2m−1), e(2m+1) = (I − P2)e(2m).

Theorem 6.1

(P.L. Lions, 1988)

If V = V1 + V2, where the overbar denotes the closure of the set, then e(k) → 0.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 113 / 131



Domain decomposition methods

Algebraic form of the Schwarz alternating algorithm

Let Ax = b be the linear system associated to the discretization of a 2D second order
elliptic equation in a rectangle using a five point finite difference scheme.

For a row-wise ordering of the unknowns, the matrix A has a block structure,

A =


D1 −B t

2

−B2 D2 −B t
3

. . .
. . .

. . .

−Bn−1 Dn−1 −B t
n

−Bn Dn

 .

S. Lanteri (Inria) High performance scientific computing December 28, 2016 114 / 131



Domain decomposition methods

Algebraic form of the Schwarz alternating algorithm

Let us assume a two-subdomain decomposition of the domain Ω. Then the matrix A1

associated to Ω1 is,

A1 =


D1 −B t

2

−B2 D2 −B t
3

. . .
. . .

. . .

−Bp−2 Dp−2 −B t
p−1

−Bp−1 Dp−1

 ,

and the matrix A2 corresponding to Ω2 is,

A2 =


Dl+1 −B t

l+2

−Bl+2 Dl+2 −B t
l+3

. . .
. . .

. . .

−Bn−1 Dn−1 −B t
n

−Bn Dn

 ,

with p − 1 > l + 1 (overlapping decomposition).

S. Lanteri (Inria) High performance scientific computing December 28, 2016 115 / 131



Domain decomposition methods

Algebraic form of the Schwarz alternating algorithm

Let us denote the matrix A in block form as,

A =

(
A1 A1,2

X X

)
,

or,

A =

(
Y Y
A2,1 A2

)
.

Note that A1,2 has only one nonzero block in the left lower corner and A2,1 is zero
except for the upper right block.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 116 / 131



Domain decomposition methods

Algebraic form of the Schwarz alternating algorithm

Let x1 and x2 be the partitioning of the unknown vectors such that,

x1 = (x1,1, · · · , x1,p−1)t , x2 = (x2,l+1, · · · , x2,n)t ,

and let b1 and b2 the corresponding partitioned right-hand side vectors.

We extend the vectors x1 and x2 to Ω by completing with the components of the
previous iterate of the Schwarz algorithm i.e. we define x (2m) by x

(2m)
1 for the first

p − 1 components, and by x
(2m−1)
2 for the components p to n (which we denote by

x
(2m−1)
1,2 ).

Similarly, x (2m+1) is defined by by x
(2m)
1 for the first l components (which we denote

by x
(2m)
2,1 ), and by x

(2m+1)
2 for the components l + 1 to n

S. Lanteri (Inria) High performance scientific computing December 28, 2016 117 / 131



Domain decomposition methods

Algebraic form of the Schwarz alternating algorithm

Let x1 and x2 be the partitioning of the unknown vectors such that,

x1 = (x1,1, · · · , x1,p−1)t , x2 = (x2,l+1, · · · , x2,n)t ,

and let b1 and b2 the corresponding partitioned right-hand side vectors.

We extend the vectors x1 and x2 to Ω by completing with the components of the
previous iterate of the Schwarz algorithm i.e. we define x (2m) by x

(2m)
1 for the first

p − 1 components, and by x
(2m−1)
2 for the components p to n (which we denote by

x
(2m−1)
1,2 ).

Similarly, x (2m+1) is defined by by x
(2m)
1 for the first l components (which we denote

by x
(2m)
2,1 ), and by x

(2m+1)
2 for the components l + 1 to n

S. Lanteri (Inria) High performance scientific computing December 28, 2016 117 / 131



Domain decomposition methods

Algebraic form of the Schwarz alternating algorithm

The Schwarz alternating algorithm can be written as,
x

(2m)
1 = x

(2m−1)
1 + (A1)−1

[
b1 − A1x

(2m−1)
1 − A1,2x

(2m−1)
1,2

]
,

x
(2m+1)
2 = x

(2m)
2 + (A2)−1

[
b2 − A2x

(2m)
2 − A2,1x

(2m)
2,1

]
.

Note that the expressions within [.] are restrictions of the residual to Ω1 and Ω2

respectively.

Then, we can write globally,
x (2m) = x (2m−1) +

(
(A1)−1 0

0 0

)[
b − Ax (2m−1)

]
,

x (2m+1) = x (2m) +

(
0 0
0 (A2)−1

)[
b − Ax (2m)

]
.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 118 / 131



Domain decomposition methods

Algebraic form of the Schwarz alternating algorithm

The Schwarz alternating algorithm can be written as,
x

(2m)
1 = x

(2m−1)
1 + (A1)−1

[
b1 − A1x

(2m−1)
1 − A1,2x

(2m−1)
1,2

]
,

x
(2m+1)
2 = x

(2m)
2 + (A2)−1

[
b2 − A2x

(2m)
2 − A2,1x

(2m)
2,1

]
.

Note that the expressions within [.] are restrictions of the residual to Ω1 and Ω2

respectively.

Then, we can write globally,
x (2m) = x (2m−1) +

(
(A1)−1 0

0 0

)[
b − Ax (2m−1)

]
,

x (2m+1) = x (2m) +

(
0 0
0 (A2)−1

)[
b − Ax (2m)

]
.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 118 / 131



Domain decomposition methods

Algebraic form of the Schwarz alternating algorithm

By eliminating x (2m) we obtain,

x (2m+1) = x (2m−1) +

[(
(A1)−1 0

0 0

)
+

(
0 0
0 (A2)−1

)
−

(
0 0
0 (A2)−1

)
A

(
(A1)−1 0

0 0

)]
[b − Ax (2m−1)].

This shows that the Schwarz alternating method is nothing else than a preconditioned
Richardson iteration.

We introduce the restriction operators R1 and R2 such that,

x1 = R1x and x2 = R2x .

R1 is simply the matrix (Ip−1 0) (of size p − 1× n) and R2 the matrix (0 In−l+1)
(of size n − l + 1× n).

Then,

A1 = R1AR
t
1 and A2 = R2AR

t
2 .

S. Lanteri (Inria) High performance scientific computing December 28, 2016 119 / 131



Domain decomposition methods

Algebraic form of the Schwarz alternating algorithm

By eliminating x (2m) we obtain,

x (2m+1) = x (2m−1) +

[(
(A1)−1 0

0 0

)
+

(
0 0
0 (A2)−1

)
−

(
0 0
0 (A2)−1

)
A

(
(A1)−1 0

0 0

)]
[b − Ax (2m−1)].

This shows that the Schwarz alternating method is nothing else than a preconditioned
Richardson iteration.

We introduce the restriction operators R1 and R2 such that,

x1 = R1x and x2 = R2x .

R1 is simply the matrix (Ip−1 0) (of size p − 1× n) and R2 the matrix (0 In−l+1)
(of size n − l + 1× n).

Then,

A1 = R1AR
t
1 and A2 = R2AR

t
2 .

S. Lanteri (Inria) High performance scientific computing December 28, 2016 119 / 131



Domain decomposition methods

Algebraic form of the Schwarz alternating algorithm

By eliminating x (2m) we obtain,

x (2m+1) = x (2m−1) +

[(
(A1)−1 0

0 0

)
+

(
0 0
0 (A2)−1

)
−

(
0 0
0 (A2)−1

)
A

(
(A1)−1 0

0 0

)]
[b − Ax (2m−1)].

This shows that the Schwarz alternating method is nothing else than a preconditioned
Richardson iteration.

We introduce the restriction operators R1 and R2 such that,

x1 = R1x and x2 = R2x .

R1 is simply the matrix (Ip−1 0) (of size p − 1× n) and R2 the matrix (0 In−l+1)
(of size n − l + 1× n).

Then,

A1 = R1AR
t
1 and A2 = R2AR

t
2 .

S. Lanteri (Inria) High performance scientific computing December 28, 2016 119 / 131



Domain decomposition methods

Algebraic form of the Schwarz alternating algorithm

In the first half step of the iteration, we have to restrict the residual by R1, apply the
inverse of R1AR

t
1 and extend the result by R t

1 ,

x (2m) = x (2m−1) + R t
1[R1AR

t
1]−1R1[b − Ax (2m−1)].

Similarly, the second half step is,

x (2m+1) = x (2m) + R t
2[R2AR

t
2]−1R2[b − Ax (2m)].

Proposition 6.2

The matrix Pi = R t
i [RiAR

t
i ]−1RiA, for i = 1, 2 is an orthogonal projection in the

scalar product defined by A.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 120 / 131



Domain decomposition methods

Algebraic form of the Schwarz alternating algorithm

In the first half step of the iteration, we have to restrict the residual by R1, apply the
inverse of R1AR

t
1 and extend the result by R t

1 ,

x (2m) = x (2m−1) + R t
1[R1AR

t
1]−1R1[b − Ax (2m−1)].

Similarly, the second half step is,

x (2m+1) = x (2m) + R t
2[R2AR

t
2]−1R2[b − Ax (2m)].

Proposition 6.2

The matrix Pi = R t
i [RiAR

t
i ]−1RiA, for i = 1, 2 is an orthogonal projection in the

scalar product defined by A.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 120 / 131



Domain decomposition methods

Algebraic form of the Schwarz alternating algorithm

We have,

PiPi = R t
i [RiAR

t
i ]−1RiAR

t
i [RiAR

t
i ]−1RiA = Pi .

Moreover,

APi = AR t
i [RiAR

t
i ]−1RiA = (APi )

t .

If ε(m) is the error, we have,

ε(2m) = (I − P1)ε(2m−1) and ε(2m+1) = (I − P2)ε(2m).

Therefore, Pi is the discrete version of the projection operator introduced earlier.

We remark that if the restriction operators Ri are chosen properly, the Schwarz
alternating method is a generalization of the block Gauss-Seidel algorithm where
the restriction operators allow for overlapping of the blocks.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 121 / 131



Domain decomposition methods

Algebraic form of the Schwarz alternating algorithm

We have,

PiPi = R t
i [RiAR

t
i ]−1RiAR

t
i [RiAR

t
i ]−1RiA = Pi .

Moreover,

APi = AR t
i [RiAR

t
i ]−1RiA = (APi )

t .

If ε(m) is the error, we have,

ε(2m) = (I − P1)ε(2m−1) and ε(2m+1) = (I − P2)ε(2m).

Therefore, Pi is the discrete version of the projection operator introduced earlier.

We remark that if the restriction operators Ri are chosen properly, the Schwarz
alternating method is a generalization of the block Gauss-Seidel algorithm where
the restriction operators allow for overlapping of the blocks.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 121 / 131



Domain decomposition methods

Algebraic form of the Schwarz alternating algorithm

We have,

PiPi = R t
i [RiAR

t
i ]−1RiAR

t
i [RiAR

t
i ]−1RiA = Pi .

Moreover,

APi = AR t
i [RiAR

t
i ]−1RiA = (APi )

t .

If ε(m) is the error, we have,

ε(2m) = (I − P1)ε(2m−1) and ε(2m+1) = (I − P2)ε(2m).

Therefore, Pi is the discrete version of the projection operator introduced earlier.

We remark that if the restriction operators Ri are chosen properly, the Schwarz
alternating method is a generalization of the block Gauss-Seidel algorithm where
the restriction operators allow for overlapping of the blocks.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 121 / 131



Domain decomposition methods

The additive Schwarz method

A way to get a parallel Schwarz method is to use instead a block Jacobi-like algorithm.

Roughly speaking, we solve independently for each subdomain using the interface
conditions from the previous iteration, extend the results to the whole domain and sum
them. Then, the algorithm proceeds by solving in parallel,

1 −∆u(2m) = f in Ω1, with u(2m)|Γ1 = u(2m−1)|Γ1 and u(2m)|∂Ω1∩∂Ω = 0.

2 −∆u(2m) = f in Ω2, with u(2m)|Γ2 = u(2m−1)|Γ2 and u(2m)|∂Ω2∩∂Ω = 0.

However, this method is intended to be a preconditioner for the CG method, which is
defined by,

M−1 =
∑
i=1,2

R t
i [RiAR

t
i ]−1Ri .

S. Lanteri (Inria) High performance scientific computing December 28, 2016 122 / 131



Domain decomposition methods

The additive Schwarz method

A way to get a parallel Schwarz method is to use instead a block Jacobi-like algorithm.

Roughly speaking, we solve independently for each subdomain using the interface
conditions from the previous iteration, extend the results to the whole domain and sum
them. Then, the algorithm proceeds by solving in parallel,

1 −∆u(2m) = f in Ω1, with u(2m)|Γ1 = u(2m−1)|Γ1 and u(2m)|∂Ω1∩∂Ω = 0.

2 −∆u(2m) = f in Ω2, with u(2m)|Γ2 = u(2m−1)|Γ2 and u(2m)|∂Ω2∩∂Ω = 0.

However, this method is intended to be a preconditioner for the CG method, which is
defined by,

M−1 =
∑
i=1,2

R t
i [RiAR

t
i ]−1Ri .

S. Lanteri (Inria) High performance scientific computing December 28, 2016 122 / 131



Domain decomposition methods

Algebraic DD methods without overlapping

Let us consider an elliptic second order PDE in a rectangle discretized by standard
finite difference schemes.

Let Ω1 and Ω2 be the two subdomains and Γ1,2 the interface which is a mesh line
in the present case.

Let x1 (respectively x2) be the vector of unknowns in Ω1 (respectively Ω2), and x1,2

be the vector of interface unknowns.

With this numbering of the unknowns, the linear system can be rewritten
blockwise as,  A1 0 E 1

0 A2 E 2

(E 1)t (E 2)t A1,2

 x1

x2

x1,2

 =

 b1

b2

b1,2

 .

S. Lanteri (Inria) High performance scientific computing December 28, 2016 123 / 131



Domain decomposition methods

Algebraic DD methods without overlapping

Let us consider an elliptic second order PDE in a rectangle discretized by standard
finite difference schemes.

Let Ω1 and Ω2 be the two subdomains and Γ1,2 the interface which is a mesh line
in the present case.

Let x1 (respectively x2) be the vector of unknowns in Ω1 (respectively Ω2), and x1,2

be the vector of interface unknowns.

With this numbering of the unknowns, the linear system can be rewritten
blockwise as,  A1 0 E 1

0 A2 E 2

(E 1)t (E 2)t A1,2

 x1

x2

x1,2

 =

 b1

b2

b1,2

 .

S. Lanteri (Inria) High performance scientific computing December 28, 2016 123 / 131



Domain decomposition methods

Algebraic DD methods without overlapping

A1 (respectively A2) is a matrix that represents the coupling of the unknowns local
to Ω1 (respectively Ω2).

A1,2 is matrix that represents the coupling of the unknowns on the interface.

E 1 (respectively E 2) represents the coupling of local unknowns of Ω1 (respectively Ω2)
with interface unknowns.

Most algebraic non-overlapping DD methods are based on block Gaussian elimination
(or approximate block Gaussian factorization) of the matrix A, and the goal is to solve
the system by an iterative method.

There are basically two possibilities depending on the fact that we cannot (or do not
want to) solve linear systems corresponding to subproblems like,

A1x1 = c1 and A2x2 = c2,

exactly with a direct method (or with a fast solver).

S. Lanteri (Inria) High performance scientific computing December 28, 2016 124 / 131



Domain decomposition methods

Algebraic DD methods without overlapping

A1 (respectively A2) is a matrix that represents the coupling of the unknowns local
to Ω1 (respectively Ω2).

A1,2 is matrix that represents the coupling of the unknowns on the interface.

E 1 (respectively E 2) represents the coupling of local unknowns of Ω1 (respectively Ω2)
with interface unknowns.

Most algebraic non-overlapping DD methods are based on block Gaussian elimination
(or approximate block Gaussian factorization) of the matrix A, and the goal is to solve
the system by an iterative method.

There are basically two possibilities depending on the fact that we cannot (or do not
want to) solve linear systems corresponding to subproblems like,

A1x1 = c1 and A2x2 = c2,

exactly with a direct method (or with a fast solver).

S. Lanteri (Inria) High performance scientific computing December 28, 2016 124 / 131



Domain decomposition methods

Algebraic DD methods without overlapping

A1 (respectively A2) is a matrix that represents the coupling of the unknowns local
to Ω1 (respectively Ω2).

A1,2 is matrix that represents the coupling of the unknowns on the interface.

E 1 (respectively E 2) represents the coupling of local unknowns of Ω1 (respectively Ω2)
with interface unknowns.

Most algebraic non-overlapping DD methods are based on block Gaussian elimination
(or approximate block Gaussian factorization) of the matrix A, and the goal is to solve
the system by an iterative method.

There are basically two possibilities depending on the fact that we cannot (or do not
want to) solve linear systems corresponding to subproblems like,

A1x1 = c1 and A2x2 = c2,

exactly with a direct method (or with a fast solver).

S. Lanteri (Inria) High performance scientific computing December 28, 2016 124 / 131



Domain decomposition methods

Algebraic non-overlapping DD methods with exact subdomain solvers

The local unknowns x1 and x2 are eliminated yielding a reduced system,

Sx1,2 = b̃1,2,

with,

S = A1,2 − (E 1)t(A1)−1E 1 − (E 2)t(A2)−1E 2,

and,

b̃1,2 = b1,2 − (E 1)t(A1)−1b1 − (E 2)t(A2)−1b2.

The matrix S is the Schur complement of A1,2 in A.

Of course, (A1)−1 and (A2)−1 are dense matrices, therefore it is too costly to construct S .

A more economical approach is to solve the reduced system with matrix S using an
iterative method.

Then, we need to know the properties of the Schur complement to be able to
choose a suitable iterative method.

Moreover, if a Krylov method like CG or GMRES is adopted, knowing the properties
of S will help in designing an appropriate preconditioner.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 125 / 131



Domain decomposition methods

Algebraic non-overlapping DD methods with exact subdomain solvers

The local unknowns x1 and x2 are eliminated yielding a reduced system,

Sx1,2 = b̃1,2,

with,

S = A1,2 − (E 1)t(A1)−1E 1 − (E 2)t(A2)−1E 2,

and,

b̃1,2 = b1,2 − (E 1)t(A1)−1b1 − (E 2)t(A2)−1b2.

The matrix S is the Schur complement of A1,2 in A.

Of course, (A1)−1 and (A2)−1 are dense matrices, therefore it is too costly to construct S .

A more economical approach is to solve the reduced system with matrix S using an
iterative method.

Then, we need to know the properties of the Schur complement to be able to
choose a suitable iterative method.

Moreover, if a Krylov method like CG or GMRES is adopted, knowing the properties
of S will help in designing an appropriate preconditioner.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 125 / 131



Domain decomposition methods

Algebraic non-overlapping DD methods with exact subdomain solvers

It can be proved that if A is a symmetric positive definite M-matrix, S is also a a
symmetric positive definite M-matrix.

The following result can be proved by computing the eigenvalues of the matrix S
(see G. Meurant, Studies in Mathematics and its Applications, Vol. 28,
North Holland, 1999).

Theorem 6.3

For the Poisson model problem the condition number of the Schur complement is,

cond(S) = O
(

1

h

)
.

Therefore, the reduced system has two interesting properties: the dimension of the
system is smaller and the condition number is one order of magnitude better.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 126 / 131



Domain decomposition methods

Algebraic non-overlapping DD methods with exact subdomain solvers

It can be proved that if A is a symmetric positive definite M-matrix, S is also a a
symmetric positive definite M-matrix.

The following result can be proved by computing the eigenvalues of the matrix S
(see G. Meurant, Studies in Mathematics and its Applications, Vol. 28,
North Holland, 1999).

Theorem 6.3

For the Poisson model problem the condition number of the Schur complement is,

cond(S) = O
(

1

h

)
.

Therefore, the reduced system has two interesting properties: the dimension of the
system is smaller and the condition number is one order of magnitude better.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 126 / 131



Domain decomposition methods

Algebraic non-overlapping DD methods with exact subdomain solvers

One of the operations that must be performed when a Krylov method is used for solving
the reduced system, is the product of the matrix S by a given vector p.

The product Sp can be computed easily as,

Sp = A1,2p − (E 1)t(A1)−1E 1p − (E 2)t(A2)−1E 2p,

p being a vector defined on the interface Γ1,2.

The vectors wi = (Ai )−1E ip for i = 1, 2 are computed by solving in parallel the local
(subdomain) linear systems,

Aiwi = E ip.

and Sp is computed as,

Sp = A1,2p − (E 1)tw1 − (E 2)tw2.

Overall, the resulting DD algorithm can be seen as a hybrid iterative-direct parallel
solution method for the linear system Ax = b.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 127 / 131



Domain decomposition methods

Algebraic non-overlapping DD methods with exact subdomain solvers

One of the operations that must be performed when a Krylov method is used for solving
the reduced system, is the product of the matrix S by a given vector p.

The product Sp can be computed easily as,

Sp = A1,2p − (E 1)t(A1)−1E 1p − (E 2)t(A2)−1E 2p,

p being a vector defined on the interface Γ1,2.

The vectors wi = (Ai )−1E ip for i = 1, 2 are computed by solving in parallel the local
(subdomain) linear systems,

Aiwi = E ip.

and Sp is computed as,

Sp = A1,2p − (E 1)tw1 − (E 2)tw2.

Overall, the resulting DD algorithm can be seen as a hybrid iterative-direct parallel
solution method for the linear system Ax = b.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 127 / 131



Domain decomposition methods

Algebraic non-overlapping DD methods with exact subdomain solvers

One of the operations that must be performed when a Krylov method is used for solving
the reduced system, is the product of the matrix S by a given vector p.

The product Sp can be computed easily as,

Sp = A1,2p − (E 1)t(A1)−1E 1p − (E 2)t(A2)−1E 2p,

p being a vector defined on the interface Γ1,2.

The vectors wi = (Ai )−1E ip for i = 1, 2 are computed by solving in parallel the local
(subdomain) linear systems,

Aiwi = E ip.

and Sp is computed as,

Sp = A1,2p − (E 1)tw1 − (E 2)tw2.

Overall, the resulting DD algorithm can be seen as a hybrid iterative-direct parallel
solution method for the linear system Ax = b.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 127 / 131



Domain decomposition methods

Algebraic non-overlapping DD methods with exact subdomain solvers

One of the operations that must be performed when a Krylov method is used for solving
the reduced system, is the product of the matrix S by a given vector p.

The product Sp can be computed easily as,

Sp = A1,2p − (E 1)t(A1)−1E 1p − (E 2)t(A2)−1E 2p,

p being a vector defined on the interface Γ1,2.

The vectors wi = (Ai )−1E ip for i = 1, 2 are computed by solving in parallel the local
(subdomain) linear systems,

Aiwi = E ip.

and Sp is computed as,

Sp = A1,2p − (E 1)tw1 − (E 2)tw2.

Overall, the resulting DD algorithm can be seen as a hybrid iterative-direct parallel
solution method for the linear system Ax = b.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 127 / 131



Domain decomposition methods

Algebraic non-overlapping DD methods with approximate subdomain solvers

In the present case, the linear systems,

A1x1 = c1 and A2x2 = c2,

are solved using an iterative method, or we would like to replace A1 and A2 by
approximations (preconditioners).

Let us consider in more details the second option. The problem is to find a global
preconditioner M for the permuted form of the matrix A.

If we want to use a PCG method for solving the global linear system Ax = b, then
M has to be symmetric positive definite.

We choose to define M in the form,

M = L

(M1)−1

(M2)−1

(M1,2)−1

 Lt ,

where M1 (respectively M2) is of the same order as A1 (respectively A2) and M1,2

is of the same order as A1,2.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 128 / 131



Domain decomposition methods

Algebraic non-overlapping DD methods with approximate subdomain solvers

In the present case, the linear systems,

A1x1 = c1 and A2x2 = c2,

are solved using an iterative method, or we would like to replace A1 and A2 by
approximations (preconditioners).

Let us consider in more details the second option. The problem is to find a global
preconditioner M for the permuted form of the matrix A.

If we want to use a PCG method for solving the global linear system Ax = b, then
M has to be symmetric positive definite.

We choose to define M in the form,

M = L

(M1)−1

(M2)−1

(M1,2)−1

 Lt ,

where M1 (respectively M2) is of the same order as A1 (respectively A2) and M1,2

is of the same order as A1,2.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 128 / 131



Domain decomposition methods

Algebraic non-overlapping DD methods with approximate subdomain solvers

In the present case, the linear systems,

A1x1 = c1 and A2x2 = c2,

are solved using an iterative method, or we would like to replace A1 and A2 by
approximations (preconditioners).

Let us consider in more details the second option. The problem is to find a global
preconditioner M for the permuted form of the matrix A.

If we want to use a PCG method for solving the global linear system Ax = b, then
M has to be symmetric positive definite.

We choose to define M in the form,

M = L

(M1)−1

(M2)−1

(M1,2)−1

 Lt ,

where M1 (respectively M2) is of the same order as A1 (respectively A2) and M1,2

is of the same order as A1,2.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 128 / 131



Domain decomposition methods

Algebraic non-overlapping DD methods with approximate subdomain solvers

L is a block lower triangular matrix,

L =

 M1

M2

(E 1)t (E 2)t M1,2

 .

Then, we see how parallelism is introduced: at each PG iteration, we must solve
a linear system like,

Mz = M

 z1

z2

z1,2

 = r =

 r1

r2

r1,2

 .

This is done by first solving Ly = r , where the first two steps are,

M1y1 = r1 and M2y2 = r2.

This can be done in parallel.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 129 / 131



Domain decomposition methods

Algebraic non-overlapping DD methods with approximate subdomain solvers

L is a block lower triangular matrix,

L =

 M1

M2

(E 1)t (E 2)t M1,2

 .

Then, we see how parallelism is introduced: at each PG iteration, we must solve
a linear system like,

Mz = M

 z1

z2

z1,2

 = r =

 r1

r2

r1,2

 .

This is done by first solving Ly = r , where the first two steps are,

M1y1 = r1 and M2y2 = r2.

This can be done in parallel.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 129 / 131



Domain decomposition methods

Algebraic non-overlapping DD methods with approximate subdomain solvers

Then we solve for the interface problem,

M1,2y1,2 = r1,2 − (E 1)ty1 − (E 2)ty2.

To obtain the global solution, we have to perform a backward solve step as,I 0 (M1)−1E 1

I (M2)−1E 2

I

 z1

z2

z1,2

 =

 y1

y2

y1,2

 .

This implies that z1,2 = y1,2 and,{
M1w1 = E 1z1,2, z1 = y1 − w1,

M2w2 = E 2z1,2, z2 = y2 − w2.

The last two stages can be done in parallel.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 130 / 131



Domain decomposition methods

Algebraic non-overlapping DD methods with approximate subdomain solvers

Then we solve for the interface problem,

M1,2y1,2 = r1,2 − (E 1)ty1 − (E 2)ty2.

To obtain the global solution, we have to perform a backward solve step as,I 0 (M1)−1E 1

I (M2)−1E 2

I

 z1

z2

z1,2

 =

 y1

y2

y1,2

 .

This implies that z1,2 = y1,2 and,{
M1w1 = E 1z1,2, z1 = y1 − w1,

M2w2 = E 2z1,2, z2 = y2 − w2.

The last two stages can be done in parallel.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 130 / 131



Domain decomposition methods

Algebraic non-overlapping DD methods with approximate subdomain solvers

Then we solve for the interface problem,

M1,2y1,2 = r1,2 − (E 1)ty1 − (E 2)ty2.

To obtain the global solution, we have to perform a backward solve step as,I 0 (M1)−1E 1

I (M2)−1E 2

I

 z1

z2

z1,2

 =

 y1

y2

y1,2

 .

This implies that z1,2 = y1,2 and,{
M1w1 = E 1z1,2, z1 = y1 − w1,

M2w2 = E 2z1,2, z2 = y2 − w2.

The last two stages can be done in parallel.

S. Lanteri (Inria) High performance scientific computing December 28, 2016 130 / 131



Domain decomposition methods

Algebraic non-overlapping DD methods with approximate subdomain solvers

The problem is now how to choose the approximations M1, M2 and M1,2.

If we multiply together the three matrices whose product defines M, we obtain,

M =

 M1 0 E 1

0 M2 E 2

(E 1)t (E 2)t M̃1,2

 ,

where,

M̃1,2 = M1,2 + (E 1)t(M1)−1E 1 + (E 2)t(M2)−1E 2.

Therefore, as we would like M to be an approximation of A, it makes sense to choose,

M1 ≈ A1 and M2 ≈ A2,

and,

M̃1,2 ≈ A1,2 =⇒ M1,2 ≈ A1,2 − (E 1)t(M1)−1E 1 − (E 2)t(M2)−1E 2.

Thus, if the inverse of M1 (respectively M2) is also a good approximation of the inverse
of A1 (respectively A2), then M1,2 must be an approximation of the Schur complement S .

S. Lanteri (Inria) High performance scientific computing December 28, 2016 131 / 131



Domain decomposition methods

Algebraic non-overlapping DD methods with approximate subdomain solvers

The problem is now how to choose the approximations M1, M2 and M1,2.

If we multiply together the three matrices whose product defines M, we obtain,

M =

 M1 0 E 1

0 M2 E 2

(E 1)t (E 2)t M̃1,2

 ,

where,

M̃1,2 = M1,2 + (E 1)t(M1)−1E 1 + (E 2)t(M2)−1E 2.

Therefore, as we would like M to be an approximation of A, it makes sense to choose,

M1 ≈ A1 and M2 ≈ A2,

and,

M̃1,2 ≈ A1,2 =⇒ M1,2 ≈ A1,2 − (E 1)t(M1)−1E 1 − (E 2)t(M2)−1E 2.

Thus, if the inverse of M1 (respectively M2) is also a good approximation of the inverse
of A1 (respectively A2), then M1,2 must be an approximation of the Schur complement S .

S. Lanteri (Inria) High performance scientific computing December 28, 2016 131 / 131



Domain decomposition methods

Algebraic non-overlapping DD methods with approximate subdomain solvers

The problem is now how to choose the approximations M1, M2 and M1,2.

If we multiply together the three matrices whose product defines M, we obtain,

M =

 M1 0 E 1

0 M2 E 2

(E 1)t (E 2)t M̃1,2

 ,

where,

M̃1,2 = M1,2 + (E 1)t(M1)−1E 1 + (E 2)t(M2)−1E 2.

Therefore, as we would like M to be an approximation of A, it makes sense to choose,

M1 ≈ A1 and M2 ≈ A2,

and,

M̃1,2 ≈ A1,2 =⇒ M1,2 ≈ A1,2 − (E 1)t(M1)−1E 1 − (E 2)t(M2)−1E 2.

Thus, if the inverse of M1 (respectively M2) is also a good approximation of the inverse
of A1 (respectively A2), then M1,2 must be an approximation of the Schur complement S .

S. Lanteri (Inria) High performance scientific computing December 28, 2016 131 / 131


	Numerical linear algebra background
	Linear systems
	Direct methods
	Iterative methods
	Relaxation methods
	Krylov methods

	Preconditioning techniques
	Domain decomposition methods

