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thème de l’interaction fluide/structure s’est poursuivie.
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Introduction

Since the early 80s, parallel computers have progressively appeared as the only computer systems capable of
handling the challenging applications from various research fields and industrial sectors. Scientific computing
offers a large number of such computational applications in physics, mathematics, chemistry and finance among
others. This is particularly true for Computational Fluid Dynamics (CFD) which is the domain of application
of the research works reported here. After a period of rapid changes in parallel computer architectures that has
witnessed supercomputers such as the SIMD (Single Instruction Multiple Data) Connection Machine system or
the MIMD (Multiple Instruction Multiple Data) Intel iPSC, Intel Paragon, Cray T3D and SGI Power Challenge
Array systems, a more or less steady situation has been reached today, partly due to the emergence of standards
in parallel programming models and languages. Roughly speaking, four classes of parallel computing platforms
can be exploited nowadays:

• shared memory SMP (Symmetric MultiProcessor) systems such as the SGI Origin series,

• distributed memory clusters based on standard Personal Computer (PC) technology, essentially from Intel
and AMD, interconnected by high performance networks (Gigabit Ethernet, Myricom Myrinet, Dolphins
SCI, etc.),

• hybrid shared memory/distributed memory systems consisting of clusters of SMPs or more simply, clusters
of multiprocessor PCs,

• parallel vector supercomputer systems.

Parallel vector supercomputer systems can rely on a distributed, shared or even a hybrid shared mem-
ory/distributed memory organization as it is the case for the Earth Simulator which is currently ranked #1
in the list of TOP 500 supercomputer sites1 (version of November 2003).

For the numerical solution of systems of Partial Differential Equations (PDEs), the efficient use of such
computing platforms requires addressing various topics ranging from computer science concerns to more numerical
analysis issues. In this document, we illustrate these two aspects in the context of the calculation of compressible
flows that are modeled by the systems of Euler (case of an inviscid flow) and Navier-Stokes (case of a laminar or
turbulent flow) equations. Moreover, we consider numerical methods that are designed to work with unstructured
finite element type discretizations of the underlying computational domain.

This document is organized as follows. In chapter 1, we first recall the expressions of the systems of non-linear
PDEs modeling compressible flows. Then, we describe the main characteristics of the unstructured mesh flow
solvers that have been considered as starting points to our contributions. In particular, we present two space
approximation methods on tetrahedral meshes that form the basis of these flow solvers: a vertex centered mixed
element/volume formulation (MEVF) and a MutliDimensional High Resolution (MDHR) class of compact schemes.
As mentioned above, our contributions are concerned both with computer science and numerical analysis aspects
of the calculation of compressible flows. In this respect, chapter 2 briefly reviews a widely adopted parallelization
strategy for the underlying unstructured mesh flow solvers and discusses in more details its application to the
MEVF formulation. In this chapter, we also present some performance results on various clusters of PCs. Chapter
3 is devoted to our contributions on parallel multigrid methods for the acceleration of steady flow calculations for
a typical three-dimensional flow calculation. Two multigrid methodologies are considered: a linear multigrid by
volume agglomeration strategy in conjunction with the MEVF formulation and a non-linear multi-mesh multigrid
approach coupled to the MDHR schemes. Chapter 4 is concerned with the design of domain decomposition
methods for the solution of hyperbolic and mixed hyperbolic/parabolic systems of PDEs and their application to
the calculation of two-dimensional inviscid and laminar viscous flows. These methods have been implemented
in conjunction with the MEVF formulation on unstructured triangular meshes. Moreover, our implementation is
characterized by an original approach combining a domain decomposition formulation at the global level and a

1http://www.top500.org/
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multigrid strategy for the solution of local subdomain problems. In this chapter, both steady and unsteady flows
are considered. Finally, chapter 4.3 concludes this document by presenting some possible future works.

All the works presented in this document were, and for some of them are still, developed in collaboration
with other researchers and students. Moreover, some other works are not reported here but have been published
elsewhere.

The studies undertaken during my doctoral thesis[83] are not discussed in this document. These studies
were concerned with several aspects of the resolution of the system of Navier-Stokes equations using the MEVF
formulation on unstructured triangular meshes:

• the design of a linearized implicit scheme for the calculation of steady flows, in collaboration with L. Fezoui,
B. Larrouturou and C. Olivier[54],

• the design of accurate interpolation schemes in conjunction with the MUSCL method and explicit Runge-
Kutta time integration schemes for the calculation of unsteady flows, under the supervision of A. Dervieux,

• the parallelization of the resulting Navier-Stokes solver on the Connection Machine CM-2/CM-200 SIMD
system[46], in collaboration with C. Farhat (University of Colorado at Boulder) and L. Fezoui.

The parallelization of 2D and 3D unstructured mesh flow solvers based on the MEVF formulation (chapter 2)
has been studied in collaboration with C. Farhat (University of Colorado at Boulder), L. Fezoui (INRIA Sophia
Antipolis) and M. Loriot (Simulog). I would also like to mention the work [1] conducted in collaboration with R.
Abgrall (University of Bordeaux, formerly at INRIA Sophia Antipolis) and T. Sonar (DLR Gottingen) concerning
the design and the parallelization of high-order ENO (Essentially Non-Oscillatory) finite volume schemes on
unstructured triangular meshes for the calculation of 2D unsteady compressible flows.

The reduction of computing time of realistic flow calculations through the parallelization of the underlying
flow solvers offers the possibility to tackle more complex problems characterized by higher CPU and memory
requirements. This is typically the case for optimum shape design applications that bring an additional outer loop
on top of the flow solver. Indeed, in [37], we have studied a 3D aerodynamic shape optimization problem using
a methodology based on a gradient method where the computation of an adjoint state is done with the help of
an automated differentiation tool. This work has been undertaken in collaboration with A. Dervieux J.M. Malé,
N. Marco and N. Rostaing-Schmidt (INRIA Sophia Antipolis) and B. Stoufflet (Dassault Aviation). Alternatively,
a more recent approach to optimum shape design relies on the use of probabilistic methods such as Genetic
Algorithms. (GAs). Moreover, GAs are characterized by a high degree of parallelism. Shortly, the outer loop
of a GA requires the evaluation of a fitness function for each individual of a population of potential solutions.
Here, an individual is an appropriate binary coding of the set of parameters used to represent a shape through an
appropriate technique such as Bezier splines and the evaluation of an individual corresponds to the calculation of
the steady flow around this shape. Within each optimization iteration, the evaluation of a fitness function for the
members of the current population is a fully concurrent process. Taking into account this fact, we have proposed
a two-level parallelization strategy of GAs applied to the optimization of 2D airfoil profiles [38]-[86]. Using the
mechanism of process group available in MPI, members of the population are distributed in two groups, Within
each group, individuals are evaluated successively using a parallel flow solver such as the one described in chapter
2. At each optimization iteration, two individuals are evaluated simultaneously thanks to the definition of the
two group of processes. This work has been conducted in collaboration with J.-A.Désidéri, and N. Marco (INRIA
Sophia Antipolis) and with B. Mantel and J. Périaux (Dassault Aviation).

Fluid/structure interaction is another domain that can benefit from high performance computing facilities.
The study of the interaction between aerodynamic forces and structural deformation (aeroelasticity) is often
performed by considering a weakly coupled approach where existing CFD and CSM simulation software are
adapted so that they can exchange appropriate physical quantities defined at the interface between the fluid and
structure meshes. In addition an Arbitrary Lagrangian Eulerian (ALE) formulation[48] or a moving mesh finite
volume formulation[109] is often adopted for the numerical solution of the fluid equations. In that case, the fluid
mesh is deformed at each time step in order to account for the structure displacement. In the most common
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implementation of a fluid/structure interaction problem, the CFD and CSM simulation software are executed in
a staggered fashion with their own time-stepping loops. Within a time step, aerodynamic forces are sent by the
flow solver to the structural mechanics code which computes the resulting deformation. The latter is sent back to
the flow solver which updates its mesh accordingly and then advance in time the fluid unknowns. In this context,
parallel computing can be exploited at two levels: on one hand, both simulation software can be parallelized using a
classical SPMD approach such as the one considered in chapter 2; on the other hand, specific coupling algorithms
can be designed so as to introduce a certain degree of concurrency in the evaluation of the aerodynamic forces
and structural deformation. In [47], we present our first contributions concerning the numerical simulation of 3D
non-linear aeroealstic problems. This work has been conducted in collaboration with C. Farhat, M. Lesoinne and
P. Stern (University of Colorado at Boulder), H. Guillard, B. N’Konga and N. Maman (INRIA Sophia Antipolis)
and S. Piperno (Cermics, Sophia Antipolis).

For realistic flow calculations, parallelization of the underlying flow solvers is mandatory but often not suffi-
cient. New parallel numerical methods must be designed that are efficient both from the parallel and numerical
viewpoints. This is especially true for sparse linear system solution methods that, by the way, constitute a central
kernel for most applications requiring the numerical solution of systems of PDEs. In our works, algebraic linear
or non-linear system solvers have been considered from three perspectives:

• parallel multigrid methods. The contributions described in chapter 3 are the result of several studies that
have been conducted in collaboration with the following former members of the Sinus team at INRIA
Sophia Antipolis: E. Briand (research engineer), G. Carré (research engineer), G. Carte (research engineer),
A. Dervieux, J.-A. Désidéri, L. Fournier (PhD thesis, 2001) and H. Guillard;

• domain decomposition methods. The works reported in chapter 4 have been (and are still) conducted
in collaboration with V. Dolean (assistant professor at the University of Evry, formerly at INRIA Sophia
Antipolis, PhD thesis in 2001) and F. Nataf (CMAP, Ecole Polytechnique, Palaiseau).

In the above series of works, the general objective is to efficiently use parallel computing facilities in order to
solve larger and more complex problems in a reasonable amount of time, through the development of numerical
methods whose parallel and numerical efficiencies are weakly dependent on the number of degrees of freedom. In
other situations, parallel computing is combined with appropriate numerical methods for achieving quasi-real time
simulations. This is for instance the case with active flow control whose objective is to influence the structure of
the flow with the aim of increasing or optimizing aerodynamic performances. One central problem in applications
is the prohibitive amount of computational resources induced by the repeated application of the flow solver,
in particular in the case of three-dimensional, unsteady (possibly turbulent) flows. A promising technique to
circumvent this difficulty is the adoption of low order models as governing equations. Such models should provide
a qualitative description of the main features of the flow, for example, in terms of lift and drag versus time,
while permitting a very economical numerical solution. One way to devise a low order model is to use Proper
Orthogonal Decomposition (POD), by which it is possible to extract from a database of reference simulations
a certain number of basis functions onto which the Navier-Stokes equations are projected. The Navier-Stokes
equations are thus reduced to a finite-dimensional system of non-linear ODEs. If the dimension of this system
is reasonably small, the solution can be found with very limited computational effort. In [73] and [72], we
report on our contributions concerning the design of such low order Navier-Stokes models in the context of the
mixed element/volume formulation described in section 1.2.1 of chapter 1. These studies have been realized in
collaboration with A. Dervieux, J.-A. Désidéri and A. Iollo (postdoc).
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Chapter 1

Mathematical models and numerical

framework

The works reported in this document deal with several aspects of the numerical treatment of systems of non-linear
PDEs that model compressible flows. More precisely, from the numerical analysis point of view, our contributions
concern the design of parallel algorithms for the solution of the linear or non-linear algebraic systems resulting from
the discretization of the Euler and Navier-Stokes equations. In this chapter, we introduce the general framework
that defines the basis of our contributions. We first recall the expressions of the systems of Euler and Navier-Stokes
equations in the three-dimensional case. Then, we describe the basic principles of two discretization methods
that have been adopted in our studies. These methods share the fact that they rely on the use of triangular (2D
case) or tetrahedral (3D case) unstructured meshes. Finally, we present the time integration method that has
been used in conjunction with both discretization methods, more precisely, a linearized implicit method for which
we consider two variants that are respectively adapted to steady and unsteady flows.

1.1 Mathematical models of compressible flows

Let Ω ⊂ IR3 be the computational domain of interest and Γ its boundary. Γ is decomposed as the union of a
solid boundary Γb and a free-stream boundary Γ∞: Γ = Γb ∪ Γ∞.

1.1.1 System of Euler equations

The conservative form of the system of Euler equations modeling compressible inviscid flows is given by:

∂W

∂t
+ ~∇.~IFc

(W ) = 0 , W =
(
ρ , ρ~U , E

)T

, ~∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)T

(1.1)

where W = W (~x, t); ~x and t respectively denote the spatial and temporal variables. In the context of hyperbolic

PDEs, ~IF
c
(W ) =

(
F c

x(W ) , F c
y (W ) , F c

z (W )
)T

is called the convective flux. For the Euler equations, the
convective flux components are given by:

F c
x(W ) =




ρu
ρu2 + p
ρuv
ρuw

u(E + p)




, F c
y (W ) =




ρv
ρuv

ρv2 + p
ρvw

v(E + p)




, F c
z (W ) =




ρw
ρuw
ρvw

ρw2 + p
w(E + p)




(1.2)

In the above expressions ρ denotes the density, ~U = (u , v , w)T the velocity vector, E the total energy per
unit of volume.
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Moreover, p is the pressure which is deduced from the other variables using the state equation characterizing
a perfect gas :

p = (γ − 1)(E − 1

2
ρ ‖ ~U ‖2)

where γ is the ratio of specific heats (γ = 1.4 for a diatomic gas).

1.1.2 System of Navier-Stokes equations

The conservative form of the system of Navier-Stokes equations modeling compressible laminar viscous flows is
written:

∂W

∂t
+ ~∇.~IFc

(W ) =
1

Re
~∇.~IFv

(W ) (1.3)

where ~IF
c
(W ) =

(
F c

x(W ) , F c
y (W ) , F c

z (W )
)T

is the convective flux defined by eq. (1.2) and where ~IF
v
(W ) =

(
F v

x (W ) , F v
y (W ) , F v

z (W )
)T

denotes the diffusive flux whose components are given by :

F v
x (W ) =




0
τxx

τxy

τxz

uτxx + vτxy + wτxz +
γ

Pr

∂e

∂x




, F v
y (W ) =




0
τxy

τyy

τyz

uτxy + vτyy + wτyz +
γ

Pr

∂e

∂y




(1.4)

F v
z (W ) =




0
τxz

τyz

τzz

uτxz + vτyz + wτzz +
γ

Pr

∂e

∂z




where e is the specific internal energy which is computed from the following state equation :

e =
E

ρ
− 1

2
(u2 + v2) = CvT =

p

ρ(γ − 1)

where T denotes the temperature. In the above expressions, the components of the Cauchy strain tensor are
given by :

τxx =
2

3

(
2
∂u

∂x
− ∂v

∂y
− ∂w

∂z

)
τyy =

2

3

(
2
∂v

∂y
− ∂u

∂x
− ∂w

∂z

)

τzz =
2

3

(
2
∂w

∂z
− ∂u

∂x
− ∂v

∂y

)
τxy =

(
∂u

∂y
+
∂v

∂x

)

τxz =

(
∂u

∂z
+
∂w

∂x

)
τyz =

(
∂v

∂z
+
∂w

∂y

)
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Two dimensionless numbers appear in the expressions of the Navier-Stokes equations, the Reynolds number
and the Prandtl number (which is only related to physical characteristics of the fluid):

Re =
ρ0U0L0

µ
and Pr =

µCp

k

where µ and k respectively denote the viscosity and thermal conductivity coefficients and where the subscript 0
is used to identify characteristic quantities of the flow.

1.2 Space discretization methods

This section is devoted to the description of the main characteristics of two space approximation methods on
tetrahedral meshes that have been considered in our studies: a vertex centered mixed element/volume formu-
lation (MEVF) (subsection 1.2.1) and a MutliDimensional High Resolution (MDHR) class of compact schemes
(subsection 1.2.2).

1.2.1 Mixed element/volume formulation

The flow domain Ω is discretized by a triangulation (2D case) or a tetrahedrization (3D case) Th where h is the
maximal length of the edges of Th. A vertex of Th is denoted by si and the set of neighboring vertices of si

by N(si). We associate to each vertex si a control volume (or cell) denoted by Ci which is constructed as the
union of local contributions from the set of triangles/tetrahedra sharing si (see figure 1.1). The boundary of Ci

is denoted by ∂Ci and the normal vector exterior to ∂Ci by ~ηi = (ηix, ηiy, ηiz).

i

j

G1

G2

I

G

GG

M

M

M

i

T 

1

2

3

13

2

G

Figure 1.1: The median cell on a triangular mesh (2D case) and the contribution of a tetrahedron to a
control volume (3D case)

The space discretization method considered here, from now on referred as a mixed element/volume formulation,
combines the following elements:

• a vertex centered finite volume formulation involving upwind schemes for the calculation of the convective
fluxes,

• a MUSCL (Monotonic Upstream Schemes for Conservation Laws) technique for the extension to second
order accuracy in the calculation of the convective fluxes,

• a finite element formulation (P1 Lagrange element) yielding a centered scheme for the calculation of the
diffusive fluxes.

A general variational formulation of eq. (1.3) can be written as:

11



∫∫∫

Si

(
∂W

∂t
+ ~∇.~IFc

(W )

)
φid~x =

1

Re

∫∫∫

Si

~∇.~IFv
(W )φid~x (1.5)

where Si is the support of the test function φi. In the mixed element/volume formulation, the test function is
chosen differently according to the flux under consideration. For the convective flux term, the test function is the
characteristic function of the control surface Ci:

φi = ψi , Si = Ci

which is such that ψi = 1 on Ci and 0 elsewhere.

For what concern the diffusive flux term, the test function is the P1 nodal basis function (linear and continuous
on Si) associated to vertex si

φi = ϕτ
i and Si =

⋃

τ , si∈τ

τ ≡ K(si) with φi (sj) = δij (1.6)

Then, the consequences for eq. (1.5) are:

• for the convective flux term:

∫∫∫

Ci

~∇.~IFc
(W )ψid~x =

∫

∂Ci

S

(∂Ci∩Γ)

~IF
c
(W ).~ηψidl −

∫∫∫

Ci

~IF
c
(W ).∇ψid~x (1.7)

In eq. (1.7), the second term of the right-hand side is equal to zero since the function ψi is constant on Ci.

• for the diffusive flux term:

∫∫∫

K(si)

1

Re
~∇.~IFv

(W )ϕτ
i d~x =

1

Re

∫

K(si)∩Γ

~IF
v
(W ).~ηϕτ

i dl −
1

Re

∫∫∫

K(si)

~IF
v
(W ).∇ϕτ

i d~x (1.8)

The consistency of the mixed element/volume formulation introduced above has been discussed by Arminjon
and Dervieux[7] and rigorously established by Mer[100]. Moreover, Rostand et Stoufflet[123] have studied different
formulations for the approximation of the Navier-Stokes equations: a Galerkin finite element formulation[6], a
centered mixed finite element/finite volume formulation[90] and the mixed formulation adopted in this study. In
particular, the authors have shown that these three formulations are equivalent when applied to the discretization
of the system of linearized Euler equations (i.e. when the convective flux terms are linear functions of W ).

The discrete equation associated to vertex si is obtained by evaluating:

• the convective flux on the boundary ∂Ci

⋃
(∂Ci ∩ Γ),

• the diffusive flux on the finite element support of the basis function φi. In addition, in the evaluation of eq.
(1.8), we do not take into account the boundary integrals on ∂Ci ∩ Γw and ∂Ci ∩ Γ∞ for reasons that will
be discussed in section 1.3.

Then, eq. (1.5) becomes:

∫∫∫

Ci

∂W

∂t
d~x+

∫

∂Ci
S

(∂Ci∩Γ)

~IF
c
(W ).~ηdl = − 1

Re

∑

τ∈K(si)

∫∫∫

τ

~IF
v
(W ).∇ϕτ

i d~x (1.9)

where ϕτ
i is the P1 basis function associated to element τ .
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1.2.1.1 Numerical treatment of the convective flux term

The numerical calculation of the convective flux term relies on a finite volume approximation of the corresponding
term of eq. (1.9), This term can be decomposed as:

∫

∂Ci

S

(∂Ci∩Γ)

~IF
c
(W ).~ηdl =

∑

j∈N(si)

∫

∂Cij

~IF
c
(W ).~ηdl < 1 >

+

∫

∂Ci∩Γw

~IF
c
(W ).~ηdl +

∫

∂Ci∩Γ∞

~IF
c
(W ).~ηdl < 2 >

(1.10)

where ∂Cij = ∂Ci ∩ ∂Cj . In this study, the convective flux terms < 1 > and < 2 > of (1.10) are computed
using upwind schemes that are well adapted to the hyperbolic nature of the system of Euler equations. A first
order conservative and consistent finite volume approximation of term < 1 > is written:

< 1 > = Wn+1
i −Wn

i + ∆t
∑

j∈N(si)

Φ(Wn
i ,W

n
j , ~ηij) (1.11)

where Φ denotes a numerical flux function which is such that:





Φ(Wi,Wj , ~ηij) = −Φ(Wi,Wj ,−~ηij)

Φ(Wi,Wi, ~ηij) = ~IF
c
(Wi).~ηij

for any statesWi and Wj and for any vector ~ηij . The numerical flux function is an approximation of the convective
flux through the interface ∂Cij between control volumes Ci and Cj :

Φij ≡ Φ(Wi,Wj , ~ηij) ≈
∫

∂Cij

~IF
c
(W ).~ηdl (1.12)

We have that:

~ηij =

∫

∂Cij

~ηdσ = ~η1 + ~η2 (1.13)

The normal vectors ~η1 and ~η2 are represented on figure 1.2.

s ssA
A

A
A

�
�

�
�

����*

HHHHj

si sj

Iij

G1,ij

G2,ij

−→η 1

−→η 2

Figure 1.2: Interface ∂Cij between two vertices si and sj

The Jacobian matrix Ac is defined by:

Ac(W,~η) = ∇W
~IF

c
(W ).~η
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where ∇W
~IF

c
=

(
∂F c

x

∂W
,
∂F c

y

∂W
,
∂F c

z

∂W

)T

.

From the hyperbolicity of the Euler equations, we know that Ac is diagonalizable with real eigenvalues:





λ1(W,~η) = λ2(W,~η) = λ3(W,~η) = ~U · ~η

λ4(W,~η) = λ1(W,~η) + c‖~η‖

λ5(W,~η) = λ1(W,~η)− c‖~η‖

where c =

√
γp

ρ
denotes the sound speed. Then, the diagonalization of Ac is written:

Ac(W,~η) = T (W,~η)Λ(W,~η)T−1(W,~η)

On possible strategy to compute the numerical flux Φij at the interface between two control volumes is based
on the solution of a local one-dimensional (in the direction of the normal vector ~ηij) Riemann problem defined at
the interface ∂Cij :





∂W

∂t
+

∂

∂η

[
~IF

c
(W ).~η

]
= 0

W ( ~X, t) =

{
Wi if ~X ∈ Ci

Wj if ~X ∈ Cj

(1.14)

where Wi and Wj are two states given at the left and right sides of ∂Cij : In practice, this Riemann problem is
often solved approximately using appropriate Riemann solvers. The construction of such schemes is discussed in
several textbooks such as the one of Toro[137]. The method adopted in this study has been proposed by Roe[120].
It consists in approximating the solution of the Riemann problem (1.14) through the linearization of the term
∂

∂η

[
~IF

c
(W ).~η

]
which is then replaced by Aij

∂W

∂η
where Aij is a shorthand notation for Aij(Wi,Wj , ~ηij). Aij

is the Jacobian matrix of Roe which is such that it:

1. preserves the hyperbolicity of the original system of PDEs system that is, the diagonalization of Aij results
in real eigenvalues and linearly independent eigenvectors;

2. is consistent with the Jacobian matrix Ac:

Aii ≡ Aii(Wi,Wi, ~ηij) = Ac(Wi, ~ηij)

3. insures a conservation principle through discontinuities:

(
~IF

c
(Wi)− ~IF

c
(Wj)

)
· ~ηij = Aij(Wi,Wj , ~ηij)(Wi −Wj)

In practice, the Jacobian matrix that characterizes Roe’s scheme is evaluated as:

Aij(W̃ij) ≡ Ac(W̃ij , ~ηij) (1.15)

where W̃ij is an average state between states Wi and Wj which, in the case of Roe’s scheme, is given by:

14



Wi =




ρi

ρiui

ρivi

ρiwi

Ei




, Wj =




ρj

ρjuj

ρjvj

ρiwj

Ej




, Wij =




ρ̃ij

ρ̃ij ũij

ρ̃ij ṽij

ρ̃ijw̃ij

Ẽij




(1.16)
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and:





ρ̃ij =

√
ρiρi +

√
ρjρj√

ρi +
√
ρj

ũij =

√
ρiui +

√
ρjuj√

ρi +
√
ρj

, ṽij =

√
ρivi +

√
ρjvj√

ρi +
√
ρj

, w̃ij =

√
ρiwi +

√
ρjwj√

ρi +
√
ρj

H̃ij =

√
ρiHi +

√
ρjHj√

ρi +
√
ρj

where H denotes the total enthalpy per unit of volume defined by the relation:

H =
E + p

ρ
=

γp

(γ − 1)ρ
+
u2 + v2 + w2

2

Then, the numerical flux function Φij characterizing Roe’s scheme is written:

Φij = Φ(Wi,Wj , ~ηij) =
~IF

c
(Wi) + ~IF

c
(Wj)

2
.~ηij − d(Wi,Wj , ~ηij) (1.17)

where d(Wi,Wj , ~ηij) corresponds to a numerical diffusion term:

d(Wi,Wj , ~ηij) = |Aij |
Wi −Wj

2

The numerical flux function (1.17) defines an upwind scheme for the calculation of the convective flux (1.12).
Moreover, the third property of the Jacobian matrix Aij allows to simplify the calculation of the convective flux.
Indeed, since:





Ac,+(W,~η) = T (W,~η)Λ+(W,~η)T−1(W,~η)

Λ+(W,~η) = diag(λ+
k (W,~η))

λ+
k (W,~η) = max(λk(W,~η), 0)





Ac,−(W,~η) = T (W,~η)Λ−(W,~η)T−1(W,~η)

Λ−(W,~η) = diag(λ−k (W,~η))

λ−k (W,~η) = min(λk(W,~η), 0)

the numerical flux function simplifies as:

Φ(Wi,Wj , ~ηij) = ~IF
c
(Wj).~ηij −Ac,+(W̃ij , ~ηij)(Wj −Wi) (1.18)

or as:

Φ(Wi,Wj , ~ηij) = ~IF
c
(Wi).~ηij +Ac,−(W̃ij , ~ηij)(Wj −Wi) (1.19)

that yield a simpler and lower cost implementation of the numerical flux function.

The numerical calculation of the convective flux using eq. (1.17) is first order accurate in space. The extension
to second order accuracy relies on the MUSCL technique proposed by Van Leer[141] and adapted to triangular
meshes by Fezoui and Stoufflet[56]. This technique consists in evaluating interpolated states Wij and Wji ate
the boundary ∂Cij through the evaluation of appropriate nodal gradients that are used in a first order Taylor
expansion of W (~x, t). Then, these interpolated states are used as arguments to the numerical flux function of
eq. (1.19). To be more precise, the interpolated states Wij and Wji are defined as:

W̄ij = W̄i +
1

2
(~∇W̄ )i. ~sisj , W̄ji = W̄j −

1

2
(~∇W̄ )j . ~sisj (1.20)
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where W̄ =
(
ρ , ~U , p

)T

— in other words, the interpolation is done using the physical variables instead of the

conservative variables. Then, the interpolated states (1.20) are used as arguments to the numerical flux function

(1.17). The nodal gradients (~∇W̃ )i are obtained from a weighted average of the P1 Galerkin (centered) gradients
computed on each tetrahedron of the finite element support of si:

(
~∇W̄

)
i
=

∫∫∫
Ci

~∇W̄ |τd~x
∫∫∫
Ci

d~x
=

1

vol(Ci)

∑

τǫCi

vol(τ)

4

∑

sik
∈T

W̄ik
~∇ϕτ

ik
(1.21)

where ϕτ
ik

is the P1 basis function defined at the vertex sk and associated with the triangle τ . The construction
given by eq. (1.20) and (1.21) results in a half-upwind scheme which is second order accurate but can present
spurious oscillations in the solution therefore expressing a loss of monotony. A classical way to cure this problem
is to make a compromise between the first order and the second order schemes through the introduction of a
slope limitation procedure in the interpolated states (1.20) (see for example [52] for more details).

1.2.1.2 Numerical treatment of the diffusive flux term

The numerical calculation of the viscous flux is based on a finite element approximation of the right-hand side of
eq. (1.9). More precisely, by assuming that the primitive variables ρ, ~U are p vary linearly on a triangle τ , we
obtain:

∫∫∫

τ

~IF
v
(W ).∇ϕτ

i d~x = vol(τ)~IF
v
(τ).∇ϕτ

i = Υτ,i(τ) (1.22)

where ~IF
v
(τ) is a constant vector on triangle τ whose components are computed using the fact that

~U(τ) =
1

3

∑

si∈τ

~U(si) (since the components of ~U are assumed to be linear on τ).

1.2.2 Multidimensional high resolution schemes

In this section, we briefly recall the basic principles of multidimensional high resolution schemes using a simple
scalar linear advection equation in 2D. We do not discuss aspects related to the extension of these schemes to the
systems of PDEs modeling compressible flows i.e. the systems of Euler and Navier-Stokes equations. A detailed
overview of multidimensional high resolution schemes and their application to 2D and 3D compressible flows can
be found in the book [35].

Let us consider the following scalar linear advection problem in 2D defined on the domain Ω with (piecewise)
constant advection speed ui (i = 1, 2):

∂φ

∂t
+

2∑

i=1

ui
∂φ

∂xi
= 0 (1.23)

This is an initial and boundary value problem where, for well-posedness, the initial condition:

φ (~x, t = 0) = φ0 (~x) , ∀~x = (x1, x2)
T ∈ Ω (1.24)

and the boundary condition:

φ (~x, t) = φΓ+ (~x, t) , ∀~x ∈ Γ+, ∀t > 0 (1.25)

must be given. Here Γ+ is the inlet boundary of Ω, i.e. the part of Γ where the advection vector ~u = ui
~1xi ,

which is the characteristic speed of eq. (1.23), enters the domain. Conversely, on Γ− = Γ\Γ+, called the outlet
boundary, where the characteristic leaves the domain, no boundary conditions have to be specified.
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1.2.2.1 Basic principles and properties

Assume that the 2D spatial domain Ω is triangulated with triangles of the type given in figure 1.3, where 1−2−3
are local vertex numbers. The inward scaled normals, i.e. normals with the length of the corresponding edge, are
defined for a counter clockwise numbering of the vertices by:

x

1

3

2

n3

n2

1n

y

Figure 1.3: A generic triangle with inward scaled normals

~n1 = (y2 − y3)~1x + (x3 − x2)~1y (1.26)

~n2 = (y3 − y1)~1x + (x1 − x3)~1y (1.27)

~n3 = (y1 − y2)~1x + (x2 − x1)~1y (1.28)

where, for convenience, x and y are used to indicate the independent variables. In case the vertex numbering is
clockwise the subscripts in the definitions (1.26) to (1.28) must be reversed. It is obvious that:

~n1 + ~n2 + ~n3 = ~0 (1.29)

In the finite element method the unknown φ of eq. (1.23) is assumed to have the following form:

φ (x, t) =

#vertices∑

l=1

Nl (~x)φl (t) (1.30)

where φl is the value of φ in vertex sl and Nl the nodal basis functions that must fulfill the property Nl(~xk) = δkl

(see figure 1.4). We recall that the nodal basis function Nl is obtained by assembling the local P1 basis function
ϕτ

l (see eq. (1.6) of subsection 1.2.1) defined on each triangle τ of the finite element support K(sl) of vertex sl.

m

x
y

Ω

N (x,y)

1

N

l

l

l

Figure 1.4: Two-dimensional piecewise linear interpolation function for vertex sl

18



Then, the Petrov-Galerkin discretization at vertex sl of eq. (1.23) is written:

∫∫

Ω

wl(~x)

#vertices∑

k=1

Nk(~x)
∂φk

∂t
dΩ +

∫∫

Ω

wl(~x)
2∑

i=1

ui

#vertices∑

k=1

∂Nk(~x)

∂xi
φkdΩ = 0 (1.31)

Here wl is the Petrov-Galerkin weight function at vertex sl, which should obey certain conditions, see [78]. In
practice this means that wl and its first order derivatives must be square integrable. Consequently wl is bounded.
Note that if the weight functions wl are identical to the basis functions Nl, the classical Galerkin finite element
method is obtained. Otherwise the method is called a Petrov-Galerkin finite element method. Usually the global
system (1.31) is built as a summation over the individual triangles τ :

∑

τ





∫∫

τ

wl(~x)

3∑

k=1

Nk(~x)
∂φk

∂t
dτ +

∫∫

τ

wl(~x)

2∑

i=1

ui

3∑

k=1

∂Nk(~x)

∂xi
φkdτ



 = 0 (1.32)

The first integral leads to the product of the mass matrix M , whose element Mlk is defined as:

Mlk =
∑

τ

∫∫

τ

wl(~x)Nk(~x)dτ (1.33)

by the time derivative of φk. For time dependent problems, the mass matrix must be taken into account to obtain
an accuracy in time higher than first order. Note that the mass matrix (1.33) results in a relation between vertices
sl and sk and consequently a linear system must be solved every time step, even if an explicit time integration
method is used. However, in the present work, only steady problems are considered and therefore the wl in the
mass matrix can be chosen differently from the wl in the spatial part of eq. (1.32). It was found that the most
stable formulation was obtained if M was approximated by the lumped Galerkin, wl = Nl, mass matrix :

MGal
lk =

∑

τ

∫∫

τ

Nl(~x)Nk(~x)dτ ≈
∑

τ∈K(sl)

area(τ)

3
δlk = Slδlk (1.34)

Here δlk the Kronecker delta function and Sl the area of the median dual cell of vertex sl, see figure 1.5.∑

τ∈K(sl)

indicates all triangles which belong to the finite element support (or neighborhood) of vertex sl (see

figure 1.6).

l

l

S

Figure 1.5: Vertex sl, its immediate neighbors
and its median dual cell Sl (shaded region)

Ωl

l

Figure 1.6: The neighborhood K(sl), shaded
region, of vertex sl

The approximation (1.34) does not change the steady-state solution and, because it is a diagonal matrix, it
avoids the solution of a linear system for explicit time integration schemes.
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For a linear triangle it can easily be verified that the following relation holds inside triangle T :

∂Nk(~x)

∂xi
=

nki

2area(τ)
(1.35)

where nki is the component of ~nk in the xi direction, i.e. nki = ~nk · ~1xi . Consequently the second integral of
equation (1.32) for triangle τ , from now on called Rτ

l , simplifies to:

Rτ
l =


 1

area(τ)

∫∫

τ

wl(~x)dτ


Rτ (1.36)

Here Rτ is the cell residual:

Rτ =
1

2

3∑

p=1

(u1np1
+ u2np2

)φp =

3∑

p=1

kpφp (1.37)

where the upwind parameters kp are defined as:

kp =
1

2
(u1np1

+ u2np2
) (1.38)

Note that in eq. (1.37) use has been made of the assumption that ui is (piecewise) constant. The form (1.36)
can be simplified even further by introducing the distribution coefficient βT

l for triangle T :

βT
l =

1

ST

∫ ∫

T

wl(x)dT, (1.39)

leading to:

RT
l = βT

l RT (1.40)

The βT
l are called distribution coefficients, because they distribute parts of the cell residual RT to the 3

vertices of triangle T . For consistency the local nodal residuals RT
l should sum up to RT , which is equivalent to:

βT
1 + βT

2 + βT
3 = 1 (1.41)

Combining eq. (1.32), (1.34) and (1.40) results in:

dφl

dt
+

1

Sl

∑

T

βT
l RT = 0 (1.42)

The conclusion of this exercise is that any Petrov-Galerkin finite-element scheme for eq. (1.23) with piecewise
constant advection speed ui on linear triangles can be written in the residual distribution form (1.40). The
condition that the weight functions wl are bounded has as a consequence that the distribution coefficients βT

l

are bounded. This implies that every Petrov-Galerkin finite-element scheme is linearity preserving (see discussion
below).

The properties of the different schemes depend on the definition of the βT
l (or equivalently wl). The only

restriction that they must obey is given in eq. (1.41), and consequently degrees of freedom remain to adapt the
scheme such that it has the desired properties. The following properties will be discussed in detail in the next
sections:

• Multidimensional Upwind (MU) : the multidimensional upwind scheme minimizes the amount of cross-wind
diffusion within the class of upwind schemes and consequently gives the most accurate results.

• Positivity (P) : the positivity property guarantees that existing discontinuities are captured monotonically
(if the initial solution does not contain overshoots).
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• Linearity Preservation (LP) : within the class of schemes considered, i.e. assuming a linear variation of the
solution per element, at most linear varying solutions can be reproduced exactly by the numerical scheme.

• Continuity (C) : continuity of the schemes is required to obtain a smooth convergence to the steady-state
solution.

The optimal numerical scheme, again within the class considered, for advection problems with discontinuities
should have all four properties.

1.2.2.1.1 Multidimensional Upwind (MU). The discretization technique is a finite-element method on
an unstructured triangular grid. A condition must be found which guarantees multidimensional upwinding for
this kind of schemes. For scalar advection, one can distinguish two types of triangles, one-inflow and two-inflow
triangles, of which examples are shown in figure 1.7.

2

1

2

3
3

1
Figure 1.7: One-inflow triangle (left) and two-inflow triangle (right), In both cases the arrow indicates the
direction of the streamline

For one-inflow triangles only one of the dot products of the advection vector with the inward scaled normals,
the upwind parameters kp (1.38), is positive; for two-inflow triangles two of the kp’s are positive. As eq. (1.29)
holds, and thus:

k1 + k2 + k3 = 0 (1.43)

It is obvious that these are the only configurations possible. A scheme is now said to be multidimensional
upwind if :

MU : βT
l = 0 if kl ≤ 0 (1.44)

i.e. nothing is distributed to inflow vertices.

1.2.2.1.2 Positivity (P). In a compressible flow, discontinuities like shocks and slip lines can be present. It is
desirable that the numerical method captures these phenomena monotonically, i.e. without under- and overshoots.
One way to achieve this is to require the scheme to be positive. The semi-discrete version of eq. (1.23) at vertex
sl, in which only the spatial part has been discretized, can be written as:

dφl

dt
+
∑

m

clm (φl − φm) = 0 (1.45)

Note that for the schemes considered here, only the immediate neighbors have non-zero coefficients clm. A
scheme is said to be positive if:

P : clm ≥ 0 ∀l,m, l 6= m (1.46)
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which is identical to Jameson’s LED (Local Extremum Diminishing) criterion [75]. This ensures that no new
extrema are created. It is clear from eq. (1.45) and (1.46) that φl cannot increase/decrease for a local maxi-
mum/minimum. Clearly the positivity property does not guarantee existing overshoots to vanish. Therefore it is
possible that there are several (numerical) steady-state solutions depending on the initial conditions, especially
for nonlinear schemes and/or problems.

From the positivity concept it is possible to derive a time step restriction. For a general time integration
scheme this becomes:

∆tl ≤
CFL∑

m 6=l

clm
(1.47)

where CFL is a typical constant for the time integration method used.

The positivity condition (1.46) is grid dependent and consequently difficult to impose. Therefore the local
positivity property is introduced. This requires that condition (1.46) is obeyed for each individual element.
Obviously this is more restrictive, but it has the advantage of being grid independent and thus easy to impose.

1.2.2.1.3 Linearity Preservation (LP). Linearity preservation is the ability of the numerical scheme to
reproduce steady linear solutions of eq. (1.23) exactly. Within the class of schemes considered, with linear variation
of the solution over the elements, this is the highest possible order of polynomials, which can be calculated exactly.
The condition imposed on the residual distribution schemes (1.40) can easily be determined. Consider vertex sl

and its immediate neighbors (see figure 1.5). The numerical steady-state solution is given by, see eq. (1.42):

dφl

dt
= − 1

Sl

∑

T

βT
l RT = 0 (1.48)

where Sl is the area of the median dual cell of vertex sl, see figure 1.5, which enters the formulation due to
the mass matrix approximation (1.34). One of the cells T of figure 1.5 is depicted in more detail in figure 1.8.
Consequently a sufficient condition for linearity preservation is:

LP : βT
l is bounded (1.49)

n m

T

l

Tnm

Tn l

nn

Figure 1.8: Cell T which shares vertex l and its inward scaled normals

Struijs[133] proved that linear schemes cannot have both the positivity and linearity preservation property,
which is an equivalent formulation of the famous Godunov theorem[65]. A scheme is called linear if RT

l , the part
of the residual RT of cell T which is sent to vertex sl, is a linear function of the unknowns φm, i.e. the coefficients
clm in eq. (1.45) are independent of φm.
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1.2.2.1.4 Continuity (C). Convergence towards steady-state solutions by means of iterative methods are
hampered if the distributions to the vertices discontinuously change from one iteration to the other. Usually
a cyclic behavior, known as a limit cycle, is then observed and therefore it is desirable that the schemes are
continuous. Two kinds of continuity are distinguished:

• continuity with respect to the solution φm,

• continuity with respect to the advection vector ui (only important for non-constant advection speeds).

1.2.2.2 Two numerical schemes

1.2.2.2.1 The N-scheme (MU ,P , C). The N-scheme is the residual distribution formulation of the first-
order multidimensional upwind method. For the triangle shown in figure 1.3, the distributions to the vertices are
defined by:

RN
l = k+

l (φl − φin) (1.50)

where:

φin =
1

3∑

m=1

k−m

3∑

m=1

k−mφm (1.51)

is the (linearly interpolated) state at the inflow point of the triangle, point 1 in figure 1.7 for a two inflow triangle,
see also figure 1.7. The parameters k+

l and k−l are defined as max(0, kl) and min(0, kl) respectively, in which kl

is the upwind parameter, see eq. (1.38). The multidimensional upwind property is easily checked, as only vertices
with kl > 0 receive a contribution due to the multiplication with k+

l .

If eq. (1.51) is substituted in (1.50) the following alternative formulation of the N-scheme is obtained:

RN
l =

3∑

m=1

clm (φl − φm) , clm =
k+

l k
−
m

3∑

p=1

k−p

(1.52)

This form is identical to the one used in the positivity definition, eq. (1.46). From the formulation (1.52) it
is obvious the coefficients clm ≥ 0 and thus the N-scheme is positive. Clearly, the scheme is linear as well.

The distribution coefficients βN
l are not bounded. This means that the N-scheme is only first order accurate,

which is in agreement with Godunov’s theorem. Due to this non-boundedness of βN
l , and consequently of the

weight function wl, see eq. (1.39) , the N-scheme does not belong to the class of Petrov-Galerkin finite-element
schemes. The operations k+

l = max(0, kl) and k−l = min(0, kl) are continuous at kl = 0 and therefore the
continuity of the scheme is ensured.

1.2.2.2.2 The PSI or limited N-scheme (MU ,LP,P , C). The PSI (Positive Stream-wise Invariant)
scheme [134] was the first scheme, which had all the properties defined at the beginning of this section. The
original formulation of the PSI-scheme is given in [134]:

βPSI
l =

max
(
0, βN

l

)

3∑

m=1

max
(
0, βN

m

)
(1.53)

where:
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βN
l =

RN
l

RT
(1.54)

Later Sidilkover and Roe[127] showed that a linearity-preserving, positive scheme could be constructed from
any first-order, positive scheme by applying a symmetric limiter function (with some additional constraints) to
the distributions of the first-order scheme.

If the first-order scheme is the N-scheme, the limiter must be applied only if two inflow parameters kl are
positive, since in the one-target case the N-scheme contributions are both positive and linearity preserving. Again
assume that k2 and k3 are the positive inflow parameters and the corresponding N-scheme distributions are given
by RN

2 and RN
3 respectively. Then the limited N-scheme is defined as :

RLN
2 = RN

2

[
1− ψ

(−RN
3

RN
2

)]
(1.55)

RLN
3 = RN

3

[
1− ψ

(−RN
2

RN
3

)]
(1.56)

where ψ(r) is a limiter function with the following properties :

- consistency : ψ(1) = 1

- symmetry : ψ

(
1

r

)
=
ψ(r)

r

The consistency property ensures linearity preservation. Note that the argument r of the limiter ψ equals 1 if
RN

2 = −RN
3 which is the case if the cell residual RT = 0. If the limiters are applied, see eq. (1.55) and (1.56),

it is clear that RLN
2 and RLN

3 are zero only if ψ(1) = 1. The symmetry property ensures conservation, i.e.
RLN

2 +RLN
3 = RT .

From eq. (1.55) and (1.56) it can be seen that the N-scheme distribution is multiplied by a factor. To ensure
that the limited scheme is locally positive, this factor must be positive. In combination with the consistency and
symmetry condition, this gives an additional condition for the limiter function:

0 ≤ ψ (r) ≤ 1 (1.57)

Sidilkover and Roe[127] showed that this condition can be relaxed somewhat for global positivity, for example
for linear advection with a constant advection speed on a uniformly triangulated structured grid, the global
positivity condition becomes:

0 ≤ ψ (r) ,
ψ(r)

r
≤ 2 (1.58)

However in general this is not the case and in practice condition (1.57) is used. If the so-called minmod limiter
is chosen:

ψ (r) = max [0,min (r, 1)] (1.59)

the expressions (1.55) and (1.56) can be simplified, if use is made of the typical property of the minmod limiter:

ψ (r) + ψ (1− r) = 1 (1.60)

The distribution to vertex 2 then becomes:

RLN
2 = ψ

(
RN

2
RT

)
RT = ψ

(
βN

2

)
RT (1.61)
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A similar analysis for RLN
3 gives:

RLN
3 = ψ

(
RN

3

RT

)
RT = ψ

(
βN

3

)
RT (1.62)

This form of the limited N-scheme shows that a linearity preserving, positive scheme can be obtained by simply
limiting the distribution coefficients of the N-scheme. Moreover, if the expressions (1.61) and (1.62) are compared
with the original formulation of the PSI-scheme, eq. (1.53), one can see that both schemes are identical. However,
the formulation with a limiter function is more general, because other limiters than minmod can be chosen. Since
both the limiter and its arguments are continuous functions, the PSI-scheme, or limited N-scheme, is continuous.

1.2.2.3 System schemes

Even though the general concepts of the distribution schemes are easily introduced on a scalar linear advec-
tion equation, the ultimate goal is to design robust multidimensional upwind discretization techniques for non-
commuting hyperbolic systems in general and the compressible Euler equations in particular. Consider the hyper-
bolic system in time:

∂W

∂t
+Ai

∂W

∂xi
= 0 (1.63)

Here W is a vector with N elements and the N ×N Jacobian matrices Ai do not commute. As system (1.63)
is hyperbolic in time, the generalized upwind parameters Kl:

Kl =
1

d
Ainli , (1.64)

where d is the number of spatial dimensions, have a complete set of real eigenvalues and eigenvectors.
Consequently Kl can be written as:

Kl = RlΛlLl, (1.65)

where the columns of Rl contain the right eigenvectors, Λl is a diagonal matrix of the eigenvalues and
Ll = R−1

l . The matrices K+
l and K−l , generalizing the scalar coefficients k+

l and k−l , are defined as:

K+
l = RlΛ

+
l Ll, K−l = RlΛ

−
l Ll (1.66)

Here Λ+
l contains the positive and Λ−l the negative eigenvalues: Λ±l = 1

2 (Λl ± |Λl|). As for the scalar case,
the cell residual RT , which is a vector now, is obtained by integrating the spatial part of equation (1.63) over the
control volume T , a triangle or a tetrahedron, resulting in:

RT =

∫∫

T

Ai
∂W

∂xi
dT =

∫

∂T

Ain
ext
i Wd∂T (1.67)

Assuming Ai constant per cell, and a linear variation of the elements of W (or equivalently integrating the
contour integral of eq. (1.67) with the trapezium rule) gives:

RT =
d+1∑

l=1

KlWl (1.68)

Exactly as for the scalar case, fractions of RT are distributed to the vertices and the nodal updates are obtained
by assembling the contributions of all cells, leading to the semi-discretization:

dWl

dt
= − 1

Sl

∑

T

βT
l RT (1.69)
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Also for the system case the mass matrix approximation (1.34) is used. The coefficients βT
l are now matrices

and for consistency
∑

m

βT
m = Id (although this is not entirely true), where the summation extends over the d+ 1

vertices of the cell.

The extension of scalar numerical schemes presented in subsection 1.2.2.2 to system schemes is described in
details in [111] (see also the book [35]). We simply note that the application of the system schemes to the Euler
equations needs a quasi-linear form of the equations. To retain conservation and hence capturing of discontinuities
with their correct jump relations, a particular quasi-linear form is used, which is simultaneously conservative (see
[111]).

1.2.2.4 Hyperbolic/elliptic splitting using preconditioning

Roe et al.[121]-[101] have observed that the preconditioning technique of van Leer et al.[142], originally developed
for speeding up the convergence, also results in the most decoupled form of the Euler equations and that space
discretizations based on this form are superior to discretizations of the original equations. We recall below the
main characteristics of this preconditioning technique in the two dimensional case.

Consider the set of variables:

∂Q =




∂p

ρc

∂u

∂v

∂p

p
− γ ∂ρ

ρ




(1.70)

The last component of Q is the differential form of the unscaled entropy s = ln
p

ργ
. For this set of variables,

the Euler equations take a relatively simple form:

∂Q

∂t
+AQ,x

∂Q

∂x
+AQ,y

∂Q

∂y
= 0 (1.71)

with:

AQ,x =




u c 0 0
c u 0 0
0 0 u 0
0 0 0 u


 and AQ,y =




v 0 c 0
0 v 0 0
c 0 v 0
0 0 0 v




Note that the last equation is fully decoupled form the others, ahowing that the entropy is advected along the
streamline. An even simpler form is obtained in the streamline coordinate system (ξ, η):

∂Q̃

∂t
+AQ̃,x

∂Q̃

∂ξ
+AQ̃,y

∂Q̃

∂η
= 0 (1.72)

with:

AQ̃,x = c




M 1 0 0
1 M 0 0
0 0 M 0
0 0 0 M


 and AQ̃,y = c




0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0




where:
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∂Q̃ =




1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1


 ∂Q =




∂p

ρc

∂ũ

∂ṽ

∂p

p
− γ ∂ρ

ρ




is the set of variables in the (ξ, η) system and θ is the flow direction with respect to the cartesian coordinate system.
The idea of preconditioning is to change the transient behavior of (1.72) while keeping the same steady-state
solution. To accomplish this, the spatial part of (1.72) is multiplied by a matrix P which results in:

∂Q̃

∂t
+ P

(
AQ̃,x

∂Q̃

∂ξ
+AQ̃,y

∂Q̃

∂η

)
= 0 (1.73)

In order to insure that the character of the original system is conserved, the sign of the eigenvalues of the
preconditioned Euler equations must be identical to the sign of the eigenvalues of the original system. Therefore,
a necessary condition is that the preconditioning matrix is positive definite. To do so, van Leer et al.[142] have
proposed the following formulation with the goal of clustering the eigenvalues of the preconditioned system:

P =




aM2 −aM 0 0
−aM a+ 1 0 0

0 0 χ 0
0 0 0 1


 (1.74)

with:





a =
χ

β2

β =
√

max(ε2, |M2 − 1|)
χ =

β

max(M, 1)

where ε is a small value, typically 0.05, to avoid the sonic point singularity. Introducing the ”steady-state”
characteristic variables:

∂W̃ =




β 0 M 0
β 0 −M 0
1 M 0 0
0 0 0 1


 ∂Q̃ =




β
∂p

ρc
+M∂ṽ

β
∂p

ρc
−M∂ṽ

∂p

ρc
+M∂ũ

∂p

p
− γ ∂ρ

ρ




(1.75)

transforms the system (1.73) into:

∂W̃

∂t
+AW̃ ,x

∂W̃

∂ξ
+AW̃ ,y

∂W̃

∂η
= 0 (1.76)

with:

AW̃ ,x = ũ




χν+ χν− 0 0
χν− χν+ 0 0

0 0 1 0
0 0 0 1


 and AW̃ ,y = ũ




χ

β
0 0 0

0 −χ
β

0 0

0 0 0 0
0 0 0 0



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where ν+ and ν− are functions of the Mach number:

ν+M
2 − 1 + β2

2β2
and ν−

M2 − 1− β2

2β2

which are bounded between [0,1] and [-1,0] respectively. Clearly, the third and fourth equations are decoupled
and their quantities advected along the streamline. These correspond to entropy (the fourth variable) and total
enthalpy.
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Indeed, it is straightforward to show that the following relation holds:

∂H = c∂W̃3 +
c2

γ(γ − 1)
∂W̃4

where ∂W̃3 and ∂W̃4 are the third and fourth components of ∂W̃ . Furthermore, for supersonic flows, M > 1,
ν+ = 1 and ν− = 0, also the first and second equations of system (1.76) are decoupled, and the Euler equations
reduce to a set of scalar advection equations. The advection directions of the so-called acoustic variables ∂W̃1

and ∂W̃2 are the Mach lines (see fig. 1.9) where the Mach angle µ is the angle between the streamline and the
Mach lines:

µ = arctan

(
1

β

)

For subsonic flow, M < 1, ν+ = 0 and ν− = −1, the acoustic variables form a Cauchy-Riemann type subsys-
tem, which explains the partially elliptic nature of the steady, subsonic Euler equations. As at the characteristic
level the entropy and total enthalpy equations are always decoupled, it is possible to use a combination of different
schemes, for example the PSI-scheme for the advection of entropy and total enthalpy along the streamline and
another scheme (even a classical Lax-Wendroff scheme) for the acoustic subsystem.

Machline

Streamline

Machline

u

µ

µ

Figure 1.9: Streamline and Mach lines for a two-dimensional supersonic flow

In practice, despite the fact that the characteristic form (1.76) is used to define the upwind parameters while
implementing the approximation schemes discussed previsouly, itis stressed that the method is conservative and
the conservative varaibles are updated at every time step. This is accomplished by the introduction of consistent
nodal values of the characteristic variables:

W̃ consistent =
∂W̃

∂Z
(Z̄)Z

for the discretization of system (1.76). In the above equation, Z denotes the so-called Roe parameter vector[120]:

Z =
√
ρ




1
u
v
H




while the linearization vector Z̄ is defined for each tetrahedron by:

Z̄ =
1

4

4∑

k=1

Zk

The udpate of the conservative variables is then obtained by inverting the steps (1.71), (1.72), (1.73) and
(1.76) in reversed order. These steps correspond to the transformation of the conservative variables W to the Q
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ones, to the transformation to the streamline frame, to the multiplication with the preconditioning matrix P and
to the transformation of the Q̃ variables into the characteristic variables W̃ .

We finally note that in three dimensions the same procedure is followed and the preconditioning matrix of van
Leer et al.[142], in the streamline coordinate system (ξ, η, ζ) and for the set of variables:

∂Q̃ =




∂p

ρc

∂ũ

∂ṽ

∂w̃

∂p

p
− γ ∂ρ

ρ




is given by:

P =




aM2 −aM 0 0 0
−aM a+ 1 0 0 0

0 0 χ 0 0
0 0 0 χ 0
0 0 0 0 1




all parameters being unchanged. Then, the three-dimensional version of system (1.76) shows that, as in two
space dimensions, total enthalpy and entropy always decouple and are advected along the streamline. However,
in contrast to the two-dimensional case, the acoustic equations never decouple and form a 3× 3 subsystem, even
for supersonic flows.

1.2.2.5 Time integration

The spatial discretization leads to a system of ordinary differential equations in time :

dW

dt
−R(W ) = 0 (1.77)

where W = (W1,W2, ...,Wl, ...)
T is the vector of nodal states and R(W ) the discretized spatial part. Note

that for systems, the nodal states Wl are themselves vectors, with each N elements. Both explicit and implicit
methods are considered. Eq. (1.77) can be solved using an explicit Runge-Kutta method or a linearized implicit
scheme such as the ones discussed in section 1.4 for the mixed element/volume formulation.

1.3 Boundary conditions

1.3.1 Free-Stream conditions

When one is dealing with the numerical simulation of external flows, the computational mesh is generally con-
structed such that the free-stream boundary Γ∞, which is an artificial boundary of the computational domain
Ω, is located far enough from the boundary Γw delimiting the body. In these conditions, the viscous effects are
neglected on Γ∞. Consequently, the corresponding boundary integral term in eq. (1.8) is not taken into account
and the flow in the free-stream region is assumed to be uniform:

ρ∞ = 1 , ~U∞ = (u∞ , v∞ , w∞)T with ‖ ~U∞ ‖= 1 , p∞ =
1

γM2
∞

(1.78)

In practice, an upwind-downwind flux decomposition is used to compute the corresponding boundary integral
term in eq. (1.7). More precisely, this boundary term is evaluated using a non-reflexive version of the Steger and
Warming flux decomposition[131]:
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∫

∂Ci∩Γ∞

~IF
c
(W ).~ηdl = Ac,+(Wi, ~ηi∞).Wi +Ac,−(Wi, ~ηi∞).W∞ (1.79)

1.3.2 Wall conditions

1.3.2.1 Case of an inviscid fluid

The slipping condition ~U.~η = 0 is applied on the boundary Γw. This condition is introduced in the corresponding
boundary integral term in eq. (1.7). This means that the pressure integral term given by:

∫

∂Ci∩Γw

~IF
c
(W ).~ηdl = pi




0
ηix

ηiy

ηiz

0




(1.80)

is taken into account in the computation of the flux balance associated to vertex si.

1.3.2.2 Case of a viscous fluid

In that case, a no-slip condition needs to be applied on the boundary Γw:

~U = 0

together with an isothermal wall condition:

T = Tw

where the wall temperature Tw is computed as:

Tw = T∞

(
1 +

γ − 1

2
M2
∞

)

where M∞ denotes the free-stream Mach number. The above conditions are applied in a strong way meaning that
for a vertex si located on Γw, U(si) is enforced to 0, T (si) is set to Tw while the density ρi is kept unchanged
since the corresponding PDE is hyperbolic (in other words, the mass flux through ∂Ci ∩ Γw is supposed zero).
Finally, the total energy per unit of volume and the pressure are updated according to:

Ei = ρiCvTw and pi = (γ − 1)Ei

1.4 Time integration methods

Here we introduce two linearized implicit schemes for the time integration of the semi-discrete equations resulting
from the space discretization of the Euler and Navier-Stokes equations using the mixed element/volume formu-
lation described in subsection 1.2.1. Similar schemes in conjunction with the multidimensional high resolution
schemes presented in subsection 1.2.2 are discussed in details in [74].

1.4.1 Calculation of steady flows

When one is interested in the calculation of steady flows, time accuracy is not a constraint and the main objective is
to design a time integration strategy that allows for a fast convergence to the steady state. Implicit time integration
schemes have the necessary damping properties that make them the good candidates for time integration of the
semi-discrete equations in this context. Moreover, further acceleration of the convergence is obtained by using
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local time stepping strategies. Assuming W (~x, t) is constant on each cell Ci, a linearized backward Euler implicit
time integration scheme (see also Fezoui and Stoufflet[56]) is written:

vol(Ci)

[
dW

dt

]n+1

i

+ Ψ(Wn+1)i = 0 with

[
dW

dt

]n+1

i

=
δWn+1

i

∆t
(1.81)

where Wn
i = W (~xi, t

n), tn = n∆t, δWn+1
i = Wn+1

i −Wn
i and:

Ψ(W )i =
∑

j∈N(si)

Φ(Wij ,Wji, ~ηij) +

∫

∂Ci∩Γ

~IF
c
(W ).~ηdl +

1

Re

∑

τ∈K(si)

Υτ,i (1.82)

Applying a first order linearization to the nodal flux Ψ(Wn+1)i yields the Newton-like formulation:

(
vol(Ci)

∆t
+
∂Ψ(Wn)i

∂W

)
δWn+1

i = −Ψ(Wn)i , i = 1, · · · , Nv (1.83)

meaning that, at each time step, the following linear system must be solved:

P (Wn)δWn+1 =

(
diag

(
vol(Ci)

∆t

)
+ J(Wn)

)
δWn+1 = −Ψ(Wn) (1.84)

The calculation of the convective and diffusive contributions to the Jacobian matrix J(Wn) is discussed in
the following paragraphs.

1.4.1.1 Linearization of the convective flux term

The contribution of the convective flux term to the Jacobian matrix P (Wn) of eq. (1.84) is based on an
approximate linearization of the first order numerical flux (1.17) (more precisely, (1.18) or (1.19)). For an edge
[si, sj], an implicit version of the numerical flux (1.17) is formally written as:

Φn+1
ij = Φ(Wn

i ,W
n
j ,W

n+1
i ,Wn+1

j , ~ηij)

Introducing U = Wn
i , V = Wn

j , W = Wn+1
i and Z = Wn+1

j and using a first order Taylor expansion of the
implicit flux we obtain:

Φ(U, V,W,Z, ~ηij) = Φ(U, V, ~ηij) +

(
∂Φ

∂U

)
(W − U) +

(
∂Φ

∂V

)
(Z − V ) (1.85)

where:

Φ(U, V, ~ηij) ≡ Φ(Wn
i ,W

n
j , ~ηij)

is the explicit flux. Eq. (1.84) can be simplified in the case where the numerical flux function has the form:

Φ(U, V, ~ηij) = H1(U, V, ~ηij)U +H2(U, V, ~ηij)V

For example, for the numerical flux function characterizing the approximate Riemann solver of Roe[120] (using
eq. (1.19)) we have:

Φ(Wi,Wj , ~ηij) = ~IF
c
(Wi).~ηij +Ac,−(Wi,Wj , ~ηij)(Wj −Wi)

= Ac(Wi, ~ηij)Wi +Ac,−(W̃ij , ~ηij)(Wj −Wi)

therefore:

{
H1(U, V, ~ηij) = Ac(U, ~ηij)−Ac,−(U, V, ~ηij)

H2(U, V, ~ηij) = Ac,−(U, V, ~ηij)
(1.86)
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Now, an approximate linearization is obtained if we assume that:

∂Φ

∂U
≈ H1(U, V, ~ηij) and

∂Φ

∂V
≈ H2(U, V, ~ηij) (1.87)

We note that for the numerical flux function characterizing the Steger and Warming scheme[131] (see eq.
(1.79)) we obtain:

{
H1(U, V, ~ηi∞) = Ac,+(U, ~ηi∞)

H2(U, V, ~ηi∞) = Ac,−(U, ~ηi∞)

1.4.1.2 Linearization of the diffusive flux term

Similarly to the previous paragraph, an implicit version of the diffusive flux term (1.22), expressing the contribution
of triangle τ1 to the global flux balance associated to vertex si, is written as:

Υn+1
τ,i = Υτ,i

(
Wn

k1,W
n
k2,W

n
k3,W

n+1
k1 ,Wn+1

k2 ,Wn+1
k3

)

where sk1, sk2 et sk3 are the vertices of triangle τ (one of them denoting vertex si). Proceeding similarly to the
linearization of the convective flux we obtain:

Υn+1
τ,i = Υτ,i (Wn

k1,W
n
k2,W

n
k3)

+

(
∂Υτ,i

∂Wn
k1

)(
Wn+1

k1 −Wn
k1

)( ∂Υτ,i

∂Wn
k2

)(
Wn+1

k2 −Wn
k2

)
+

(
∂Υτ,i

∂Wn
k3

)(
Wn+1

k3 −Wn
k3

) (1.88)

In the above expressions, Υτ,i (Wn
k1,W

n
k2,W

n
k3) is given by:

Υτ,i (Wn
k1,W

n
k2,W

n
k3) = vol (τ)

(
F v

x (Wn
k1,W

n
k2,W

n
k3)

∂φi

∂x
|τ +

F v
y (Wn

k1,W
n
k2,W

n
k3)

∂φi

∂y
|τ
) (1.89)

The expressions of the various terms of eq. (1.88) are obtained thanks to an exact differentiation approach
(see [54] for more details).

1.4.2 Calculation of unsteady flows

The time integration method described in the previous section relies on a backward Euler implicit scheme that we
rewrite here as:

D
Wn+1

h −Wn
h

∆t
+
∂Ψp

h(Wn
h )

∂Wh

(
Wn+1

h −Wn
h

)
= −Ψp

h(Wn
h ) (1.90)

where D is the diagonal matrix defined by:

Di = vol(Ci)

and where we assume that:

• Wn
h denotes the discrete solution computed at the vertices of the mesh Th, at time tn = t0 + n∆t;

• Ψp
h(Wn

h ) denotes the p-order accurate nodal flux whose expression for p = 2 is given by eq. (1.82).

1Here, we consider the 2D case to simplify the presentation.

33



In the case p = 2, it is a hard task, if not an impossible one, to compute analytically the Jacobian matrix
∂Ψ2

h(Wn
h )

∂Wh
. This matrix is characterized by a sparse irregular symmetric structure but it is a non-symmetric matrix

from the non-zero entries point of view. On the other hand, the second order approximation of the numerical
fluxes based on the MUSCL technique (see Fezoui and Stoufflet[56] for more details) results in a notable increase
of the matrix bandwidth (recall that the actual number of neighbors varies from one vertex to another since the
mesh is assumed to be fully unstructured) and may require a considerable amount of memory for its storage
even if an appropriate compressed sparse matrix storage format is adopted. When facing such a situation, the
strategy generally adopted (as it is the case in the present study) consists in replacing the exact computation of
the Jacobian matrix by a an approximate one following a certain number of simplifications. The most notable of
these simplifications amounts to base the calculation of the Jacobian matrix on the linearization of a first order
accurate convective flux. In these conditions, we obtain the following hybrid scheme:

D
Wn+1

h −Wn
h

∆t
+
∂Ψ1

h(Wn
h )

∂Wh

(
Wn+1

h −Wn
h

)
= −Ψ2

h(Wn
h ) (1.91)

To be more precise, in the present case, the nodal flux is the sum of a convective term and a diffusive term.

In practice, the approximate Jacobian matrix
∂Ψ1

h(Wn
h )

∂Wh
is computed from:

• an approximate linearization of the (analytical) first order convective flux (see eq. (1.84)-(1.85)),

• an exact linearization of the (discrete) second order diffusive flux (see eq. (1.89)).

It is clear that for steady state computations, eq. (1.91) yields a second order accurate solution of the
steady Navier-Stokes equations. eq. (1.91) defines an inexact Newton method which is not characterized by a
quadratic convergence as ∆t −→ +∞. However, the resulting linear system is easier to solve (in particular, the
corresponding matrix has a minimal bandwidth). It is possible to show that for certain linear model problems, the
Jacobian matrix verifies a diagonal dominance property allowing the use of simple relaxations methods (Jacobi or
Gauss-Seidel) to approximately solve the linear systems. Then, the idea is to construct a second order accurate

implicit scheme relying on the approximate Jacobian matrix
∂Ψ1

h(Wn
h )

∂Wh
. Such a time integration scheme has been

proposed by Martin and Guillard[89] and we recall this approach here.

If we assume that the time derivative term of eq. (1.81) is now discretized using:

dW

dt
≈ aW (t+ ∆t)− V ⋆ [W (t),W (t−∆t), · · · ,W (t− j∆t)]

∆t
(1.92)

then the new scheme is based on a general defect-correction type iteration:





W0
h = W0

[
Wn

h ,W
n−1
h , · · · ,Wn−j

h

]

Ws+1
h = Ws

h −∆t

[
aId + ∆t

∂Ψm
h (Wn

h )

∂Wh

]−1

×



aWs

h − V ⋆
[
Wn

h ,W
n−1
h , · · · ,Wn−j

h

]

∆t
+ Ψp

h(Ws
h)




(1.93)

where:

• V ⋆ [W (t),W (t −∆t), · · · ,W (t− j∆t)] denotes a linear function of its j arguments,

• each iteration of the form (1.93) defines an operator Gs
h(∆t) that associates to V ⋆ the vector Ws

h.
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The mathematical properties of the time integration scheme based on eq. (1.93) are analyzed in details
in Martin and Guillard[89]. One result which is relevant to our study says that if Ψ2

h denotes a second-order
approximation of the nodal flux then:

• if W0
h = 0, sp ≥ 2 iterations of eq. (1.93) are necessary to obtain a second order accurate (in space and

time) approximation of W (~x, t),

• if W0
h = Wn

h , sp ≥ 1 iterations of eq. (1.93) are sufficient to obtain a second order accurate (in space and
time) approximation of W (~x, t).

In summary, the second order linearized implicit scheme used in practice consists in the following two steps:

[
3

2
Id + ∆t

∂Ψ1
h(Wn

h )

∂Wh

]
(U −Wn

h ) = −
(

3

2
Wn

h + ∆tΨ2
h(Wn

h )

)
+

(
2Wn

h −
1

2
Wn−1

h

)

[
3

2
Id + ∆t

∂Ψ1
h(Wn

h )

∂Wh

] (
Wn+1

h − U
)

= −
(

3

2
U + ∆tΨ2

h(U)

)
+

(
2Wn

h −
1

2
Wn−1

h

) (1.94)
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Chapter 2

Parallelization strategies on

unstructured meshes

2.1 Preamble

In the past ten years, the parallelization of CFD solvers relying on finite volume or finite element type formu-
lations on unstructured meshes has been the subject of active studies worldwide as witnessed by the numerous
contributions in the proceedings of the main conference in the field1. In most of the cases, the parallelization of
these solvers relies on a classical and widely used SPMD approach that combines a partitioning of the underlying
mesh and a message-passing programming model. Such a strategy is discussed in [84] in the context of the paral-
lelization of a CFD solver for the Euler and Navier-Stokes equations that implements the mixed element/volume
formulation on unstructured tetrahedral meshes described in section 1.2.1 of chapter 1. However, one particu-
larity of our study lies in the partitioning strategy and its influence on the parallel performances. Indeed, for the
mixed finite element/volume formulation under consideration, two partitioning strategies can be considered: an
overlapping or vertex oriented strategy and a non-overlapping or element oriented strategy. Both strategies can
be characterized a priori in terms of computational and communication complexities. In this chapter, we briefly
review the characteristics of these two approaches and we present updated performance results.

2.2 Computational and parallel implementation issues

2.2.1 Identification of the main computational kernels

From the description of the mixed element/volume numerical scheme in section 1.2.1 of chapter 1, it appears
that the resulting flow solver contains essentially two types of elementary computations: on one hand, operations
on mesh edges such as those incurred by the computation of convective fluxes and, on the other hand, operations
on mesh tetrahedra such as those involved in the evaluation of diffusive fluxes. Both types of computations can
be described as three-step sequences of the form Gather/Compute/Scatter.

Such kernels have been studied extensively by Gropp et al.[66] in the context of the parallelization of FUN3D[4]
which is a CFD solver that is typical of the state of the practice at NASA. The computational kernels characterizing
the numerical methods adopted in FUN3D are very similar to those discussed here. The parallelization of FUN3D
has been performed in the framework of the PETSc2 toolkit using the SPMD message-passing programming model,
supplemented by multithreading at the physically shared memory level (the parallel performances of FUN3D are
evaluated on both SMP systems and clusters of dual processing nodes). Particular care has been taken to obtain
a scalable implementation that optimally exploits per-processor efficiency and parallel efficiency. In particular,

1Parallel CFD conference proceedings, see http://www.parcfd.org/general.html
2Portable Extensible Toolkit for Scientific Computing, http://www-unix.mcs.anl.gov/petsc/petsc-2/
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single-processor performance is tuned through interlacing, blocking and edge reordering (FUN3D only involves
edge-wise operations) strategies. This work received recognition in the form of a Gordon Bell Prize in the ”Special
Category” at the Supercomputing’99 conference[5].

2.2.1.1 Edge based computations

The evaluation of an elementary convective flux (1.12) using the numerical flux function Φij of eq. (1.18) (or
alternatively (1.19)) and taking into account the interpolated states (1.20) can be summarized as follows:





Hij = Φ(Wij ,Wji, ~ηij) ≈
∫

∂Cij

~IF
c
(W ).~ηdl

Hji = −Hij

(2.1)

The elementary convective flux Hij is computed at the interface between the control volumes Ci and Cj .
From the point of view of the discrete equation at vertex si, this elementary flux contributes to a flux balance at
the boundary of the control volume Ci. This flux balance involves the elementary convective fluxes computed for
the control volumes Cj such that sj ∈ K(i) i.e. the set of neighboring vertices of si. Moreover, from the second
of eq. (2.1), it follows that only Hij needs to be computed in order to update the nodal flux balances at the two
end-point of edge eij = {si, sj} . Therefore, the most efficient way for evaluating the convective fluxes is to loop
over the list of mesh edges and proceed as follows:

FOR each edge eij = {si, sj} of Th DO

Gather Wi = W (si) and Wj = W (sj)

Gather ~∇W̄i = ~∇W̄ (si) and ~∇W̄j = ~∇W̄ (sj)

Compute the interpolated states Wij and Wji

Compute Hij = Φ(Wij ,Wji, ~ηij)

Scatter Φi = Φi +Hij and Φj = Φj −Hij

ENDDO

2.2.1.2 Tetrahedron based computations

Eq. (1.22) shows that the values of the flux components F v
x (τ), F v

y (τ) and F v
z (τ) used for the evaluation of

the elementary diffusive flux Υτ,i(τ) are constant on the tetrahedron τ . Moreover, these values contribute to
the nodal diffusive fluxes at all four vertices of tetrahedron τ . Clearly, the most efficient way for evaluating the
diffusive fluxes is to loop over the list of mesh tetrahedra and proceed as follows:

FOR each tetrahedron τijkl = {si, sj , sk, sl} of Th DO

Gather Wi = W (si), Wj = W (sj), Wk = W (sk) and Wl = W (sl)

Compute F v
x (τ), F v

y (τ) and F v
z (τ)

Compute Υτ,i(τ), Υτ,j(τ), Υτ,k(τ) and Υτ,l(τ)

Scatter Υi = Υi+Υτ,i(τ), Υj = Υj +Υτ,j(τ), Υk = Υk +Υτ,k(τ) and Υl = Υl +Υτ,l(τ)

ENDDO
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2.2.2 Parallelisation strategy

The parallelization of the resulting flow solver relies on a classical and widely used strategy. A SPMD (Single
Program Multiple Data) parallel programming model is adopted. Its implementation relies on the combination
of a domain partitioning approach and a message-passing programming model. The underlying mesh is assumed
to be partitioned into several submeshes, each defining a subdomain. Basically the same code is executed within
each subdomain. This code is essentially the one obtained in the purely serial case augmented by several assembly
phases of certain subdomain results, depending on the order of the spatial approximation and on the nature of
the time advancing procedure (explicit/implicit). The assembly of the subdomain results can be implemented
in separated modules and optimized for a given machine. In this study, parallel programming relies on the MPI
message passing environment. This approach enforces data locality, and therefore is suitable for all parallel
hardware architectures.

For the partitioning of the unstructured mesh, two basic strategies can be considered. One can verify that
for the computations described herein, mesh partitions with overlapping simplify the programming of the subdo-
main interfacing module. However, mesh partitions with overlapping also have a drawback: they incur redundant
arithmetic operations. On the contrary, non-overlapping mesh partitions incur little redundant arithmetic op-
erations but induce additional communication steps. While assembled nodal quantities are exchanged between
neighboring subdomains in overlapping mesh partitions, partially gathered quantities are exchanged and com-
bined in non-overlapping ones. In addition, in the latter case, special care must be taken while combining the
partially gathered quantities since a given vertex can belong to more than two subdomains. In summary, the
parallel programming effort is maximized when considering non-overlapping mesh partitions. We refer to Farhat
and Lanteri[48] for a comparison of these two approaches in the context of two-dimensional simulations. In the
present study we consider both one tetrahedra wide overlapping and non-overlapping mesh partitions for second
order accurate implicit computations.

2.2.3 Parallel algorithms

For an explicit time integration procedure and a one tetrahedra wide overlapping mesh partition, the main loop
of the parallel flow solver can be summarized as follows:

REPEAT step = step+ 1
Compute the local time steps

Compute the nodal gradients and the diffusive fluxes

Exchange the nodal gradients

Compute the convective fluxes

Update the physical states

Exchange the conservatives variables

UNTIL step = stepmax

In the above pseudo-code, stepmax denotes the maximum number of time steps. For an implicit time inte-
gration procedure, the update phase is replaced by the following two-step solution procedure:

Form the implicit matrix
FOR srl = 1 to nsrl DO

Exchange the right-hand sides

Perform a Jacobi relaxation

ENDDO

where nsrl denotes the number of Jacobi relaxations that need to be done in order to approximately solve the
linear system arising at each time step. One can notice that a global solution strategy has been selected through
the choice of the Jacobi method whose parallelization is straightforward.
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When a non-overlapping mesh partition is used, the explicit parallel algorithm becomes:

REPEAT step = step+ 1
Compute the local time steps

Compute the nodal gradients and the diffusive fluxes

Exchange the partially gathered nodal gradients

Compute the convective fluxes

Exchange the partially gathered global fluxes

Update the physical states

UNTIL step = stepmax

while for an implicit time integration procedure one has:

Form the implicit matrix
Exchange the partially gathered diagonal blocks of the implicit matrix

FOR srl = 1 to nsrl DO

Exchange the partially gathered right-hand sides

Perform a Jacobi relaxation

ENDDO

We can therefore expect a lower communication cost for an implicit computation using a one tetrahedra
wide overlapping mesh partition as suggested by the additional communication step involving the diagonal blocks
of the implicit matrix in the non-overlapping case. Finally we note that the above pseudo-codes only show
local communication steps at artificial submesh boundaries; in addition, global communication steps (reduction
operations) are also necessary for the computation of the non-linear (time stepping loop) and linear residuals
(linear system resolutions).

2.2.4 Automatic mesh partitioning

For the time integration procedures considered in this study, an automatic mesh partitioner should focus primarily
on creating load balanced submeshes which induce a minimum amount of interprocessor communications. This can
be achieved by using a two-step procedure. First, a fast and cheap partitioning scheme is used to derive an initial
candidate; then, an optimization process is performed in order to realize the stated goals. While the former step
consists in a global operation (the overall mesh is concerned by this step), the latter mainly concentrate on those
mesh components that are neighbors of the artificial submesh interfaces (local operation). Optimization techniques
that are used in this context include (among others) simulated annealing and the Kernighan-Lin algorithm. Mesh
partitioning algorithms can exploit the mesh connectivity as it is the case for the Greedy algorithm (see Farhat
and Lesoinne[49]). They can also be based on geometric informations such as the principal inertia directions of
the mesh. In that case, a direction is first specified (one of the principal inertia directions). Next, the mesh
vertices are projected (orthogonal projection) onto that direction. Finally, the projected nodes are sorted along
that direction then collected to build the requested submeshes. Variations of the above algorithm can be obtained
by applying the project, sort and collect paradigm in a recursive manner. More sophisticated algorithms are graph
theory based such as the recursive graph bisection or the recursive spectral bisection algorithms (see Simon[128]
for more details). We refer to Farhat and Lanteri[48] for an evaluation of the influence of the mesh partitioning
algorithm on two-dimensional parallel simulations.

In the present study, the computational mesh is partitioned in a preprocessing step. We have used two
special purpose packages that implement several mesh partitioning algorithms : MS3D (a Mesh Splitter for 3D
applications, a description of a two-dimensional version of this preprocessor with a set of experimental results may
be found in Loriot[87]) for the construction of one tetrahedra wide overlapping mesh partitions, and TOP/DOMDEC

(a software tool for mesh partitioning and parallel processing of CSM and CFD computations [50]) to generate
non-overlapping ones.
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2.3 Numerical experiments

2.3.1 The selected flow calculation

The test case under consideration is the external inviscid transonic flow around a Falcon aircraft. The free-stream
Mach number has been set to 0.85 and the angle of attack to 1◦. Two unstructured tetrahedral meshes have
been constructed using the GHS3D tetrahedral mesh generator[63]. Their characteristics are given in table 2.1.
The system of Euler equations is discretized using the mixed element/volume formulation presented in section
1.2.1 of chapter 1. The linearized backward Euler implicit scheme described in section 1.4.1 of chapter 1 is used
for time integration of the resulting semi-discrete equations. The convergence to steady-state is accelerated by
applying a local time stepping strategy coupled to a CFL law given by CFL=min(it, 50) where it denotes the
pseudo-time iteration number. At each pseudo-time step, the sparse linear system of eq. 1.84 is approximately
solved using the Jacobi relaxation method with a linear threshold that has been set to ε = 10−2. Convergence to
steady state is shown on figure 2.4 in terms of the evolution of the energy residual (normalized to its initial value)
versus the number of pseudo-time iterations. Selected views of the surfacic mesh of mesh FALC1 are shown on
figure 2.1. Steady pressure contour lines are represented on figures 2.2 (respectively, figures 2.3) for mesh FALC1
(respectively, mesh FALC2).

Table 2.1: Characteristics of the tetrahedral mesh around the Falcon aircraft
NV : # vertices - NT : # tetrahedra - NF : # boundary faces

Mesh NV NT NF

FALC1 130,478 768,438 12,552
FALC2 1,035,670 6,147,504 50,208

2.3.2 Computing platforms and notational conventions

Numerical experiments have been performed on several clusters of PCs:

• a cluster consisting of 19 dual nodes Pentium III/933 Mhz, with 512 Mb of SDRAM 133 Mhz each,
interconnected by an Ethernet 100 Mbit/s switch.

• a cluster of 16 dual nodes Pentium IV/2 Ghz with 1 Gb of RDRAM 800 Mhz each, interconnected by an
Ethernet 1 Gbit/s switch.

All these clusters are running the Linux operating system. Performance results are given for 64 bit arithmetic
computations. The code is written in Fortran 77 and parallel programming relies on the MPICH implementation
of MPI. In the following tables and discussions, Np is the number of processes for the parallel execution (Np also
represents the number of subdomains), Nn is the number of processing nodes (since most of the clusters described
previously are based on dual boards, this figure will allow to make the distinction between calculations using one
or two processes on a given node in order to assess the impact of the local memory architecture). Moreover,
”Total time” denotes the total (wall clock) simulation time and ”CPU time” stands for the corresponding total
CPU time taken as the maximum of the per process values. Finally, ”%CPU” is the ratio of the total CPU time
to the total wall clock time. The parallel speedup S(Np) is always calculated using the total wall clock times.

2.3.3 Parallel performance results

Parallel performance assessment of the underlying unstructured mesh flow solver is studied with respect to the
partitioning strategy. We first discuss results of numerical experiments that have been performed using mesh
FALC1. Tables 2.2 and 2.3 summarize timings obtained on the cluster of Pentium III/933 Mhz processors and
Ethernet 100 Mbit/s interconnection. Corresponding timings on the cluster of Pentium IV/2 Ghz processors and
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Figure 2.1: External flow around a Falcon aircraft: surfacic mesh (mesh FALC1)
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Figure 2.2: External flow around a Falcon aircraft
Steady pressure contour lines on the aircraft (mesh FALC1)
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Figure 2.3: External flow around a Falcon aircraft
Steady pressure contour lines on the aircraft (mesh FALC2)
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Figure 2.4: External flow around a Falcon aircraft
Convergence to steady-state (top: mesh FALC1 - bottom : mesh FALC2)
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Ethernet 1 Gbit/s interconnection are given in tables 2.4 and 2.5. Note that comparisons are made on the basis
of the number of processes per processing node. These results call for several remarks:

• parallel efficiency as measured by the ”%CPU” ratio is not sensitive to the partitioning strategy as far as
the number of processes is lesser than 32. For Np = 32, the largest difference is observed on the cluster of
Pentium IV/2 Ghz processors and Ethernet 1 Gbit/s interconnection (i.e. 76% for overlapping partitions and
83% for non-overlapping partitions). This is somewhat surprising since, as mentioned in subsection 2.2.2, the
main disadvantage of overlapping partitions over non-overlapping ones is redundant arithmetic operations
and one can reasonably expect that the effect of the latter should be less remarkable on the Pentium IV
processor. Therefore, the reason for this better parallel efficiency on the cluster of Pentium IV/2 Ghz
processors must be found elsewhere. Indeed, a possible explanation is given by figures 2.5 and 2.6 that
represent the effective numbers of interface vertices for the 32 subdomain overlapping and non-overlapping
partitions. For the overlapping partition, one must make a distinction between vertices that are sent and
those that are received. These figures illustrate another advantage of the non-overlapping partitioning
strategy: as the number of subdomains increases, the size of artificial interfaces can be reduced more
efficiently. In the present case, despite the fact that the parallel flow solver based on the non-overlapping
partitioning strategy is characterized by a higher communication load, the smaller interface sizes (by a factor
1.9 in the average) translates in a lower communication cost and thus, a higher parallel efficiency.

• The parallel speed-up is consistently better for the parallel flow solver based on the non-overlapping parti-
tioning strategy. This is essentially the result of the fact that redundant arithmetic operations are minimized
in that case. On the contrary, for overlapping partitions, the aggregate number of arithmetic operations
is larger than the one that can be deduced the global (not-partitioned) mesh. Thus, in some sense, the
parallel speed-up as evaluated here compares executions times associated to problems of different size.

• Clearly, the multi-threading execution mode is not a good option on the Pentium III/933 Mhz based system
for the kind of computational kernels considered here. For Np = 4, the single-process per node execution
mode yields an execution time which is about half the execution time obtained when two processes are
run on the same node, independently of the partitioning strategy. For instance, the ratio between the
execution times obtained for Nn = 2 and Nn = 4 is equal to 4995/2766 = 1.8 for overlapping partitions
and 5075/2795 = 1.8 for non-overlapping partitions. On the cluster of Pentium IV/2 Ghz processors, the
corresponding figure is equal to 1501/1399 = 1.1 (1527/1062 = 1.4 for non-overlapping partitions). This
difference in behavior between the two clusters is for a great part related to the shared memory sub-system
characteristics (type of RAM, speed of the memory bus). In particular, these characteristics can have a
dramatic impact on the treatment of the indirect addressing (gather/scatter) operations as experienced here
on the Pentium III/933 Mhz based system. For information, the floating-point rate which is achieved on the
cluster of Pentium IV/2 Ghz processors for Np = 16 and non-overlapping partitions is equal to 2.3 Gflop/s
for Nn = 8 and 3.2 Gflop/s for Nn = 16.

Table 2.2: External flow around a Falcon aircraft (mesh FALC1)
Cluster of Pentium III/933 Mhz (Ethernet 100 Mbit/s interconnection)

Overlapping partitions

Np Nn CPU time Total time % CPU S(Np)

4 2 4858 sec 4995 sec 97.5% 1.00
16 8 1272 sec 1485 sec 85.5% 3.90
32 16 757 sec 1018 sec 74.5% 5.00
4 4 2635 sec 2766 sec 95.0% 1.00
16 16 722 sec 834 sec 86.5% 3.65
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Table 2.3: External flow around a Falcon aircraft (mesh FALC1)
Cluster of Pentium III/933 Mhz (Ethernet 100 Mbit/s interconnection)

Non-overlapping partitions

Np Nn CPU time Total time % CPU S(Np)

4 2 4935 sec 5075 sec 97.5% 1.00
16 8 1242 sec 1387 sec 89.5% 4.00
32 16 672 sec 898 sec 75.0% 5.70
4 4 2653 sec 2795 sec 95.0% 1.00
16 16 734 sec 828 sec 88.5% 3.60

Table 2.4: External flow around a Falcon aircraft (mesh FALC1)
Cluster of Pentium IV/2 Ghz (Ethernet 1 Gbit/s interconnection)

Overlapping partitions

Np Nn CPU time Total time % CPU S(Np)

4 2 1463 sec 1501 sec 97.5% 1.00
16 8 366 sec 398 sec 92.0% 4.00
32 16 184 sec 243 sec 76.0% 6.20
4 4 1356 sec 1399 sec 97.0% 1.00
16 16 347 sec 372 sec 93.5% 3.90

Table 2.5: External flow around a Falcon aircraft (mesh FALC1)
Cluster of Pentium IV/2 Ghz (Ethernet 1 Gbit/s interconnection)

Non-overlapping partitions

Np Nn CPU time Total time % CPU S(Np)

4 2 1494 sec 1527 sec 98.0% 1.00
16 8 345 sec 380 sec 91.0% 4.35
32 16 167 sec 201 sec 83.0% 7.60
4 4 1037 sec 1062 sec 97.5% 1.00
16 16 243 sec 266 sec 91.5% 4.00
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Figure 2.5: External flow around a Falcon aircraft (mesh FALC1)
Number of send/receive vertices for the 32 subdomain overlapping partition
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We conclude this section with performance results obtained for calculations based on mesh FALC2. These
results are summarized in table 2.6. Figure 2.7 represents the effective numbers of vertices for the 32 subdomain
overlapping and non-overlapping partitions. For the overlapping partition, the average number of vertices is
39382 while it is equal to 34756 for the non-overlapping partition that is, approximately 11% less. However, the
corresponding reduction of computing time is only of 4%. Clearly, we are lacking here some performances results
for a higher number of subdomains (e.g. Np = 64) in order to evaluate parallel speedup figures and demonstrate
with more evidence the superiority of the approach based on non-overlapping partitions.

Table 2.6: External flow around a Falcon aircraft (mesh FALC2)
Cluster of Pentium IV/2 Ghz (Ethernet 1 Gbit/s interconnection)

Overlapping versus non-overlapping partitions (Np = 32 and Nn = 16)

Overlap CPU time Total time % CPU

With 5024 sec 5415 sec 92.8
Without 4810 sec 5184 sec 92.8
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Figure 2.7: External flow around a Falcon aircraft (mesh FALC2)
Number of vertices for the 32 subdomain overlapping and non-overlapping partitions

2.4 Conclusion

In this chapter we have studied the parallelization of a CFD solver for the Euler and Navier-Stokes equations
that implements the mixed element/volume formulation on unstructured tetrahedral meshes described in section
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1.2.1 of chapter 1. The parallelization of this solver relies on a classical and widely used SPMD approach that
combines a partitioning of the underlying mesh and a message-passing programming model. Based on lessons
drawn from previous works (Fezoui and Lanteri[53], Farhat and Lanteri[48], Fezoui et al.[55]), we have considered
two implementations of this strategy. The first one makes use of overlapping mesh partitions; it contributes to
minimize the programming effort on the original serial algorithm but is also characterized by redundant arithmetic
operations. The second strategy uses non-overlapping mesh partitions and demands additional programming effort.
The main conclusion of the experimental results reported here is that the approach based on non-overlapping mesh
partitions demonstrates better parallel performances (especially in terms of the parallel speed-up). The superiority
of this approach is made clearer as the number of subdomains is increased from 16. Despite the fact that this
approach is characterized by higher communication loads (additional communication steps, increased message sizes
due to the exchange of partially gathered quantities instead of nodal values), the reduction of pure computational
times through the elimination of redundant arithmetic operations plays the major role in this result.
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Chapter 3

Parallel multigrid methods

In this chapter, we describe our contributions concerning the design of parallel, linear and non-linear, multigrid
methods on unstructured finite element meshes for the calculation of 2D and 3D compressible flows.

3.1 Parallel multigrid by volume agglomeration

3.1.1 Introduction

One of the most remarkable innovations of the last 25 years in the computational fluid dynamics field has been
the progressive introduction of unstructured mesh discretization techniques in the simulation tools used in various
transport and energy related industrial sectors (e.g. aeronautical, automotive, space and electrical power supply).
The fluid flows that characterize the applications of interest to these domains call for complex physical models
(turbulence, combustion, moving computational domains, etc.) around or inside irregularly shaped geometries.
Finite element or finite volume approximation methods relying on fully unstructured meshes are particularly
well suited to these situations. Unstructured meshes present two main advantages: they allow for an accurate
discretization of all the details of the geometry shape (e.g. aircraft surface, combustion engine diffuser, etc.) and,
they can be locally refined and dynamically adapted or deformed to take into account the complex and unsteady
features of the underlying flow. Several major contributions in this domain have been concerned with the design of
finite volume type methods involving sophisticated upwind solvers to account for the dominant hyperbolic nature of
the underlying flow models[120]-[131]-[110]. Such numerical schemes are very robust with respect to the treatment
of some characteristics of the system of Euler equations, such as shock waves and contact discontinuities, which
constitutes the basic model of compressible fluid mechanics. Nevertheless, this robustness is obtained at the
expense of a numerical viscosity which is naturally attached to upwind schemes. In most of the cases, the loss of
accuracy resulting from the introduction of this numerical diffusion does not allow for a correct characterization
of the main flow features. Then, the strategy generally adopted to increase the accuracy of the approximation
consists in using upwind schemes based on the MUSCL (Monotonic Upwind Schemes for Conservation Laws)
technique initially proposed by Van Leer[141] and extended to unstructured meshes by Fezoui[51], in conjunction
with TVD (Total Variation Diminishing) formulations[69]-[135]-[132]-[56]-[109] in order to compute solutions that
are physically correct. For the time integration of the resulting semi-discrete equations, several works have been
concerned with the design of linearized implicit schemes for the calculation of steady flows[56]-[54] and unsteady
flows[89].

For what concerns the resolution of the associated algebraic systems, the main question still appears to be the
efficiency of unstructured mesh solvers compared with structured ones (e.g. multi-block methods). Many efficient
methods developed in the structured context are not easily extensible to unstructured meshes and much research
work has still to be done in this direction. It seems clear that these studies must target the design of iterative
methods that are (1) of optimal complexity (i.e. whose convergence is independent of the number of degrees of
freedom) and (2) well adapted to modern parallel computing platforms. Concerning the first point, a promising
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research direction aims at proposing resolution methods that are based on a certain hierarchical treatment of the
underlying data. Multigrid methods belong to this framework[68]-[18]-[143]. Multigrid methods can be classified
according to several criteria. A first distinction comes from the nature of the system to be solved i.e. linear versus
non-linear system. The FAS (Full Approximation Scheme) method is the most general formulation of a multigrid
algorithm. It has been first proposed by Brandt[14]-[15] for the resolution of non-linear systems. In the case of
linear systems, the FAS algorithm can be easily reformulated to yield a linear multigrid algorithm. However, in
both cases, the basic principle consists in computing corrections on a set of coarse discretization levels which are
then used to update the solution computed on the finest discretization level. Moreover, this basic principle can
be coupled to a grid refinement technique yielding the so-called FMG (Full MultiGrid) algorithm.

The basic components of any multigrid method are: (1) a hierarchy of discretization levels and, for each level,
the corresponding formulation of the system to be solved, (2) a set of operators for transferring data between
two consecutive levels of the hierarchy, (3) a smoothing method used to damp the high frequency components
of the iterative error and, (4) a method to solve the system formulated on the coarsest discretization level. The
definition of the hierarchy of discretization levels allows to further separate multigrid methods in two families:

• for geometric multigrid methods, the hierarchy of discretization levels consists of a set of meshes (or grids)
of increasing (or decreasing) resolution. The finest grid is the support of the targeted solution. The
coarser grids are used to accelerate the convergence of the iterative process. On each coarse grid, a discrete
representation of the original system of PDEs is obtained either by using the approximation method adopted
on the finest grid or, by applying a purely algebraic technique involving the discrete operator on a finer grid
and inter-grid transfer operators[18].

• algebraic multigrid methods[138] take as input the algebraic system resulting from the discretization of the
original system of PDEs on the finest grid. They do not require coarser grids as it is the case for geometric
multigrid methods. Instead, coarser formulations of the fine grid algebraic system and associated inter-grid
transfer operators are obtained through the use of aggregation techniques that are directly applied to matrix
coefficients. The application of algebraic multigrid methods is essentially restricted to linear systems.

In the case of geometric multigrid methods, the construction of the hierarchy of discretization levels in
conjunction with unstructured meshes is not an easy task and has been the subject of several works. A first
approach consists in applying a recursive refinement algorithm (i.e. by subdividing mesh elements) to a coarse
discretization of the computational domain. It is clear that such a strategy yields a fully nested hierarchy of
discretization levels. Alternatively, a multigrid method based on not-nested discretization levels has been developed
by Mavriplis and Jameson[97]-[98]. More recently, Guillard[67] has proposed a coarsening method that builds a
coarse mesh from a finer one by deleting selected mesh vertices and applying a re-meshing algorithm.

These various approaches have allowed the construction of robust and efficient algorithms for several domains
of application. However, the fact that they require handling several meshes for the same application make them
difficult to exploit in an industrial context. One way to overcome this restriction consists in using a sequence of
coarse levels that are automatically built from the finer discretization grid. One strategy of this type makes use of
topological relations of a dual mesh such as the control volume mesh associated to the mixed finite element/volume
formulation considered in section 1.2.1 of chapter 1. This particular approach results in the so-called multigrid by
volume agglomeration method that has been first developed by Lallemand et al.[82] at INRIA Sophia Antipolis,
for the resolution of the system of two-dimensional Euler equations. A few years later, in the United States, more
precisely at ICASE at the NASA Langley research center, this method has been the subject of several important
contributions due to Mavriplis and co-workers[95]-[96]-[92]-[93]-[94]. Meanwhile, the Sinus team at INRIA Sophia
Antipolis has also produced several contributions concerning the extension and the application of the multigrid by
volume agglomeration method to laminar and turbulent viscous flows in the 2D case[81]-[23]-[57]. However, these
contributions are essentially the results of basic research activities and the methodology has rarely been applied to
more realistic (i.e. industrial) situations. In particular, the application of the multigrid by volume agglomeration
method to the calculation of complex 3D flows as well as its adaptation to modern parallel computing platforms
have never been considered simultaneously.
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The main contribution of the present work is twofold: on one hand, we demonstrate the successful extension
and application of the multigrid by volume agglomeration principle to the acceleration of complex three-dimensional
flow calculations on unstructured tetrahedral meshes and, on the other hand, we enhance further the overall effi-
ciency of the methodology through its adaptation to distributed memory parallel computing platforms. Moreover,
a non-trivial aspect of this work is that the corresponding software developments are taking place in an existing
industrial flow solver. This activity was supported by a consortium consisting of three industrial end-users: EDF,
Snecma and Renault. Then, a major objective of the present study was to demonstrate the potentiality of
agglomerated multigrid for flow calculations relevant to these industrial partners. For this purpose, the pro-
posed multigrid methodology is applied to two representative turbulent steady flow calculations within complex
geometries.

The underlying industrial flow solver is based on an averaged form of the multi-component Navier-Stokes
equations coupled to a k − ε turbulence model. The spatial discretization combines finite element and finite
volume concepts and is designed on unstructured tetrahedral meshes. Steady state solutions of the resulting
semi-discrete equations are obtained using an Euler implicit time advancing strategy which is based on the
following features : linearization (approximate linearization of the convective fluxes and exact differentiation of
the viscous terms), and local time stepping and CFL law (a local time step is computed on each control volume).
Then, each pseudo-time step can require the solution of as many as three sparse linear systems for the mean flow
variables, the turbulent variables and the chemical species. In the existing solver, these systems are (approximately)
solved using several sweeps of a relaxation method (that is Jacobi or Gauss-Seidel methods). Here, parallel linear
multigrid algorithms by volume agglomeration are developed for the acceleration of the solution of these linear
systems. Then, the basic relaxation methods are used as smoothers for the proposed algorithms. The standard
agglomerated multigrid makes use of an isotropic greedy type coarsening algorithm for the automatic construction
of the coarse grid discretizations.

The rest of this section is organized as follows. In subsection 3.1.2 we describe the main features of the
underlying industrial flow solver which are of interest to our study. In subsection 3.1.3 we outline the main
ingredients of the linear multigrid by volume agglomeration method which is at the heart of our study. In
this section we only consider the standard (isotropic) coarsening strategy for the construction of the coarse
discretizations of the computational domain. Subsection 3.1.4 discusses the parallelization aspects. In subsection
3.1.5, results are presented for steady flow calculations performed on a SGI Origin 2000 MIMD system. Section
3.1.6 is concerned with the improvement of the efficiency of the standard agglomerated multigrid algorithm through
directional coarsening. This last aspect is treated here as a feasibility study as the resulting multigrid algorithm
is only applied to one of the cases considered in section 3.1.5 and not to the most appropriate calculations (that
is, to calculations involving adapted or deforming meshes). Finally, subsection 3.1.7 concludes this study.

3.1.2 The N3S-NATUR flow solver

The starting point flow solver is the N3S-NATUR software package which is the result of a coordinated effort for the
development of a parallel solver dedicated to the numerical simulation of industrial compressible steady or transient
flows. This activity was supported by a consortium consisting of three industrial partners which are end-users and
co-developers of N3S-NATUR (EDF, Snecma and Renault), two software companies (Simulog and Metraflu) and
two research institutions (Ecole Centrale de Lyon and INRIA). The main characteristics of N3S-NATUR are given
below:

a) physical features : N3S-NATUR is currently able to compute laminar or turbulent flows governed by the Navier-
Stokes equations. Turbulence modeling is based on a two-equation k − ǫ model coupled with special wall
boundary conditions to simulate boundary layers. Multi-component flows can be simulated with a modeling
of the molecular diffusion. N3S-NATUR can handle 2D and 3D arbitrary complex geometries and is able
to compute both confined and external flows. This software is particularly well suited to strong shocks
evaluation such as those found in aeronautics, and behaves very well for a wide range of Mach numbers
(0.1 < M < 7.0).
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b) boundary conditions : several types of boundary conditions can be considered including periodicity between
parallel or non parallel faces, wall boundary conditions (slip condition, wall law, thermal exchange), inflow
and outflow conditions, compatibility relations (for inflow and outflow).

c) numerical features : the multi-component Navier-Stokes equations are solved in conservative form. The dis-
cretization in space relies on a mixed finite volume (for the convective terms)/finite element (for the diffusive
terms) formulation which is briefly recalled hereafter. Unsteady flows based on deforming meshes can be
handled thanks to an appropriate calculation of the convective terms. Explicit or linearized implicit time
integration techniques are available. Jacobi and Gauss-Seidel relaxations are implemented for the solution
of the linear systems resulting from the implicit time integration scheme.

N3S-NATUR is applied to the numerical simulation of flows that are modeled by the 3D compressible Navier-
Stokes equations for turbulent multi-component flows. These equations are discretized on unstructured tetrahedral
meshes using the mixed element/volume formulation described in section 1.2.1 of chapter 1 with some particular
adaptations for what concern the equations associated to the chemical components. Finally, the semi-discrete
equations are time integrated using the linearized backward Euler implicit scheme presented in section 1.4.1.
Then, each pseudo-time step can require the solution of as many as three sparse linear systems for the mean
flow variables, the turbulent variables and the chemical species. In N3S-NATUR, these systems are (approximately)
solved using several sweeps of a relaxation method (that is Jacobi or Gauss-Seidel methods).

3.1.3 Linear multigrid by volume agglomeration

3.1.3.1 Motivations

There are two practical situations in the N3S-NATUR solver that call for the solution of large sparse linear systems:

• the linearized implicit time integration scheme. For the multi-component Navier-Stokes equations aug-
mented by a two-equation k−ε turbulence model, as many as three systems need to be solved : one for the
mean flow variables, one for the turbulent variables and one for the chemical species. This results from the
fact that a loosely coupled approach is used in the implicit treatment of the full system of partial differential
equations;

• the mesh update procedure in the case of an unsteady calculation on a deforming geometry[109]. This
aspect is not considered in this study (the application of multigrid acceleration in this case is the object of
an ongoing effort).

In realistic applications such as those that can be solved with the N3S-NATUR solver, the linear system solution
steps using Jacobi or Gauss-Seidel relaxations, generally represent between 80% and 90% of the total simulation
time.

The main advantages of using Jacobi or Gauss-Seidel relaxations are that they do not require additional
temporary storage (as it is the case for GMRES for example) which is a criterion of crucial importance for an
industrial software package, they do not need to be preconditioned, and they are naturally parallelizable (at
least for the Jacobi method; for Gauss-Seidel, a mixed formulation can be adopted, where Jacobi relaxations are
used for unknowns that are shared by several processors). However, the main drawback is that these solvers are
not numerically efficient (especially Jacobi) compared to preconditioned Krylov methods. The present work is
concerned with the development and evaluation of parallel linear multigrid algorithms by volume agglomeration
in order to allow for an efficient treatment of the linear system solution steps of N3S-NATUR.

3.1.3.2 Standard coarsening algorithm

The multigrid method adopted here is based on the use of macro elements (macro control volumes) that form the
coarse discretizations of the computational domain. It is an extension of the linear multigrid approach developed
by Mulder[105] and Lallemand et al.[82] to accelerate the solution of linear systems. In [82] the adopted coarsening
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algorithm is based on neighboring relations. Starting from a fine unstructured discretization, one wants to generate
a hierarchy of coarse levels. The standard approach makes use of an isotropic greedy type coarsening algorithm
that assembles neighboring control volumes of the finest grid (e.g. those having a common boundary) to build
the macro elements of the coarser level.
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We denote by Gk with k = 1, · · · ,K the grid hierarchy. Each grid level Gk is formed of control volumes Ck
i

and we denote by Nk
i denotes the set of indices of the macro control volumes that are neighbors of Ck

i . The
algorithm is given below and is illustrated on figure 3.1 in the two-dimensional case.

Algorithm 1 Standard grid coarsening algorithm by volume agglomeration.

[0] Set j = 0 (j stands for the counter of coarse grid control volumes)

[1] LOOP on each control volume Ck
i of grid level Gk

[2] IF Ck
i has already been included in a group Ck+1

q q = 1, · · · , j − 1 THEN

[2a] Consider the next control volume i.e. GOTO [1]

ELSE

[2b] Set j ← j + 1 and create a new group Ck+1
j containing Ck

i

[2c] Build the coarse grid control volume Ck+1
j :

Ck+1
j = Ck

i

⋃

p∈Nk
i

Ck
p such that Ck

p /∈ Ck+1
q , q = 1, · · · , j − 1

[2d] GOTO [1]

[2 end] ENDIF

[1 end] ENDLOOP

The main advantage of this method is that it allows for an automatic generation of the coarser discretizations
without building any coarse tetrahedrization.

3.1.3.3 Coarse grid approximations of the convective and diffusive terms

We recall that the finite volume formulation adopted on the finest mesh is such that an elementary convective flux
is computed at the interface between two control volumes. In the multigrid by volume agglomeration method,
they are computed in the same way on a coarse level, between two macro elements. Note that on the coarse grids,
this computation is limited to first order accuracy because nodal gradients cannot be evaluated as they are on the
finest mesh (in other words, the MUSCL method cannot be applied on the coarse levels). Nevertheless, this fact
does not really represent a problem here since the multigrid method is used to accelerate the solution of a linear
system whose Jacobian matrix is based on the linearization of a first order convective flux. Both conservative
variables and normal vectors are interpolated between the different grids. The coarse grid variables are deduced by
inter-grid transfer operators . The normal vectors, linked with each coarse macro control volume, result from the
summation of the finer grid vectors (associated to the fine mesh control volumes that have a common boundary
with the macro elements) ; as a result, one flux at most is computed between two macro control volumes. To
evaluate the diffusive laminar and turbulent terms on a coarse level, related basis functions are needed. Indeed, in
the finite element formulation on the fine grid, the equations are integrated and assembled by edges (convective
terms) and tetrahedra (diffusive terms). As tetrahedra do not exist on the coarser grids, it is necessary to define
a new formulation for the calculation of diffusive terms; we refer to Carré[23] for a more detailed description of
the adopted strategy.

3.1.3.4 Inter-grid transfer operators

A condition to obtain multigrid efficiency is that the summation of the orders of the inter-transfer operators
is greater than the order of the partial differential equation to be solved. In order to solve the Navier-Stokes
equations, this condition, developed in [143] and [70], requires that either prolongation or restriction be linear.
However, a linear interpolation is not easily built in an agglomeration context. In our case, we keep the same
order for both restriction and prolongation operators which is in accordance with the previous condition only for
the convective approximation, but allows simple and diagonally dominant coarse grid matrices to be built. These
operators are discussed in more details in the paragraph 3.2.2.4.1 of section 3.2.
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3.1.4 Parallel computing issues

3.1.4.1 Parallelization of the monogrid solver

The parallelization of the monogrid version of N3S-NATUR is studied in Lanteri and Loriot[85]. A SPMD (Single
Program Multiple Data) parallel programming model is adopted. Its implementation relies on the combination of
a domain partitioning approach and a message-passing programming model. This strategy is discussed in more
details in section 2.2.2 of chapter 2. Here, we simply recall that for the partitioning of the unstructured mesh, two
basic strategies can be considered. The first one is based on the introduction of an overlapping region at subdomain
interfaces (this option corresponds to a vertex-wise partitioning) and is particularly well suited to the mixed finite
element/volume formulation considered in this study. The second possible strategy is based on a non-overlapping
mesh partition (this option corresponds to an element-wise partitioning). Such a strategy complicates the parallel
implementation of the mixed finite element/volume formulation since partially gathered quantities need to be
handled and exchanged at submesh interfaces. However, it has been our experience that parallel performances are
better with this second strategy. Indeed, the strategy based on overlapping mesh partitions induced redundant
floating-point operations that have a negative impact on the parallel speedup when the number of submeshes is
increased (see [84] for more details). In [85] simplicity of programming has been preferred due to the complexity
of the underlying software. Thus, the parallelization of the monogrid version of N3S-NATUR relies on the use of a
one tetrahedron-wide overlapping zone between neighboring submeshes.

Figure 3.1: Illustration of the grid coarsening by agglomeration
Top left : triangular grid - Top right : dual grid

Bottom left : first agglomerated level
Bottom right : second agglomerated level
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3.1.4.2 Parallelization of the multigrid solver

The parallelization of the multigrid method described previously essentially consists in an extension of the strategy
adopted for the monogrid version of N3S-NATUR. In practice, the operations on the coarse grid levels are distributed
in the same way as they are on the finest (tetrahedral) mesh. We note that this strategy corresponds to applying
an intra-level parallelization. Such a strategy requires a preliminary step aiming at the construction of partitioned
coarse grid levels. In this study, this has been achieved by developing a parallel variant of the original greedy
type coarsening algorithm 1 which now includes additional communication steps for a coherent construction of
the communication data structures on the partitioned coarse grid levels. The choice of developing a fully parallel
coarsening algorithm rather than building a sequential (and probably un-coupled) preprocessing tool, is mainly
motivated by the future utilization of the resulting solution strategy in the context of deforming or adaptive
meshes. As stated previously, the parallelization on the monogrid solver is based on the use of an overlapping
mesh partition. The overlapping zone is one-tetrahedron wide. In order to build the additional communication
data structures that are required for the parallelization of coarse grid operations, we make use of the notion of
submesh ownership. We consider that a submesh is the owner of all the mesh vertices it contains except those
that are placed on the exterior side of artificial boundaries (referred below as interface vertices). By owner we
mean that the submesh is responsible for the final update of the physical value attached to the corresponding
vertices. The interface vertices are owned by the neighboring submeshes. In the parallel coarsening strategy, we
extend these notions of submesh property and submesh neighborhood to the definition of coarse grid levels. The
main steps of the parallel coarsening strategy are summarized in the algorithm 2 below.

For a given number of submeshes (i.e. of processes), the coarse grid levels resulting from the application
of algorithm 2 are very similar to those obtained in the sequential case. More importantly, they are globally
consistent with a sequential agglomeration in the sense that, for a given submesh, the partial agglomeration in
the overlapping zone matches perfectly the agglomeration of the neighboring submeshes. This is illustrated in the
2D case on figures 3.2 and 3.3 below.

Algorithm 2 Parallel grid coarsening by agglomeration.

FOR each submesh DO IN PARALLEL

. Perform standard sequential agglomeration on the owned vertices (i.e. control volumes)

. Send to neighboring submeshes the result of the local agglomeration for interface

. Receive the agglomeration

. Reproduce the neighboring agglomeration on the not-owned vertices

. Construct appropriate communication data structures

ENDFOR

3.1.5 Numerical and performance results

Calculations have been performed on a SGI Origin 2000 system equipped with Mips R10000/195 Mhz processors.
The code is written in Fortran 77 and the Mips F77 compiler has been used with maximal optimization options.
The native SGI implementation of MPI has been used. Performance results are given for 64 bit arithmetic
computations. In the following tables, Np gives the number of processors for the parallel execution, Ng is the
total number of levels in the multigrid hierarchy (finest mesh included), Nc denotes the number of multigrid
cycles used for each linear system solution; ”Total time” denotes the total (elapsed) execution time and ”CPU
time” denotes the total CPU time (taken as the maximum value of the local per process measures). The parallel
speedup S(Np) is always calculated using the elapsed execution times; G(Np) denotes the overall gain between the
multigrid and the monogrid algorithms. Finally, the term ”linear threshold” is used to characterize the accuracy
of the linear system solves (i.e. the level of reduction of the initial linear residual).
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Triangle mesh Dual mesh (fine grid)

Figure 3.2: Parallel coarsening strategy (first level)
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Agglomerated dual mesh Agglomerated dual mesh

(second level) (third level)

Figure 3.3: Parallel coarsening strategy : second and third levels
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3.1.5.1 Euler flow around an ONERA M6 wing

We first consider the classical test case given by the inviscid transonic flow around an ONERA M6 wing. The
free-stream Mach number is set to 0.84 and the angle of attack to 3.06◦ (see figure 3.4). Several tetrahedral
meshes have been used; their characteristics are summarized in table 3.1 below (meshes M2 and M4 are obtained
through a global division of mesh M1). The computation is second order accurate in space. The CFL number has
been fixed to 106 for all the pseudo-time iterations. The calculation is started from a uniform flow. This test case
is mainly used for validation purposes (subsection 3.1.5.1.1) and also to obtain a first estimation of the overall
gain when using the multigrid algorithm (subsection 3.1.5.1.2).

Table 3.1: Characteristics of unstructured meshes around an ONERA M6 wing
NV : # vertices - NT : # tetrahedra - NE : # edges

Mesh NV NT NE

M1 2,203 10,053 13,257
M2 15,460 80,424 99,891
M3 31,513 161,830 201,479
M4 115,351 643,392 774,774

Figure 3.4: Surfacic mesh (mesh M1) and steady contour lines of the Mach number on an ONERA M6 wing

3.1.5.1.1 Assessment of the convergence rate. This series of numerical experiments aims at verifying
the most important property of any well designed linear multigrid solution algorithm which states that the rate of
convergence is independent of the number of degrees of freedom. In the present context, this property is assessed
for the resolution of the linear system resulting from the use of a linearized implicit scheme for time advancing the
Euler equations (see section 1.4.1 of chapter 1). For this purpose, we first consider the ideal two-grid algorithm
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that is, we construct only one coarse grid level and we perform ν1 = 1 pre-smoothing step and ν2 = 1 post-
smoothing step while the coarse grid system is solved exactly νg →∞). Numerical experiments are performed on
a single processor of the SGI Origin 2000 system. The smoother is given by the Gauss-Seidel relaxation method.
Results are given in table 3.2; the corresponding convergence curves are shown on figure 3.5. In table 3.2, the
reduction factor µr is defined as :

µr = r
1

Nc−1

tg with rtg = b(1) − PX(1)

where PX(1) = b(1) is the linear system to be solved of the finest grid, Nc denotes the number of ideal two-grid
cycles and rtg stands for the residual computed on the finest grid level (the exponent Nc − 1 is used because the
residual rtg is normalized with the residual computed after the first ideal two-grid cycle). Except for mesh M1
which is too coarse, the required property is exhibited. The same analysis is now performed using the multigrid
V-cycle with ν1 = ν2 = νg = 1. Table 3.3 reports the characteristics of the agglomerated coarse grid levels for
each of the available meshes. Note that for mesh M3, the last two coarse grid levels should ideally contain 370
and 64 zones; this is not the case here because mesh M3 results from a partial division of mesh M2. Figure 3.6
visualizes the obtained convergence curves.

We conclude that these results validate the developed linear multigrid algorithm, at least for the Euler model
which has a purely hyperbolic nature. The same kind of validation has also been performed for the laminar and
the turbulent Navier-Stokes equations even though the task is harder in those cases because of the influence of the
underlying meshes on the computed solution (e.g. with reference to quantities such as the cell Reynolds number).

Table 3.2: Euler flow around an ONERA M6 wing

Ideal two-grid convergence
Numbers of cycles to convergence and associated reduction factors

Mesh Nc µr

M1 17 0.24
M2 21 0.31
M3 21 0.31
M4 20 0.30

Table 3.3: Euler flow around an ONERA M6 wing

Characteristics of the agglomerated coarse grid levels
Nz : numbers of zones (macro control volumes) on each coarse grid level

Mesh Ng Nz

M1 3 370/64
M2 4 2203/370/64
M3 4 4341/821/190
M4 5 15460/2203/370/64

3.1.5.1.2 Calculation of the steady flow. We consider now the calculation of the steady flow corre-
sponding to figure 3.4. The objective is to compute the steady state solution of the Euler equations using mesh
M4. The total number of unknowns is 115, 351×5 = 576, 755 (i.e. 5 degrees of freedom per mesh vertex). When
one is concerned with comparing the numerical efficiencies of monogrid and multigrid solution methods such as
those considered in this study, a classical difficulty is that the way to proceed is not unique. For instance, a
comparison based on the same linear threshold ε for both algorithms is generally unfair for the multigrid algorithm
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because the solution it yields is always of better quality (at least when the underlying linear system solution is
only partially converged which is always the case for steady state calculations using the linearized implicit scheme
described in section 1.4.1 of chapter 1). The ideal situation is obtained when the computational effort (i.e. the
linear complexity) is carefully evaluated for both algorithms through several numerical experiments. Here, several
monogrid and multigrid calculations have been performed. For each algorithm, the goal was to find the appro-
priate number of relaxations (monogrid algorithm) and V-cycles (multigrid algorithm) resulting in the optimal
non-linear convergence to steady state. The Jacobi relaxation method has been adopted for both algorithms and
the selected V-cycle is characterized by ν1 = 2 pre-smoothing steps, ν2 = 3 post-smoothing steps and νg = 2
smoothing steps on the coarsest grid level. For the multigrid algorithm, 3 coarse levels have been constructed
(thus, the total number of grid levels is Ng = 4). Several numerical experiments have been performed and can
be summarized as follow:

• for the monogrid algorithm, a constant number of νf = 75 Jacobi relaxations at each time step has been
found to yield the optimal non-linear convergence to steady state,

• for the multigrid algorithm a constant number of Nc = 2 V-cycles is sufficient to demonstrate the same
non-linear convergence.

Performance results are given in table 3.4 where ”SG” and ”MG” respectively denote the monogrid and
multigrid algorithms. The super-linear speedup observed on the SGI Origin 2000 system is due to combined
memory and cache effects (128 Mb of local memory for a 4 Mb cache size per processor on our system). On 8
processors, the multigrid algorithm is 3 times faster than the monogrid algorithm; this result is rather satisfying
given that the flow under consideration is relatively simple and that the equivalent 2D size of the underlying mesh
is 115, 351

2
3 ≈ 2, 370 vertices which is still very coarse.

Table 3.4: Euler flow around an ONERA M6 wing, performance results on a SGI Origin 2000 system

Np Total time CPU time S(Np) Total time CPU time S(Np) G(Np)
SG SG SG MG MG MG

2 10260 sec 10210 sec 1.00 3092 sec 3076 sec 1.00 3.3
4 4555 sec 4530 sec 2.25 1586 sec 1578 sec 1.95 3.0
8 2078 sec 2066 sec 5.00 680 sec 675 sec 4.55 3.0

3.1.5.2 Turbulent flow inside an aircraft engine diffuser

The application of the multigrid by volume agglomeration principle to the calculation of complex flows is the main
objective of this study. Therefore, we consider here such a situation in the form of the numerical simulation of the
turbulent two-component flow inside a geometry of aircraft engine diffuser. At the time of this study, combustion
models were not yet implemented in the N3S-NATUR monogrid solver; as a consequence, only the convection and
the diffusion of chemical species are modeled in the present calculation. The steady state solution of this flow
is characterized by a Mach number that ranges between 10−4 and 0.3 (see figure 3.7 and 3.8 for views of the
steady contour lines of the Mach number and velocity fields in selected cut-planes). The underlying mesh contains
NV = 149, 223 vertices, NT = 797, 704 tetrahedra and NE = 977, 674 edges. The total number of unknowns is
equal to 149, 223× 8 = 1, 193, 784 (i.e. 8 degrees of freedom per mesh vertex).

At each pseudo-time step, the time increment is computed using a CFL law given by CFL=min(50×it, 20000)
where it denotes the pseudo-time iteration number. In the monogrid algorithm as well as in the multigrid
algorithm, the basic relaxation method is an hybrid Gauss-Seidel/Jacobi iteration. To be more precise, since the
parallelization of the Gauss-Seidel iteration is not trivial in the context of unstructured meshes, we decide to
restrict the application of this relaxation method to purely internal vertices and to resort to the Jacobi method
for interface vertices. Strictly speaking, the numerical efficiency of this hybrid method is worse than the one of
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Figure 3.7: Turbulent flow inside an aircraft engine diffuser
Steady contour lines of the Mach number on a selected cut-plane

the classical Gauss-Seidel method, in particular when the number of subdomains is large. The maximum number
of relaxations for the monogrid algorithm has been set to νfmax = 1500. For the multigrid algorithm, we have
used 3 coarse grid levels (that is Ng = 4) and we have selected the following cycles :

• mean flow variables : V-cycle with ν1 = 2 pre-smoothing steps , ν2 = 4 post-smoothing steps and νg = 2
smoothing steps on the coarsest level;

• turbulent variables and chemical species: V-cycle with ν1 = 2 pre-smoothing steps , ν2 = 4 post-smoothing
steps and νg = 2 smoothing steps on the coarsest level.

For this calculation, the comparison between the monogrid and multigrid methods has been done on a linear
threshold basis. For the monogrid algorithm, we have tested two values for the linear threshold at each pseudo-
time step : ε = 10−1 and ε = 10−2; for the multigrid algorithm only the value ε = 10−1 has been considered. The
obtained non-linear convergences to steady state are shown on figure 3.9 in terms of the evolution of the residual
of the density (normalized to its initial value) versus the number of pseudo-time iterations. It is clear from these
curves that quasi identical convergences are obtained when ε = 10−2 for the monogrid algorithm and ε = 10−1

for the multigrid algorithm (this behavior illustrates the discussion of the beginning of section 3.1.5.1.2); from
now on, the comparison between the two algorithms will be done on the basis of these two choices of the linear
threshold. The linear convergences at each pseudo-time step is detailed on figure 3.10 for the systems of mean
flow variables and the systems of turbulent variables and for Np = 8 subdomains. The monogrid convergences
demonstrate large variations in the number of relaxations. On the contrary, the convergence of the linear systems
for the mean flow variables (respectively, for the turbulent variables) requires between 4 to 7 (respectively, between
3 to 5) V-cycles.

Performance results have been obtained on the SGI Origin 2000 system and are given in table 3.5. The overall
gains obtained on 8 and 16 processors are clearly seen. From 8 to 32 processors we note a 20% decrease in this
gain. There are two main causes to this degradation :

• the cost of the communication steps on Np = 32 subdomains. On the two coarsest grid levels, the ratio
of communication to arithmetic operations has a direct impact on the parallel speedup. Moreover, for
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Figure 3.8: Turbulent flow inside an aircraft engine diffuser
Velocity fields in selected cut-planes
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each smoothing step on the coarsest grid levels, we need to exchange messages of small sizes, a fact that
increases the weight of the message latency in the communication cost;

• the overlapping mesh partitioning strategy. As the number of subdomains is increased, the incurred re-
dundant arithmetic operations at the interfaces are such that the equivalent global problem size is larger
(between 10% to 15% depending on the number of subdomains) than the size of the original problem.
Clearly, this has a direct impact on the overall computational cost.

Table 3.5: Turbulent flow inside an aircraft engine diffuser
Results on a SGI Origin 2000 system

Np Total time CPU time S(Np) Total time CPU time S(Np) G(Np)
SG SG SG MG MG MG

8 16611 sec 16447 sec 1.00 2366 sec 2343 sec 1.00 7.00
16 7356 sec 7284 sec 2.30 1213 sec 1201 sec 1.95 6.00
32 3574 sec 3539 sec 4.65 661 sec 655 sec 3.60 5.40

3.1.5.3 Turbulent flow inside a car engine combustion chamber

Our second example of calculation of complex flows aims at demonstrating the effectiveness of the multigrid
principle in situations where the basic relaxation methods such as Jacobi or Gauss-Seidel are unable to solve
the underlying algebraic systems due to an increased stiffness of the associated Jacobian matrix. In the present
case, the bad conditioning of the algebraic systems obtained at each pseudo-time step results from combined
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physical and numerical aspects. The problem under consideration is concerned with the calculation of the steady
turbulent flow inside a car engine combustion chamber. As with the previous test case, combustion effects are not
modeled. The underlying flow is highly subsonic (the Mach number obtained at steady state ranges from 10−4

to 10−1) which is by itself a first source of physical stiffness. In order to compute this subsonic flow accurately,
a preconditioned Roe-Turkel variant of Roe’s Riemann solver[36] is used for the computation of the convective
fluxes. This numerical features is the second source of increased stiffness of the linear systems to be solved at each
pseudo-time iteration. The computational mesh contains NV = 332, 818 vertices, NT = 1, 903, 704 tetrahedra
and NE = 2, 267, 209 edges. The total number of unknowns is equal to 332, 818×7 = 2, 329, 726 (i.e. 7 degrees
of freedom per mesh vertex). Figure 3.11 compares the velocity field in a selected cut-plane resulting from the
classical Roe scheme and the preconditioned Roe-Turkel variant. These figures clearly show the superiority of the
latter scheme in terms of numerical diffusion.

At each pseudo-time step, the time increment is computed using a CFL law given by CFL=min(5× it, 20000)
where it denotes the pseudo-time iteration number (with 1 ≤ it ≤ itmax). In the monogrid algorithm as well as
in the multigrid algorithm, the basic relaxation method is again given by the hybrid Gauss-Seidel/Jacobi iteration.
For both algorithms, the linear threshold has been fixed to ε = 10−2. The maximum number of relaxations for
the monogrid algorithm has been set to νfmax = 1500. Here, we are interested in comparing the efficiency of
various multigrid cycles. This comparison will be limited to the solution of the linear systems for the mean flow
variables (i.e. the multigrid cycle used for the solution of the linear systems for the turbulent variables is kept
unchanged). For the multigrid method, 3 coarse grid levels have been used (that is Ng = 4) in combination with
the following cycles :

• for the mean flow variables three cycling strategies have been tested :

– V-cycle with ν1 = 4 pre-smoothing steps, ν2 = 6 post-smoothing steps and νg = 4 smoothing steps
on the coarsest level,

– F-cycle with ν1 = 2 pre-smoothing steps, ν2 = 4 post-smoothing steps and νg = 2 smoothing steps
on the coarsest level,

– W-cycle with ν1 = 2 pre-smoothing steps, ν2 = 4 post-smoothing steps and νg = 2 smoothing steps
on the coarsest level;

• turbulent variables : V-cycle with ν1 = 1 pre-smoothing steps , ν2 = 1 post-smoothing steps and νg = 1
smoothing steps on the coarsest level.

The obtained non-linear convergences to steady state are shown on figure 3.12 in terms of the evolution of the
residual of the density (normalized to its initial value) versus the number of pseudo-time iterations. The effective
numbers of iterations of the monogrid and multigrid solution methods that are performed at each pseudo-time
step are detailed on figure 3.13. Performance results have been obtained on 12 and 24 processors of the SGI
Origin 2000 system and are summarized in table 3.6. The monogrid algorithm is clearly not a reasonable choice
for this application because of the important computational effort induced by the solution of the linear systems for
the mean flow variables. Most of this effort is wasted in trying to solve the low frequency components of the error
which are here the dominant ones due to the subsonic feature of the underlying flow. The multigrid V-cycle is
seen to bring an appreciable reduction in the simulation time, however this reduction is not as much important as
one could expect. Increasing the number of pre- and post-smoothing steps would probably improve the situation
in terms of the required number of V-cycles at each pseudo-time step but at the expense of an increased execution
time. The current values of these parameters are already high and increasing them further will yield a V-cycle no
more representative of usual cycle configurations. A more elegant way to eradicate the problem would consist in
adopting a more efficient smoother. More importantly, the F-cycle and W-cycle are very efficient in the present
context. The execution time on 12 processors of the SGI Origin 2000 system is reduced from 14 hours to one
hour for both algorithms with a slight advantage for the W-cycle.
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Figure 3.11: Turbulent flow inside a car engine combustion chamber
Steady contour lines of the Mach number in a selected cut-plane
Top figure: Roe scheme - Bottom figure: Roe-Turkel scheme
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Table 3.6: Turbulent flow inside a car engine combustion chamber
Performance results on a SGI Origin 2000 system

Np ALGO Total time CPU time S(Np) G(Np)

12 SG 14 h 06 mn 14 h 03 mn 1.0 -
24 SG 6 h 46 mn 6 h 44 mn 2.1 -

12 MG (V-cycle) 3 h 20 mn 3 h 18 mn 1.0 4.2
24 MG (V-cycle) 1 h 34 mn 1 h 33 mn 2.1 4.3
12 MG (F-cycle) 1 h 15 mn 1 h 13 mn 1.0 11.3
24 MG (F-cycle) 39 mn 38 mn 2.0 10.4
12 MG (W-cycle) 1 h 05 mn 1 h 04 mn 1.0 13.0
24 MG (W-cycle) 35 mn 34 mn 1.9 11.6
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3.1.6 Directional coarsening strategy

The application of a multigrid by volume agglomeration method to the calculation of flows on anisotropic meshes is
a non-trivial task which is the subject of several ongoing efforts in the multigrid community. For CFD applications,
relevant practical situations are for example given by the calculation of steady turbulent flows on highly stretched
meshes[57]-[93] and the calculation of unsteady flows in deforming geometries[109]. In these contexts, the
underlying discretization grids often exhibit elements with high aspect ratio, a characteristic that results in serious
convergence problems. As a matter of fact, the efficiency of the standard agglomerated multigrid method (i.e.
based on an isotropic coarsening strategy) degrades and, in some cases, the solution procedure may fail to
converge. This deficiency is even more acute when the adopted smoother is a node-wise relaxation method as it
is the case in the present study. A simple explanation of this behavior of the multigrid algorithm is the following:
when full coarsening is used (i.e. isotropic coarsening), the iterative process used as a smoother only damps
the high frequencies associated to the space direction which is orthogonal to the mesh stretching. Two main
strategies can be adopted in order to remedy to this problem: either the iterative process is adapted to efficiently
damp the high frequencies aligned with the direction of mesh stretching (e.g. by resorting to directional relaxation
or even ILU smoothing[145]) or, the coarsening algorithm is modified to allow for an efficient treatment of the
high frequency components on a coarse grid that have not been damped on the finest grid. In this section,
we propose a directional coarsening strategy that takes into account a particular metric in the agglomeration
procedure used for the construction of the coarse grid levels. Note that the standard coarsening algorithm given
in section3.1.3.2 has a purely topological nature. In particular, the resulting agglomeration patterns are tightly
linked to the numbering of the vertices in the original mesh. Here, we use a different criterion for the construction
of the macro control volumes on the coarse grid levels. This criterion is based on geometrical features of the
grid level to be agglomerated and essentially aims at taking into account a local direction of mesh stretching. To
summarize, the new coarsening strategy combines two mechanisms: on one hand, local metrics i.e. stretching
directions and strength are identified and, on the other hand, the standard agglomeration procedure is adapted
to take into account these local metrics.

The definition of a directional coarsening criterion generally relies on the determination of strong connections.
This can be done in several ways. In the two-dimensional case, the approach proposed in [57] is inspired by an
idea used in algebraic multigrid: the strong connections are evaluated by measuring the coefficients of the finite
element Laplace operator. Then, the values of these coefficients are used to compute a weight for each connection
between two macro control volumes. This strategy has been extended to the three-dimensional case and is briefly
described below.

Let Ak
ij (∀(i, j) ∈ Uk−1) denote the coefficients of the discrete Laplace operator Ak defined on grid level Gk.

These coefficients are given by :

Ak
ij =

∫ ∫ ∫ −→∇ϕk
i .
−→∇ϕk

j d~x with ϕk
j =

∑

p∈Uk−1(j)

ϕk−1
p

where Uk−1(j), j = 1, ..., Nk stands for the set of indices of the macro control volumes Ck−1
l of grid level

Gk−1 defining the macro control volume Ck
j of grid level Gk. The connection between Ck

i and Ck
j is denoted by

< i, j >. Then, we consider that < i, j > defines a strong connection if :

|Ak
ij | ≥ ǫ max

p∈Nk
i

|Ak
ip| with ǫ =

1

4

In the above expression, Nk
i denotes the set of indices of the macro control volumes that are neighbors of Ck

i .

The choice ǫ =
1

4
is rather classical and means that the directional coarsening is applied when the cell aspect

ratio is either lesser than
1

2
or greater than 2.

Let Sk
i denote the set of j ∈ Nk

i such that < i, j > defines a strong connection. For each macro control
volume Ck

i , we denote by j0 the index such that < i, j0 > is the strongest connection :
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Ak
ij0 = max

j∈Sk
i

|Ak
ij |

Let gk
i be the mass center of the macro control volume Ck

i of grid level Gk. Then, one can evaluate the
following vectors:

~ek
ξ =

−−−→
gk

i g
k
j0

‖
−−−→
gk

i g
k
j0‖

and ~eη such that ~ek
η ⊥ ~ek

ξ

and a stretching intensity factor can be defined as:

Lk
i =

∑

j∈Sk
i

|
−−→
gk

i g
k
j .
~ek
ξ |

∑

j∈Sk
i

|
−−→
gk

i g
k
j .
~ek
η|

In the two-dimensional case, the directional agglomeration will rely on the determination of the unique Ck
j0

associated to the strongest connection. In the three-dimensional case, one has to select several such indices
because there is generally more than one direction of stretching.

The directional coarsening algorithm is given below.

Algorithm 3 Directional grid coarsening algorithm by agglomeration in the 2D case
for the construction of the coarse grid level Gk+1 from the fine grid level Gk

[0] Set j = 0 (j stands for the counter of coarse grid control volumes)

[1] LOOP on each control volume Ck
i of grid level Gk

[2] IF Ck
i has already been included in a group Ck+1

q q = 1, · · · , j − 1 THEN

[2a] Consider the next control volume i.e. GOTO [1]

ELSE

[2b] Set j ← j + 1 and create a new group Ck+1
j containing Ck

i

[2c] Identify the index j0 such that < i, j0 > is the strongest connection

[2d] Compute the stretching intensity factor Lk
i

[3] IF Lk
i ∈ [0.5, 2] THEN

[3a] Perform isotropic agglomeration:

Ck+1
j = Ck

i

⋃

p∈Nk
i

Ck
p such that Ck

p /∈ Ck+1
q , q = 1, · · · , j − 1

[3b] GOTO [1]

ELSE

[3c] Perform directional agglomeration along the strongest connection:

Ck+1
j = Ck

i

⋃
Ck

j0

[3d] GOTO [1]

[3 end] ENDIF

[2 end] ENDIF
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[1 end] ENDLOOP

The algorithm used in the three-dimensional case is essentially the same except for step [3c] where the
directional agglomeration is performed along α directions instead of one.

The directional agglomeration strategy is illustrated on figures 3.14 to 3.17 for a model 2D geometry of a
piston engine chamber.

The application of the agglomerated multigrid method based on the proposed directional coarsening strategy
to turbulent flows on highly stretched meshes or to unsteady flows in deforming geometries is the object of an
ongoing effort. However, in order to have a first idea of the potential improvements of the multigrid efficiency, we
present here a preliminary comparison between the standard and directional coarsening strategies using the test
case considered in section 3.1.5.2 (as a matter of fact, the underlying mesh is moderately stretched). Calculations
have been performed for three values of the linear threshold: ε ∈ {10−2, 10−3, 10−4}. Timing results are given
in table 3.7 for the computation of the steady state in the same conditions (multigrid cycles definition, non-linear
threshold) than those considered in section 3.1.5.2, on 8 processors of the SGI Origin 2000 system. For this
particular geometry and associated tetrahedral mesh, the memory overhead between the single grid solver and the
multigrid solver based on the standard coarsening strategy is 30%; using the directional coarsening strategy, this
overhead raises to 37.5%. As can be expected, the main consequence of this fact is that a single V-cycle is more
costly in the latter case because on each coarse grid level there are more unknowns due to a lower coarsening
ratio. Indeed, for ε ∈ 10−1 we did not observe any notable gain in overall CPU time and this is the reason why
this situation is not reported here. In table 3.7, Rdirc

stand = (Total timestand − Total timedirc) /Total timestand .

In order to have a more precise idea of the efficiency of the two multigrid algorithms, we visualize on figure
3.18 the linear convergences at each time step for the system of mean flow variables and for ε = 10−4. The
multigrid algorithm based on the directional coarsening strategy requires almost the same number of V-cycles at
each time step; for most of the computation this number is approximately half of what is required by the multigrid
algorithm based on the standard agglomeration strategy. The aggregate numbers of V-cycles for both algorithms
are respectively equal to 1016 and 619 i.e. a reduction of 39% is obtained with the multigrid algorithm based
on the directional coarsening strategy. In terms of CPU times, the gain is less important (27%) because of the
reason mentioned in the previous paragraph.

Table 3.7: Turbulent flow inside an aircraft engine diffuser
Comparison between standard and directional coarsening algorithms

Results on a SGI Origin 2000 system (Np = 8)

ε Total time CPU time Total time CPU time Rdirc
stand

MG-stand MG-stand MG-dirc MG-dirc

10−2 3229 sec 3197 sec 2856 sec 2827 sec 11.5%
10−3 4796 sec 4748 sec 4060 sec 4019 sec 15.5%
10−4 7698 sec 7622 sec 5605 sec 5550 sec 27.0%

3.1.7 Conclusion

Parallel computing offers the opportunity to simulate compressible flows of increasing physical complexity, around
or within complex geometries in reasonable amounts of time. However, designing robust and efficient solvers on
unstructured finite element meshes remains a challenging objective that should not be neglected. It is now widely
accepted that the successful application of simple solution methods exhibiting high levels of parallel efficiency is
often limited to simple problems. As a general rule, the ideal solver should offer a good compromise between parallel
and numerical efficiency. An example of such an approach has been considered here through the development
of parallel multigrid algorithms to accelerate the various linear system solution steps of an industrial flow solver.
The resulting parallel multigrid flow solver is built around two main components:
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Figure 3.14: Isotropic agglomeration strategy
Fine grid level and first coarse grid levels
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Figure 3.15: Isotropic agglomeration strategy
Second and third coarse grid levels
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Figure 3.16: Directional agglomeration strategy
Fine grid level and first coarse grid levels
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Figure 3.17: Directional agglomeration strategy
Second and third coarse grid levels
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Figure 3.18: Turbulent flow inside an aircraft engine diffuser
Linear convergence of the the multigrid algorithm (Np = 8 , ε = 10−4)

Comparison of standard and directional coarsening strategies

• a widely adopted strategy for the SPMD parallelization of finite element type calculations. This strategy
maximizes the parallel efficiency of the resulting solver by explicitly enforcing data locality through domain
partitioning techniques (see for example [84]);

• a linear multigrid acceleration technique for the solution of large sparse linear systems arising from the
adoption of a linearized implicit time integration technique for time advancing the semi-discrete equations.
With respect to the mixed finite element/finite volume formulation used for spatial discretization in the
monogrid solver, a multigrid by volume agglomeration strategy has been selected. Its main advantage relies
in the fact that the multigrid hierarchy can be automatically generated using the sole data given by the
finest discretization of the computational domain. This aspect is of particular importance in the context of
the SPMD parallelization strategy considered in this study: the problem of generating local data structures
for coarse grid topologies and data exchange at submesh interfaces is treated in parallel without resorting
to an appropriate (multi-mesh) partitioning technique.

The standard agglomerated multigrid strategy relies on an isotropic coarsening algorithm for the construction of
the coarse discretizations. Using such a strategy, appreciable overall gains have been demonstrated here for steady
flow calculations of industrial relevance, using tetrahedral discretizations containing from 100,000 to 330,000 mesh
vertices. Larger gains are expected for unsteady flows inside deforming geometries (e.g. piston engine flows) for
which the linear systems need to be solved more accurately, therefore requiring much more relaxations in the
single grid case. However, such calculations are also characterized by highly stretched meshes that induce a
notable degradation of the multigrid efficiency when using the isotropic coarsening strategy. In preparation of
the treatment of this class of problems, we have proposed a directional coarsening algorithm which is based on
an appropriate definition of strong connections between macro control volumes. A preliminary evaluation of the
resulting directional agglomerated multigrid algorithm has been performed on a steady turbulent flow calculation
using a moderately stretched mesh, and has demonstrated the merits of the approach.
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3.2 Multiplicative and additive multigrid algorithms

3.2.1 Introduction

Thanks to the numerical results given in the previous section, we have demonstrated that the multigrid by
volume agglomeration principle can yield an efficient solver for the calculation of complex compressible flows
on unstructured meshes. However, these results have also shown that the parallel efficiency of the multigrid
solver degrades more notably than that of the monogrid solver. This unfavorable behavior of the multigrid
solver is classically explained as follows: when adopting a standard parallelization strategy that relies on domain
partitioning for the parallel treatment of the pre- and post-smoothing steps, whereas the coarse grid levels are
visited sequentially according to predefined cycles (V-cycle, F-cycle or W-cycle), the main drawback is that as the
calculation in a given cycle proceeds from the finest level to the coarsest ones the ratio between communication
and calculation becomes worse resulting in the observed degradation of the parallel efficiency. Such an approach
can be characterized as an intra-level parallelization strategy. Moreover, the intrinsic sequential treatment of the
coarse grid levels in the V-, F- and W-cycles is dictated by the multiplicative nature of the standard multigrid
algorithm. Clearly, reducing communication overheads is of crucial importance for a wider adoption of parallel
multigrid methods. One possible direction of research aims at designing additive multigrid formulations similarly
to what is done for domain decomposition methods[130].

In this section, we study in details the properties of two multigrid formulations, both from the numerical
and parallel efficiency viewpoints. This is first done by conducting an abstract convergence analysis using a
model problem. Then, we compare the two methods through numerical experiments. The adopted numerical
framework is consistent with the one adopted in section 3.1 however, in this study, we focus our attention on
the two-dimensional case and more particularly on the numerical simulation of inviscid flows. The starting point
of our study is given by a monogrid solver for the Euler equations. The spatial discretization combines finite
element and finite volume concepts and is designed on unstructured triangular meshes. Steady state solutions
of the resulting semi-discrete equations are obtained by using a linearized Euler implicit time advancing strategy.
Then, each pseudo-time step requires the solution of a sparse linear system for the flow variables. In the monogrid
solver this system is approximately solved using several sweeps of a standard relaxation method (the Jacobi or the
Gauss-Seidel method). Moreover, the monogrid solver is parallelized using a domain partitioning approach and a
message passing programming model. In this context, the present work aims at examining how parallel multigrid
acceleration can be used to improve the efficiency of the existing linear system solution strategy. As in section
3.1, a linear multigrid by volume agglomeration method is the basis of this study. As mentioned above, two
parallel multigrid formulations are considered here. The first formulation is the most standard one that extends
the domain partitioning approach to the treatment of the smoothing steps on each coarse grid level (i.e. the
parallelization strategy actually adopted in section 3.1). The second formulation is based on a residual/correction
filtering approach inspired from the work of Chan and Tuminaro[30]. We note in passing that this approach is
different from the one studied by Bastian et al.[10]. The resulting parallel multigrid algorithm theoretically allows
the simultaneous treatment of all the grid levels (inter-level parallelism).

The literature on parallel multigrid methods is relatively rich. For a broad overview of parallel multigrid
algorithms, we refer the interested reader to the recent survey compiled by Jones and McCormick[79]; see also
the paper of Douglas[43]. Parallel multigrid algorithms can be classified into three families.

A first family gathers the so-called non-telescoping multigrid algorithms. Multiple-coarse grid methods[29]-[58]
and concurrent (or subspace-parallel) methods[59] belong to this class; the method of Chan and Tuminaro[30]
considered here is a subspace-parallel method.

The second family includes methods that are based on the standard multigrid algorithms associated to some
techniques to minimize inter-processor communications and to let the idle processors work on something else[91]-
[16]. The method of Brandt and Diskin[16] is somewhat unusual as it is designed to reduce the need for
communications on the finest levels of a multigrid hierarchy. The basic idea is the one that has inspired segmental-
refinement-type procedures which were proposed to overcome storage problems on sequential computers. The
starting point is a re-interpretation of the non-linear FAS (Full Approximation Storage) method. In the FAS
method, the calculation on the fine grid level can be viewed as a correction to the coarse grid problem; this
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correction is in fact a defect correction that ensures that the coarse grid solution has the same accuracy as the
fine grid one. The strategy consists in introducing some approximation in the calculation of this defect correction
by resorting to local calculations on segments of a fine grid level instead of computing a globally consistent
value. In the context of a parallel implementation of the algorithm, each segment is treated by a separate process
in a domain partitioning approach and the defect correction is approximated by neglecting the communication
operations in the pre- and post-smoothing steps.

Finally, the third class of algorithms aims at selecting a proper finer grid as the new coarsest grid such that the
number of unknowns on all grids is greater than the number of processors therefore avoiding the idle processor
problem. The U-cycle proposed by Xie and Scott[147] is a recent example of a multigrid algorithm of this class.
In [147], a detailed analysis reveals that the U-cycle with a finer coarsest grid can have a faster convergence rate,
and the coarsest grid equations of the U-cycle can be solved approximately without increasing the total number
of cycles over what would be required using exact coarsest grid solutions. A parallel U-cycle is simply defined
using a domain partitioning technique. A time complexity analysis demonstrates that the parallel U-cycle is fully
scalable and can have a super-linear speed-up in comparison to the original V-cycle. Application of the method
to a five-point finite difference discretization of a model Poisson problem on a unit square and experiments on an
Intel Paragon and an IBM SP2, tend to confirm the theory.

From an experimental standpoint, most of the algorithms referenced previously have only been applied to model
(elliptic) problems using 2D or 3D uniform (finite difference) discretizations of simple computational domains. As
mentioned in the conclusion of [79], the development and application of non-standard parallel multigrid methods
to real world problems is still in its infancy. A preliminary study of the parallel multigrid method considered
here, in the context of the solution of the Euler equations has been performed by Tuminaro[139]; however, to
date, no concrete parallel implementation and further evaluation of the method has been done in the context
of compressible flow calculations. Here we propose a detailed analysis of the method and its evaluation in the
context of the parallel solution of the two-dimensional Euler equations on unstructured meshes.

The rest of the section is organized as follows. In subsection 3.2.2, we first introduce the multiplicative
and additive multigrid algorithms in a general setting; then we outline the characteristics of the starting-point
monogrid Euler solver and we conclude the subsection by recalling the main characteristics of the multigrid by
volume agglomeration strategy adopted in this study. Subsection 3.2.3 briefly recalls the parallelization strategy
for the monogrid solver and details concrete parallel implementations of the multiplicative and additive multigrid
algorithms. The objective of subsection 3.2.4 is to evaluate the proposed parallel multigrid algorithms through
numerical simulations of two selected flows around a NACA0012 airfoil geometry. These numerical simulations are
performed on a cluster of PCs. An important remark concerning the results reported in this subsection is that
the objective is not to provide the reader with a scalability analysis of multigrid methods on highly parallel MIMD
computing platforms (see [94] for multigrid acceleration of complex flows); instead, we target small or medium
size cluster computing systems based on high speed network interconnection and we try to demonstrate the main
advantages of the proposed additive multigrid method in this context. Finally, subsection 3.2.5 concludes this
study.

3.2.2 Discretization method and multigrid solution method

3.2.2.1 Numerical framework

Let Ω ⊂ IR2 be the computational domain of interest and Γ its boundary. We consider a triangulation Th of
the domain Ω and an associated finite element space Uh consisting of functions that are piecewise linear and
continuous on a given element of Th. We assume that the space and time integration of the original set of partial
differential equations has resulted in the following linear system that must be solved to advance the solution at
each time step:

Ahuh = fh (3.1)

In subsection 3.2.2.3 we derive such a system in the context of the numerical solution of the Euler equations.
In that case, the matrix Ah is non-symmetric and non-definite; however, for the abstract convergence analysis of
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subsection 3.2.2.2.4, we assume that Ah is a symmetric positive definite matrix. In the following we will make
use of two discretizations of the domain Ω: a fine discretization associated to the characteristic dimension h (the
initial finite element discretization), and a coarse discretization associated to the characteristic dimension H .

The approximation spaces associated to the fine grid Th are denoted by Uh (space of unknowns) and Fh (space
of right hand sides). Similarly, we denote by UH and FH the approximation spaces associated to the coarse grid
triangulation TH . Multigrid algorithms rely on inter-grid transfer operators: the restriction operator is denoted by
IFH

Fh
with IFH

Fh
: Fh −→ FH and the prolongation operator by IUh

UH
with IUh

UH
: UH −→ Uh. Let AH : UH −→ FH

be the coarse grid operator and fH ∈ FH such that the equation:

AHuH = fH (3.2)

stands for the discrete formulation on TH . The variational approach for the construction of the coarse grid
operator in (3.2) is given by:

AH = IFH

Fh
AhI

Uh

UH
with IFH

Fh
= c(IUh

UH
)∗ (3.3)

Details about this definition of AH , IFH

Fh
and IUh

UH
can be found in [143]. Another alternative which is adopted

in this study is to define AH from the discretization of the continuous problem on the coarse grid levels. In the
following, we introduce multiplicative and additive ideal two-grid algorithms for the solution of the linear system
(3.1).

3.2.2.2 Multiplicative and additive linear multigrid algorithms

3.2.2.2.1 Ideal two-grid algorithm, multiplicative formulation. The classical ideal two-grid algo-
rithm consists of the following steps:

• fine grid pre-smoothing:

u
(n+ 1

2
)

h = Lν1u
(n)
h + g1 (3.4)

where L is the smoothing operator, g1 is a vector depending on the right-hand side fh, and ν1 is the number
of pre-smoothing steps.

• coarse grid correction. The error equation on the coarse grid is stated using the fine grid residual after the
pre-smoothing step:

AHcH = r
(n+ 1

2
)

H with r
(n+ 1

2
)

H = IFH

Fh

(
fh −Ah(Lν1u

(n)
h + g1)

)
(3.5)

In the ideal two-grid algorithm the above residual is restricted on the coarse grid and the resulting system is
solved exactly. The fine grid correction is obtained by prolongating the solution of the coarse grid equation:

ch = IUh

UH
A−1

H IFH

Fh
r
(n+ 1

2
)

h (3.6)

• fine grid post-smoothing and solution update:

u
(n+1)
h = Lν2(u

(n+ 1
2
)

h + ch) + g2 (3.7)

where ν2 is the number of post-smoothing steps.
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The iterative error is given by e(n) = u
(n)
h −u⋆ where u

(n)
h denotes the approximate solution of equation (3.1) on

the fine grid after the nth two-grid cycle; u⋆ is the exact solution. Using the consistency relation u⋆ = Lνiu⋆ + gi

[18], we deduce the expression for the evolution of the iterative error during one cycle of the ideal two-grid
algorithm:

e
(n+1)
h = MMe

(n)
h with MM = Lν2(Id− IUh

UH
A−1

H IFH

Fh
Ah)Lν1 (3.8)

Eq. (3.8) clearly shows the multiplicative nature of the classical formulation of the ideal two-grid algorithm : the
coarse grid correction step depends on the result of the pre-smoothing steps, and the post-smoothing steps act
on the corrected system.

3.2.2.2.2 Ideal two-grid algorithm, additive formulation. The basic idea of the additive formulation
initially proposed by Chan and Tuminaro[30] is to use filtering techniques in order to isolate high frequency
(HF) from low frequency (LF) modes of the residual. This process can be mathematically stated by introducing
orthogonal projection operators that are applied to the fine grid residual. We note in passing that the resulting
algorithm belongs to the class of additive subspace correction (ASC) methods introduced by Xu[148]. In order to
be more general, the notion of residual filtering is here extended to correction filtering. This setting is particularly
useful for the abstract convergence analysis detailed in subsection 3.2.2.2.4. The problem at hand is again given
by eq. (3.1). The new version of the ideal two-grid algorithm consists of the following steps:

• evaluation of the fine grid residual:

r
(n)
h = fh −Ahu

(n)
h (3.9)

The residual filtering technique is applied to the fine grid residual. In the additive formulation some of the
characteristics of the classical multigrid algorithm, which are closely related to its multiplicative nature, are
lost. For instance, there is no definition of cycle (V-cycle, F-cycle or W-cycle) and the notions of pre- and
post- smoothing steps are simply replaced by smoothing operations on the high frequency modes subsystem.

• residual filtering:

r1h = Thr
(n)
h and r2h = (Id− Th)r

(n)
h = Shr

(n)
h (3.10)

The role of the filtering operators Th and Sh is to operate on a decomposition of the initial residual in terms

of high and low frequency modes. The properties of these operators must ensure that r
(n)
h = r1h + r2h. This

allows the definition of two disconnected error equations Ahc
1
h = r1h and Ahc

2
h = r2h that can be solved

concurrently:

- high frequency problem, smoothing step:

c1h = (Id− Lνadd)A−1
h r1h (3.11)

Eq. (3.11) states the application of νadd iterations of the smoother L that is c
1,(νadd)
h = Lνaddc

1,(0)
h +g.

Then, eq. (3.11) results from c
1,(0)
h = 0 and the fact that the smoother verifies the consistency relation

g = (Id−Lνadd)A−1
h r1h. Note that the smoother is not applied to the solution vector, as it is the case

in the classical multigrid formulation, but to a residual;

- low frequency problem, coarse grid correction:

c2h = IUh

UH
A−1

H IFH

Fh
r2h (3.12)
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• correction filtering:

cI

h = Thc
1
h and cII

h = (Id− Th)c2h = Shc
2
h (3.13)

The theoretical objective of applying filtering operators to the corrections is to ensure that the latter are
not polluted by spurious frequencies and thus to enforce that these corrections belong to distinct subspaces.

• solution update: u
(n+1)
h = u

(n)
h + cI

h + cII

h

The iterative error is now subjected to the relations:

e
(n+1)
h = MAe

(n)
h with MA = Id− (Dh + Eh)Ah

where Dh = Th(Id− Lνadd)A−1
h Th and Eh = ShI

Uh

UH
A−1

H IFH

Fh
Sh

(3.14)

It is clear from eq. (3.14) that the operations performed on the fine grid level (related to Dh) and on the
coarse grid level (related to Eh) are independent.

3.2.2.2.3 Filtering operators. We consider that the vector space Fh is spanned by the usual orthogonal
Fourier basis in which the high and low frequency (HF and LF) modes of a given vector quantity are distinguished.
This identification permits us to decompose this vector space as the direct sum Fh = Gh⊕G⊥h in which the subspace
Gh is assumed to support the HF modes and G⊥h is the orthogonal supplementary subspace. Then, the filtering of
the HF modes of the residual can be stated as an orthogonal projection (in terms of the Euclidean dot product)

of the residual r
(n)
h ∈ Fh onto Gh, that is Th : Fh −→ Gh. For consistency reasons, it is mandatory that each

mode be treated at most once, either as a HF mode or as a LF one. In other words, the subspace associated
to the LF modes of the residual G⊥h ⊂ Fh is induced by the operator Sh : Fh −→ G⊥h which is an orthogonal
projection from Fh onto G⊥h and such that Sh = I − Th.

For a general formulation of the additive algorithm we need another couple of filtering operators to decompose
the HF modes from the LF modes of the correction. However, we also add the constraint that the HF modes
of the residual are also HF modes of the correction. This means that the filtering operators for the residual and
the correction must have the same properties and result in the same effects. In theory, the only difference in
the definition of these operators comes with the spaces and subspaces involved. As previously , we consider a
decomposition of the vector space Uh as Uh = Vh ⊕ V⊥h . We recall that we aim at applying filtering operators
on the problem Ahch = rh, where ch and rh respectively denote the correction and the residual. Therefore, if
Th is the filtering operator applied to the residual, then the filtering operator for the correction Th must satisfy:
AhThch = Thrh. This yields a definition of Th : Uh −→ Vh as:

Th = A−1
h ThAh (3.15)

Since Th is an orthogonal projection, we wish that Th be also an orthogonal projection, this time from Uh

onto Vh. However, if Th is a projection in terms of the Euclidean dot product, the dot product defining Th has
to be determined. The reader can verify that the dot product < ., . >A2

h
allows to express Th as an orthogonal

projection from Uh onto Vh. Indeed, for a symmetric positive definite operator B, we have that P is an orthogonal
projection if and only if:

< Px , (Id− P )x >B= 0 ∀x
⇔ (Px)⋆B(Id− P )x = 0 ⇔ P ⋆B(Id− P ) = 0

(3.16)

If B = Id (that is the Euclidean dot product is selected) then we obtain that P = P ⋆P that is P ⋆ = P . It is
then clear that the property given in eq. (3.16) is verified for P = Th as defined in eq. (3.15) and with B = A2

h.
Following what has been done for the filtering of the residual, we define the filtering operator for the LF modes
of the correction by Sh = A−1

h ShAh = Id− Th where Sh is an orthogonal projection from Uh onto V⊥h .
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3.2.2.2.4 Abstract convergence analysis. We propose here an abstract convergence analysis which is
inspired from the theory of Hackbusch[68] for classical multigrid algorithms. In particular, Hackbusch[68] demon-
strates that the convergence of the multiplicative ideal two-grid algorithm is subjected to smoothing and approx-
imation properties. These properties are a characterization of the role of the pre- and post-smoothing steps on
the fine grid, and of the role of the coarse grid correction. In the case of the additive ideal two-grid algorithm, the
smoothing and approximation properties are expressed in forms slightly different from the usual formulations[68].
Let Wi be a Hilbert space with 〈., .〉Wi and ‖.‖Wi denoting the associated dot product and norm. The norm of
an operator H : Wi −→Wj is defined by:

‖H‖Wj←Wi = sup
x∈Wi, ‖x‖Wi

6=0

(‖Hx‖Wj

‖x‖Wi

)
(3.17)

In the present context, the smoothing property has the following form:

{ ‖AhL
ν‖Fh←Uh

≤ η(ν)h−1 , ∀ν, 1 ≤ ν < ν(h) ,

η(ν)→ 0 when ν →∞ and ν(h)→∞ when h→ 0
(3.18)
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As mentioned in [68], eq. (3.18) can be factorized using A−1
h . Since the iterative operator L is such that

Lν : Uh −→ Uh, we deduce the following form of the smoothing property:

{ ‖Lν‖Uh←Uh
≤ η(ν) , ∀ν, 1 ≤ ν < ν(h)

η(ν)→ 0 when ν →∞ and ν(h)→∞ when h→ 0
(3.19)

As previously, we wish to use a non-classical form of the approximation property. The same type of factorization
as applied to the smoothing property applied to the classical form of the approximation property [68] gives:

‖Id− IUh

UH
A−1

H IFH

Fh
Ah‖Uh←Uh

≤ C (3.20)

Here C is a constant. A necessary condition to enforce this property is to define AH , IFH

Fh
and IUh

UH
such that

eq. (3.3) is verified. From now, we assume that properties (3.19) and (3.20) are verified by the various operators
taking part in the definition of the additive ideal two-grid algorithm. Clearly, the following relation holds for the
iterative error:

‖e(n+1)
h ‖Uh

= ‖MAe
(n)
h ‖Uh

(3.21)

The iterative error is decomposed into HF and LF modes using the Th and Sh filtering operators:

‖e(n+1)
h ‖Uh

≤ ‖ThM
Ae

(n)
h ‖Uh

+ ‖ShM
Ae

(n)
h ‖Uh

(3.22)

Using (3.14) we have:

ThM
A = Th − Th(Dh + Eh)Ah = Th − ThDhAh

= Th − T
2

h(Id− Lνadd)A−1
h ThAh

= ThL
νaddTh

(3.23)

where we have used the relations T
2

h = Th and ThSh = 0 and the definition (3.15) of Th. Similarly, we have:

ShM
A = Sh − Sh(Dh + Eh)Ah = Sh − ShEhAh

= Sh − S
2

hI
Uh

UH
A−1

H IFH

Fh
ShAh

= Sh(Id− IUh

UH
A−1

H IFH

Fh
Ah)Sh

(3.24)

We deduce from the above expressions that:

‖e(n+1)
h ‖Uh

= ‖TLνaddThe
(n)
h ‖Uh

+ ‖Sh(Id− IUh

UH
A−1

H IFH

Fh
Ah)She

(n)
h ‖Uh

(3.25)

and:

‖e(n+1)
h ‖Uh

≤ ‖Th‖Uh
‖Lνadd‖Uh

‖The
(n)
h ‖Uh

+ ‖Sh‖Uh
‖Id− IUh

UH
A−1

H IFH

Fh
Ah‖Uh

‖She
(n)
h ‖Uh

The smoothing and approximation properties together with the fact that ‖Sh‖Uh
= ‖Th‖Uh

= 1 give:

‖e(n+1)
h ‖Uh

≤ η(νadd)‖The
(n)
h ‖Uh

+ C‖She
(n)
h ‖Uh

and:

‖e(n+1)
h ‖Uh

≤ max

(
η(νadd), C

) (
‖The

(n)
h ‖Uh

+ ‖She
(n)
h ‖Uh

)
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The filtering operators decompose the space of corrections into the direct sum of two subspaces so that we
can finally deduce the following estimation:

‖e(n+1)
h ‖Uh

≤ max (η(νadd) , C) ‖e(n)
h ‖Uh

(3.26)

If max(η(νadd), C) < 1, the additive ideal two-grid algorithm is convergent. We note that this condition
is more restrictive than the condition obtained for the multiplicative form of the ideal two-grid algorithm which
requires that Cη(νmul) < 1 (see [68] for more details). Nevertheless, the additive formulation of the ideal two-grid
algorithm preserves the mesh independent convergence property already enjoyed by the multiplicative algorithm.

3.2.2.3 Monogrid solution of the Euler calculations

The conservative form of the Euler equations in the two-dimensional case is given by:

∂W

∂t
+ ~∇.~IFc

(W ) = 0 , W =
(
ρ , ρ~V , E

)T

, ~∇ =

(
∂

∂x
,
∂

∂y

)T

(3.27)

In eq. (3.27), W = W (~x, t) where ~x and t respectively denote the spatial and temporal variables. The

components of the conservative flux ~IF
c
(W ) = (Fx(W ), Fy(W ))T write as:

Fx(W ) =




ρu
ρu2 + p
ρuv

u(E + p)


 , Fy(W ) =




ρv
ρuv

ρv2 + p
v(E + p)




In the above expressions, ρ is the density, ~V = (u , v)T is the velocity vector, E is the total energy per unit
of volume and p is the pressure. The pressure is deduced from the other variables using the state equation for a
perfect gas:

p = (γe − 1)(E − 1

2
ρ ‖ ~V ‖2)

where γe is the ratio of specific heats (γe = 1.4 for the air).

The Euler equations (3.27) are discretized in space by using the mixed element/volume formulation on un-
structured triangular meshes which is described in section 1.2.1 of chapter 1. Time integration of the resulting
semi-discrete equations makes use of the linearized implicit scheme described in section 1.4.1. Then, at each
pseudo-time step, a linear system must be solved to advance the solution in time.

3.2.2.4 Multigrid by volume agglomeration

The multigrid strategy adopted in this study is based on the use of macro elements which form the coarse
discretizations of the computational domain. This so-called multigrid by volume agglomeration method is described
in details in subsection 3.1.3 of section 3.1 in the context of 3D flows. Here, we simply discussed those aspects
that are relevant to the present study.

3.2.2.4.1 Inter-grid transfer operators. From the description of the additive multigrid algorithm in
subsection 3.2.2.2.2, we need to define two prologation operators: IUh

UH
: UH → Uh is used to transfer solution

or correction vectors, while IFh

FH
: FH → Fh acts on right-hand sides or residuals. The prolongation operator

IFh

FH
is normally not used in the classical (multiplicative) formulation of the multigrid algorithm. However, as it

will be discussed in subsection 3.2.2.5, the construction of the filtering operators that are inherent to the additive
multigrid formulation makes use of this prolongation operator. In practice, we build the prolongation operator
from a canonical injection (see figure 3.19) which is used for the transfer of both types of quantity. Let x(j)h ∈ Uh

(respectively y(j)h ∈ Fh) and x(J)H ∈ UH (respectively y(J)H ∈ FH) where j stands for the cell Cj of the fine
grid, which is included in cell CJ (denoted by J) of the coarse grid.
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The prolongation operator for a solution/correction vector is defined by:

x(j)h = (1 − ω) x(J)H + ω

∑

k∈N (j)

A(k)h x(K)H

∑

k∈N (j)

A(k)h

(3.28)

x(j)h

x(j1) h

x(j2) h

x(j3) h

x(J) H

Figure 3.19: The prolongation operator on agglomerated grids

In eq. (3.28), A(j)h denotes the area of cell Cj and N (j) is the set of cells Ck that are direct neighbors of
Cj . The prolongation operator for transferring the residual is defined by:

y(j)h = A(j)h




(1− ω)
y(J)H

A(J)H
+ ω

∑

k∈N (j)

A(k)h
y(K)H

A(K)H

∑

k∈N (j)

A(k)h




(3.29)

In eq. (3.28) and eq. (3.29), ω is a weighting parameter which is used to implement a combination between
the canonical injection (ω = 0) and an averaging operation (ω = 1) on neighboring cells of the injected values
where K denotes the coarse grid cell CK to which the fine grid cell Ck belongs.

Figure 3.20 illustrates the role of a restriction operator in the context of agglomerated grids. As previously,
we define two restriction operators: IUH

Uh
: Uh → UH and IFH

Fh
: Fh → FH .

x(j)h

hx(j1)

x(j3) h
hx(j2)

x(J) H

Figure 3.20: The restriction operator on agglomerated grids

If we decompose the prolongation operator using a simple canonical injection (IUH

Uh
) and an averaging operator

(L) then we can define the restriction operator as the adjoint of the prolongation operator:

〈IUh

UH
L∗xh, xH〉UH = 〈xh, LI

UH

Uh
xH〉Uh

(3.30)
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where:





〈xh, yh〉Uh
=

dim(Uh)∑

j=1

x(j)h y(j)h A(j)h

〈xH , yH〉UH =

dim(UH)∑

J=1

x(J)H y(J)H A(J)H

(3.31)

In eq. (3.30), L∗ is an averaging operator corresponding to the adjoint of L. From eq. (3.30) and eq. (3.28)
we deduce the expression of the restriction operator:

x(J)H =
1

A(J)H

∑

j∈C(J)

A(j)hx(j)h (3.32)

where C(J) denotes the set of fine grid cells constituting the coarse grid cell CJ . Eq. (3.32) gives the expression
of the adjoint of the canonical injection. For the averaging operator L∗ we get:

L∗x(j)h = (1 − ω) x(j)h + ω
∑

k∈N (j)

A(k)hx(k)h∑

l∈N (k)

A(l)h

(3.33)

where N (k) denotes the set of cells Cl that are direct neighbors of cell Ck. We remark that the prolongation
operators defined by eq. (3.28) and eq. (3.29) differ from a multiplicative coefficient. It is easy to express IFh

FH

in terms of IUh

VH
. Let Ah and AH denote diagonal matrices such that (Ah)j,j = A(j)h and (AH)J,J = A(J)H ;

then we have:

IFh

FH
= Ah I

Uh

UH
A−1

H and IFH

Fh
= AH IUH

Uh
A−1

h (3.34)

3.2.2.5 Filtering operators

In the additive formulation, the filtering technique aims at operating a separation between HF and LF modes.
In some sense, the multiplicative multigrid method is implicitly using some type of filtering: the pre-smoothing
step on the fine grid system is responsible for damping the HF modes of the error; as these latter frequencies are
generally not completely removed by the pre-smoothing operation, the restriction operator is used to ensure that
only the fine grid LF modes are treated on the coarse grid. This very simple interpretation of the behavior of the
multiplicative multigrid method clearly shows that the inter-grid transfer operators can be used as building blocks
for the filtering operators. Indeed, the design of the filtering operators using the inter-grid transfer operators has
been advocated by Tuminaro[139] and can be stated as:

{
Sh = IFh

FH
IFH

Fh
and Th = I − Sh = I − IFh

FH
IFH

Fh

Sh = IUh

UH
IUH

Uh
and Th = I − Sh = I − IUh

UH
IUH

Uh

(3.35)

At this point, an important remark is that the filtering operators defined by (3.35) and the inter-grid trans-
fer operators of subsection 3.2.2.4.1, are computationally cheap however they do not strictly define projection
operators (see section 3.2.4). In practice we use ω = 1 in (3.28) and (3.29) and ω = 0 in (3.33) .

3.2.3 Parallel computing aspects

The parallelization strategy adopted for the standard (multiplicative) multigrid solver is very similar to what has
bee done in the three-dimensional case (see subsection 3.1.4 of section 3.1). More details are given below for
what concern the parallel implementation of the additive multigrid method.

The abstract convergence analysis of subsection 3.2.2.2.4 has shown that the additive multigrid algorithm
is convergent but less efficient than the classical multiplicative formulation. This is the first point to take into
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consideration for a concrete implementation (sequential or parallel) of the additive multigrid formulation. The
second point is specifically concerned with the parallel implementation. Indeed, preliminary experiments using
a domain partitioning based parallel implementation of the multiplicative multigrid algorithm have shown that
on distributed memory platforms with relatively high communication overheads, such as a cluster of PCs, the
communication costs generally represent between 10% to 20% of the total execution times, depending on the
number of processors and on the number of coarse grid levels. Meanwhile, the same code running on a shared
memory MIMD system demonstrates communication costs of the order of 5% in the worst cases[25]. From these
results, it is clear that one cannot reasonably expect a notable gain in parallel efficiency with the additive multigrid
algorithm on shared memory platforms. In this study, we target computing platforms of the first type. However,
the distributed memory paradigm that characterizes the parallelization strategy described previously is not to
facilitate the parallel implementation of the additive formulation. Applying directly an inter-level parallelization
by allowing each grid level to be treated by a different group of processes (the intra-level parallelization taking
place within each group) would require huge amounts of communication to distribute the data at initialization, as
well as to recombine results during the linear system solution step. Such a strategy would be more adapted to a
shared memory parallel implementation. Therefore, the approach adopted here relies on and extends the strategy
used for the parallelization of the multiplicative algorithm.

For the preliminary implementation considered here, we have decided to limit the application of the additive
formulation to the two coarsest grid levels of the multigrid hierarchy. Clearly, this results in a hybrid multi-
plicative/additive multigrid algorithm. In practice, the smoothing steps on the two coarsest grid levels are still
performed on a submesh basis as for the other (multiplicative) grid levels and thus, incur point to point commu-
nications steps at submesh interfaces. However, the corresponding interface values are now packed into a single
message which is exchanged prior to performing the smoothing steps for the two correction systems associated to
the additive grid levels. Figure 3.21 illustrates the parallel implementation of this hybrid multiplicative/additive
multigrid formulation. The gain in parallel efficiency with such an approach will come from the fact that most of
the time spent in communication is due to the initialization step (that is the communication latency), especially
for short message sizes as it is the case for the coarsest grid levels.

Communication step : initialization phase

and coarse level implication

Additive

algorithm

Multiplicative

algorithm

Submesh 1 Submesh 2 Submesh 3

Figure 3.21: Implementation of the hybrid multiplicative/additive multigrid algorithm
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3.2.4 Numerical and performance results

3.2.4.1 Test cases definition

The selected test cases are concerned with the calculation of steady external flows around a NACA0012 airfoil.
Three unstructured triangular meshes have been used (see table 3.8).
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Table 3.8: Characteristics of the NACA0012 airfoil meshes

Mesh # Vertices # Triangles # Edges

N1 3114 6056 9170
N2 12284 24224 36508
N3 48792 96896 145688

The following situations have been considered:

S1: the transonic flow at a free stream Mach number equal to 0.85 and an angle of attack of 0◦. In that case,
the time step is obtained using the rule CFL=20× it where it denotes the pseudo-time iteration. The Van
Albada limiter is used in the MUSCL technique (see Fezoui and Dervieux[52]).

S2: the subsonic flow at a free stream Mach number equal to 0.3 and an angle of attack of 0◦. In that case, the
extension to second order accuracy in space does not use any limiting procedure. The time step is again
obtained using the law CFL=20× it.

3.2.4.2 Computing platforms and conventions

Numerical experiments have been performed on a cluster of 16 Pentium Pro/200 Mhz PCs running the Linux
system and interconnected via a 100 Mbit/s FastEthernet switch. The MPI implementation is MPICH. The
code is written in Fortran 77 and the GNU G77 compiler has been used with maximal optimization options.
Performance results are given for 64 bit arithmetic computations. In the following tables, Np is the number
of processes for the parallel execution, Ng is the total number of levels in the multigrid hierarchy (fine mesh
included), Nc denotes the number of multigrid cycles used for each linear system solution; ”Total time” denotes
the total elapsed execution time and ”CPU time” denotes the total CPU time (taken as the maximum value over
the local measures); ”% CPU” denotes the ratio of ”CPU time” to ”Total time”. This ratio will be our principal
metric of parallel efficiency. The difference between ”Total time” and ”CPU time” basically consists of the sum
of the communication and idle times, the latter being related to computational load unbalance. In practice, the
computational load unbalance has been minimized as far as it was possible when partitioning the initial triangular
meshes; however, the generation of coarse discretisations by volume agglomeration is not guaranteed to yield an
optimal repartition of the computational load. Finally, the parallel speedup S(Np) is always calculated using the
elapsed execution times.

3.2.4.3 Ideal two-grid algorithms

This first series of experiments aims at assessing the numerical efficiency of the multiplicative and additive ideal
two-grid algorithms. In order to do so, each calculation is limited to the solution of the first linear system (i.e.
the linear system resulting from the first implicit time step) using one coarse grid; the coarse grid system is fully
converged using the Jacobi relaxation method which is also taken to be the smoother for the fine grid system.

3.2.4.3.1 Transonic flow test case. For each mesh of table 3.8, the following solution methods are
compared:

• the multiplicative algorithm using ν1 = 2 pre-relaxations and ν2 = 2 post-relaxations (see figure 3.22 left);

• the additive algorithm based on residual filtering using νadd = 2 (see figure 3.22 right), νadd = 3 (see
figure 3.23 left) and νadd = 4 (see figure 3.23 right) smoothing steps for the high frequency correction
system;

• the additive algorithm based on residual and correction filtering using νadd = 2 (see figure 3.24), νadd = 3
(see figure 3.25 left) and νadd = 4 (see figure 3.25 right) smoothing steps for the high frequency correction
system.
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The effective number of cycles to convergence are summarized in table 3.9.

3.2.4.3.2 Subsonic flow test case. For each mesh of table 3.8, the following situations are compared:

• the multiplicative algorithm using ν1 = 2 pre-relaxations and ν2 = 2 post-relaxations (see figure 3.26 left);

• the additive algorithm based on residual filtering using νadd = 2 (see figure 3.26 right), νadd = 3 (see
figure 3.27 left) and νadd = 4 (see figure 3.27 right) smoothing steps for the high frequency correction
system;

• the additive algorithm based on residual and correction filtering using νadd = 2 (see figure 3.28), νadd = 3
(see figure 3.29 left) and νadd = 4 (see figure 3.29 right) smoothing steps for the high frequency correction
system.

The effective number of cycles to convergence are summarized in table 3.10.

3.2.4.3.3 Comments. This first set of results calls for a number of remarks that apply to both the transonic
and subsonic test cases considered here:

• first, as expected from the abstract convergence theory, the additive ideal two-grid algorithm demonstrates
a convergence rate which is independent of the size of the underlying problem. This fact is particularly well
verified for the case νadd = 4 that characterizes an additive algorithm with the same complexity (in terms
of fine grid smoothing steps) as the multiplicative algorithm (i.e. νadd = ν1 + ν2). Indeed, for the additive
algorithm based on residual filtering only, and with νadd = 4, the mesh size independent convergence
property is always better than what is observed for the multiplicative algorithm (see the corresponding
entries of tables 3.9 and 3.10);

• second, the additive algorithm using both residual and correction filtering is always less efficient than the
additive algorithm which is only based on residual filtering. The main reason for this behavior is that
the practical construction of the filtering operators as proposed in subsection 3.2.2.5 is not optimal in the
sense that the resulting operators do not strictly define projection operators. In other words, due to this
approximation, applying the correction filtering does not improve the quality of the corrections with regard
to the fact that the latter should ideally belong to orthogonal subspaces;

• finally, we note that the additive algorithm with residual filtering and νadd = 4 is less efficient than the
multiplicative algorithm with the same complexity (regarding the number of fine grid smoothing steps).
Again, this observation is consistent with the result of the abstract convergence analysis.

The important point that we will retain from the previous results is that the correction filtering as constructed
here does not improve the efficiency of the additive algorithm; consequently, the correction filtering is not taken
into account in the next series of numerical experiments.

3.2.4.4 Multigrid algorithms

Results for the transonic and subsonic steady flows of interest are now given and compared for simulations that
have been performed using mesh N3. Moreover, for all the following computations, we have used 5 grid levels
(i.e. 4 coarse grid levels). The characteristics of the multiplicative and hybrid multiplicative/additive multigrid
cycles that have been used for these calculations are the following:

• MUL : multiplicative V-cycle with ν1 = ν2 = 2 and νg = 4.

• ADD : hybrid multiplicative/additive V-cycle with ν1 = ν2 = 2 for the multiplicative part and νadd = 4 for
the additive part with residual filtering only.

We recall that for both cycles the Jacobi relaxation method is used as the smoother.
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Table 3.9: Multiplicative and additive ideal two-grid algorithms
Convergence of the first linear system for the transonic flow test case

Mesh N1 N2 N3

Multiplicative ν1 = ν2 = 2 12 12 16

Additive νadd = 2 : residual filtering 24 30 32
Additive νadd = 3 : residual filtering 18 21 23
Additive νadd = 4 : residual filtering 17 18 19

Additive νadd = 2 : residual and correction filtering 26 31 34
Additive νadd = 3 : residual and correction filtering 22 23 26
Additive νadd = 4 : residual and correction filtering 20 22 25

Table 3.10: Multiplicative and additive ideal two-grid algorithms
Convergence of the first linear system for the subsonic flow test case

Mesh N1 N2 N3

Multiplicative ν1 = ν2 = 2 9 11 11

Additive νadd = 2 : residual filtering 23 25 25
Additive νadd = 3 : residual filtering 19 19 20
Additive νadd = 4 : residual filtering 17 17 17

Additive νadd = 2 : residual and correction filtering 29 29 29
Additive νadd = 3 : residual and correction filtering 23 23 23
Additive νadd = 4 : residual and correction filtering 21 19 21
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Figure 3.22: Transonic flow test case
Left : multiplicative ideal two-grid algorithm

Right : additive ideal two-grid algorithm with residual filtering, νadd = 2
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Figure 3.23: Transonic flow test case
Additive ideal two-grid algorithm with residual filtering

Left : νadd = 3 - Right : νadd = 4
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Figure 3.24: Transonic flow test case: additive ideal two-grid algorithm
Residual and correction filtering, νadd = 2
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Figure 3.25: Transonic flow test case
Additive ideal two-grid algorithm with residual and correction filtering

Left : νadd = 3 - Right : νadd = 4
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Figure 3.26: Subsonic flow test case
Left : multiplicative ideal two-grid algorithm

Right : additive ideal two-grid algorithm with residual filtering, νadd = 2
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Figure 3.27: Subsonic flow test case
Additive ideal two-grid algorithm with residual filtering

Left : νadd = 3 - Right : νadd = 4
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Figure 3.28: Subsonic flow test case: additive ideal two-grid algorithm
Residual and correction filtering, νadd = 2
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Figure 3.29: Subsonic flow test case
Additive ideal two-grid algorithm with residual and correction filtering

Left : νadd = 3 - Right : νadd = 4
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3.2.4.4.1 Transonic flow test case. Steady contour lines of the Mach number for this test case are shown
on figure 3.30 (left figure). Performance results are given in tables 3.11 and 3.12. Two strategies have been
considered:

• at each time step, the linear system (1.84) is approximately solved based on a threshold which has been
fixed to ε = 10−1. The corresponding results are given in table 3.11;

• at each time step, the linear system (1.84) is approximately solved using a fixed number of multigrid cycles
Ncmax = 4. The corresponding results are given in table 3.12.

We note that increasing the computational effort for solving the underlying linear systems, either by reducing
the linear threshold ε by one or more orders of magnitude or, by imposing a greater number multigrid cycles
Ncmax , has not resulted in a lower number of pseudo-time steps for the convergence to the steady state solution.
Therefore, the situations selected here are somewhat optimal (as far as the total simulation time is concerned).

3.2.4.4.2 Subsonic flow test case. Steady contour lines of the Mach number for this test case are shown
in figure 3.30 (right figure). The same resolution strategies as those considered for the transonic test case have
been adopted here. We simply note that for the second strategy, we have used a fixed number of multigrid cycles
Ncmax = 3 (instead of Ncmax = 4 for the transonic test case). Performance results are given in table 3.14 and
table 3.15.

3.2.4.4.3 Comments. This second set of results calls for the following comments:

• the additive algorithm, as implemented here, often behaves better (in terms of the total simulation time)
than the multiplicative one. This fact is especially true for the simulations using Np ≥ 4 and is mainly due
to our choice of limiting the application of the additive formulation to the two coarsest grid levels of the
multigrid hierarchy. This implementation results in a slight degradation of the numerical efficiency for the
overall hybrid multiplicative/additive algorithm compared to the standard multiplicative algorithm. Recall
that on the finest levels, the parallel efficiency of the smoothing steps is generally high; therefore, we cannot
expect a notable gain by switching from the multiplicative algorithm to the additive one on these levels;

• the CPU utilization is always higher for the hybrid multiplicative/additive algorithm (as soon as Np ≥ 4).
Clearly, this gain is due to the reduction of the communication cost on the two coarsest grid levels, according
to our choice of implementation. In some cases we observe a 4% difference in the CPU utilization between
the MUL and ADD strategies while the degradation of parallel efficiency for the multiplicative algorithm
reaches 20%. We can reasonably expect higher improvements with an application of the additive algorithm
to more than the two coarsest levels, even though, as mentioned in the previous point, it is important to
preserve the hybrid multiplicative/additive nature of the algorithm in order to obtain a good compromise
between parallel efficiency and numerical efficiency;

• the improvement of the parallel speed-up is never in accordance with the reduction of the communication
cost. This behavior is unfortunately inherent to the partitioning strategy adopted here which allows for
a one element overlap at submesh interfaces. This translates into redundant arithmetic operations that
are taken into account in the simulation times for Np ≥ 2. In [84] an analysis of the influence of the
partitioning strategy for three-dimensional implicit (monogrid) calculations shows that these redundant
arithmetic operations play a major role in the degradation of the speed-up;

• finally, to conclude this discussion, we give in table 3.13 and 3.16 the results obtained using the monogrid
algorithm, for both test cases, using the Jacobi method as an iterator for the approximate solution of the
implicit system at each time step, according to a threshold which has been fixed to ε = 10−1. From these
measures we can see that the gain using the additive multigrid algorithm is equal to 3.8 for the transonic
test case and 4.5 for the subsonic one.
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Figure 3.30: External flow around the NACA0012 airfoil: steady contour lines of the Mach number
Top: transonic flow - Bottom: subsonic flow
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Table 3.11: Multiplicative and additive multigrid algorithms
Transonic test case (mesh N3) : ε = 10−1 and Ncmax = 100

ALGO # it Np Total time CPU time % CPU S(Np)

MUL 98 2 1738 sec 1672 sec 96.0 1.0
98 4 982 sec 886 sec 90.0 1.8
98 8 564 sec 494 sec 87.5 3.1
98 12 491 sec 389 sec 79.5 3.5

ADD 100 2 1806 sec 1754 sec 97.0 1.0
99 4 983 sec 924 sec 94.0 1.8
100 8 590 sec 535 sec 90.5 3.1
101 12 490 sec 397 sec 83.5 3.7

Table 3.12: Multiplicative and additive multigrid algorithms
Transonic test case (mesh N3) : ε = 10−10 and Ncmax = 4

ALGO # it Np Total time CPU time % CPU S(Np)

MUL 98 2 1871 sec 1753 sec 93.5 1.0
98 4 1045 sec 948 sec 90.5 1.8
98 8 618 sec 530 sec 86.0 3.0
98 12 539 sec 433 sec 80.5 3.5

ADD 100 2 1810 sec 1781 sec 98.5 1.0
99 4 1020 sec 946 sec 93.0 1.8
100 8 608 sec 543 sec 90.0 3.0
100 12 510 sec 426 sec 83.5 3.6

Table 3.13: Transonic test case (mesh N3) : monogrid algorithm with ε = 10−1

# it Np Total time CPU time % CPU

104 12 1912 sec 1771 sec 92.5

Table 3.14: Multiplicative and additive multigrid algorithms
Subsonic test case (mesh N3) : ε = 10−1 and Ncmax = 100

ALGO # it Np Total time CPU time % CPU S(Np)

MUL 62 2 1249 sec 1189 sec 95.0 1.0
62 4 699 sec 640 sec 91.5 1.8
62 8 416 sec 373 sec 89.5 3.0
62 12 346 sec 279 sec 80.5 3.6

ADD 62 2 1257 sec 1215 sec 96.5 1.0
62 4 691 sec 654 sec 94.5 1.8
62 8 414 sec 376 sec 91.0 3.0
62 12 333 sec 279 sec 84.0 3.7
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Table 3.15: Multiplicative and additive multigrid algorithms
Subsonic test case (mesh N3) : ε = 10−10 and Ncmax = 3

ALGO # it Np Total time CPU time % CPU S(Np)

MUL 62 2 913 sec 867 sec 95.0 1.0
62 4 546 sec 503 sec 92.0 1.7
62 8 324 sec 282 sec 87.0 2.8
62 12 268 sec 215 sec 80.0 3.4

ADD 62 2 949 sec 906 sec 95.5 1.0
62 4 532 sec 492 sec 92.5 1.8
62 8 317 sec 284 sec 89.5 3.0
62 12 251 sec 210 sec 83.5 3.8

Table 3.16: Subsonic test case (mesh N3) : monogrid algorithm with ε = 10−1

# it Np Total time CPU time % CPU

61 12 1138 sec 997 sec 87.5

3.2.5 Conclusion and future work

In this section, we have studied two parallel multigrid formulations for the acceleration of compressible steady
flow calculations on unstructured meshes. In particular, we have performed a detailed evaluation of an additive
formulation based on a residual/correction filtering technique, extending an idea originally proposed by Chan
and Tuminaro[30]. This technique has been studied as a mean for reducing the communication overheads of
coarse grid operations in parallel multigrid algorithms. A concrete implementation has been proposed where
the additive formulation is applied to the two coarsest levels of the multigrid hierarchy resulting in a hybrid
multiplicative/additive multigrid algorithm. Even with this preliminary implementation, interesting results have
been obtained demonstrating that the hybrid algorithm is always more efficient than the classical multiplicative
multigrid algorithm.

Concerning future work, the main objective is clearly the extension of the hybrid multiplicative/additive multi-
grid algorithm to more complex physical models (laminar and turbulent Navier-Stokes equations for compressible
flows). In addition several directions are currently investigated:

• extension of the effective utilization of the additive formulation to more than two grid levels. From the nu-
merical efficiency point of view, the results reported here have shown that the hybrid multiplicative/additive
multigrid algorithm, where the additive formulation is applied to the two coarsest grid levels, is competitive
with the classical multiplicative multigrid algorithm. Clearly, there is room for improving the overall effi-
ciency of the hybrid multiplicative/additive MG algorithm as far as the loss of numerical efficiency induced
by the additive formulation is compensated by the gain in parallel efficiency;

• the multiplicative and the hybrid multiplicative/additive multigrid algorithms could be used as a precondi-
tioner to a Krylov type acceleration method. A smoothing analysis such as the one given in [144] would be
useful in this context;

• the smoother adopted in this study is one of the simplest. It is also a parallel one and that was the main
motivation for using it here. Assessing the behavior of the hybrid multiplicative/additive multigrid algorithm
using more efficient smoother is mandatory for a consolidation of the present work.
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3.3 Non-linear multi-mesh multigrid methods

The multigrid methods considered in sections 3.1 and 3.2 make use of a volume agglomeration principle for the
automatic construction of a hierarchy of coarse grid levels. The main advantage of this approach certainly relies
in the fact that the only input to the method is the discretization grid which is assumed to be the support of the
targeted flow solution. In addition, the multigrid by volume agglomeration method is particularly well suited to the
mixed element/volume formulation on unstructured triangular or tetrahedral meshes used in sections 3.1 and 3.2
for the discretization of the Euler and Navier-Stokes equations. However, the multigrid by volume agglomeration
method also has two mains drawbacks: on one hand, its implementation is relatively tricky especially when it
is used as an acceleration method for the resolution of linear systems (i.e. linear multigrid method) and, in all
cases, requires a good knowledge of the implementation details of the underlying space discretization method;
on the other hand, its numerical efficiency depends on the approximation method used for the construction of
the coarse grid operators which may call for some approximation since it is not possible to apply a finite element
type formulation on the coarse grid levels. An illustration of the second point in the context of the mixed
element/volume formulation described in section 1.2.1 of chapter 1, stands in the treatment of diffusive terms on
the coarse grid levels (see also Carré[23] for more details). Clearly, a multi-mesh strategy for which the same type
of discretization mesh is used whether it is the finest grid level or any of the coarse grid levels, allows to apply
the same space discretization method on each level of the multigrid hierarchy. Concerning the first point, one
possible strategy to simplify the implementation of a multigrid method is to adopt a non-linear (FAS) multigrid
method instead of a linear multigrid method such as the one considered in sections 3.1 and 3.2.

In this section, we describe our contributions concerning the development of non-linear multi-mesh multigrid
algorithms for the acceleration of three-dimensional compressible flows on unstructured tetrahedral meshes. The
corresponding work was undertaken in the framework of the BRITE EURAM 3/ IDeMAS project (from December
1st 1997 to June 30th 2001).

The goal of the IDeMAS project (”Industrial Demonstration of accurate and Efficient Multidimensional and
multigrid Algorithms for aerodynamic Simulation on unstructured grids”) was the design of a new generation CFD
solver based on recent developments in the following fields:

• multidimensional upwind high resolution schemes on tetrahedral meshes for the discretization of Euler and
Navier-Stokes (laminar and turbulent) equations modeling compressible flows[111]-[35];

• implicit time integration based on Newton’s method with first order analytical Jacobians or second order
numerical Jacobians, combined with preconditioned Krylov solvers[71];

• non-linear multi-mesh multigrid algorithms on tetrahedral meshes[26];

• solution adaptivity for tetrahedral meshes.

The partners of this project were: von Karman Institute (VKI), Ecole Polytechnique Fédérale de Lausanne
(EPFL), Institut National de Recherche en Informatique et Automatique (INRIA), Centro di Ricerca, Sviluppo e
Studi Superiori in Sardegna (CRS4), Dassault Aviation, Daimler-Benz Aerospace (DASA) and Alenia Aerospazio.

The multigrid strategy adopted in IDeMAS is of the non-linear type i.e. the so-called Full Approximation
Scheme (FAS) method. In this context, the objective was to optimize the time advancing strategy already
existing in the starting-point monogrid solver from the point of view of the number of operations required to reach
a specified solution state (for both steady or unsteady flows). In the multi-mesh approach, several independent and
possibly not-nested finite element meshes are considered as input data to the multigrid algorithms. An important
consequence of this choice is that the inter-grid transfer operators must be general and, as a matter of fact,
cannot be trivially constructed. In this section, we focus on those multigrid aspects. In doing so, we limit our
presentation to the calculation of inviscid compressible flows modeled by the three-dimensional Euler equations.
The rest of this section is organized as follows: in subsection 3.3.1, we summarize the main characteristics of
the starting-point flow solver and we outline the monogrid formulation of the problem under consideration; in
subsection 3.3.2, we describe the algorithmic aspects of the non-linear multi-mesh multigrid algorithms that are
at the heart of this study; subsection 3.3.5 is concerned with parallel computing aspects; finally, in subsection
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3.3.6, we present numerical results that aim at assessing the numerical and parallel efficiencies of the developed
multigrid algorithms.

3.3.1 Monogrid formulation of the problem

In IDeMAS, the compressible flow solver that we considered as a starting point for our study was given by the
THOR CFD package[140] whose main features are summarized below:

• multidimensional upwind high resolution schemes on unstructured tetrahedral meshes for the discretization
of the system of Euler equations[111]-[35]. An introduction to these numerical schemes is given in section
1.2.2 of chapter 1. We recall that an important characteristic of these schemes is that they rely of a selective
distribution of an elementary flux computed on an element (tetrahedron) to the vertices of this element
(i.e. they are compact schemes);

• concerning time integration to steady state, both explicit (Runge-Kutta method) and implicit (backward
Euler combined with a Newton method) are available. In the latter case, the sparse and non-symmetric linear
systems resulting from the linearization of the Euler equations are iteratively solved using preconditioned
Krylov methods such as GMRES[124] combined with a block incomplete factorization method (BILU).
The Krylov methods and preconditioners are taken from the Aztec library[71] developed Sandia National
Laboratories;

• the SPMD parallelization of THOR calls for a classical strategy that combines an appropriate partitioning of
the underlying tetrahedral mesh and a message passing programming model.

Let W denotes the vector of state variables (for instance, the conservative variables ρ, ρ~V , E where ρ is the
fluid density and E is the total energy per unit of volume). We suppose that the discretization of the system of
Euler equations has resulted in the following set of ordinary differential equations :

dWi

dt
+ Ψ(W )i = 0 , i = 1, · · · , NV (3.36)

In eq. (3.36), NV denotes the number of mesh vertices and Ψ(W ) = −R(W ) where R(W ) stands for the
residual vector of eq. (1.77) in section 1.2.2 of chapter 1. This new notation of the residual vector has been
adopted to avoid any confusion with the notations adopted below for the description of the multigrid algorithms.
Let Wn = W (x, n∆t) be the solution at time tn = n∆t. In our study, only steady-state problems are considered.
Therefore, eq. (3.36 is solved iteratively until convergence of the temporal term to zero. In the following
subsection, we introduce multigrid algorithms for the acceleration of the convergence of this iterative process.
This is done in the framework of an explicit Runge-Kutta method nevertheless the extension of the algorithms to
the case of a linearized implicit scheme is straightforward.

3.3.2 Non-linear multigrid acceleration

3.3.2.1 Notations

For the purpose of the description of the multigrid algorithms, we introduce the following notations:

- {Gk}1≤k≤K denotes a sequence of possibly not-nested tetrahedral meshes. G1 stands for the finest grid while
GK is the coarsest one.

- Nk is the number of mesh vertices of grid Gk.

- Nk is the list of mesh vertices of grid Gk.

- Wk = {(Wk)i,j} , 1 ≤ i ≤ Nk , 1 ≤ j ≤ Nsv is the global state vector associated with grid Gk where Nsv

is the number of state variables which depends on the space dimension and on the underlying flow model
(i.e. Euler, laminar Navier-Stokes, turbulent Navier-Stokes). In this study, Nsv = 5.
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- Ψk(W ) is the global numerical flux vector associated with grid Gk.

We will call, and denote by Lk, smoothing operator associated with grid Gk, the following application (not
necessarily linear):

(Wk, Sk)
Lk7−→W k

where W k denotes an approximate solution to the system :

Ψk(Wk) = Sk

Sk being a source term that will be defined later. In our context, one application of the smoothing operator
will consist in the realization of one iteration (pseudo-time step) of the time integration method used for time
advancing eq. 3.36. We will call, and denote by Rk, non-linear residual operator associated with grid Gk, the
following application:

(Wk, Sk)
Rk7−→ Sk −Ψk(Wk)

The definition of a multigrid cycle relies on the availability of inter-grid transfer operators. Let Xk, Xk+1, Yk

and Yk+1 denote the discrete functional spaces respectively associated to Wk, Wk+1, Ψk(Wk) and Ψk+1(Wk+1).
Three inter-grid transfer operators need to be defined:

- Rk+1
k (restriction operator) is an application from Xk to Xk+1. This operator is used for transferring the

global state vector Wk from grid Gk (fine) to grid Gk+1 (coarse);

- Dk+1
k (distribution operator) is an application from Yk to Yk+1. This operator is used for transferring the

global residual vector Rk = Rk(Wk, Sk) from grid Gk (fine) to grid Gk+1 (coarse);

- P k
k+1 (prolongation operator) is an application from Xk+1 to Xk. This operator is used for transferring the

global correction vector Ck+1 (to be defined later) from grid Gk+1 (coarse) to grid Gk (fine).
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Figure 3.31: Transfer operators in 2D

108



3.3.2.2 Inter-grid transfer operators

The inter-grid transfer operators described here are independent of the nature of the problem under consideration.
They are before all based on geometrical data. We respectively denote by τk and τk+1 the tetrahedrizations
corresponding to grids Gk and Gk+1. Since the underlying grids can be not-nested, the implementation of
inter-grid transfer operators may require solving localization problems between successive grids of the multigrid
hierarchy. We suppose that this preliminary step has been performed and we denote by Tk+1(n

k
i ) ∈ τk+1

(respectively Tk(nk+1
i ) ∈ τk) the identifier of the tetrahedra of grid Gk+1 (respectively Gk) that contains the

vertex nk
i ∈ Gk (respectively nk+1

i ∈ Gk+1). For each vertex nk+1
i we also define the set:

Sk+1
i = {j ∈ τk such that nk+1

i is a vertex of Tk+1(n
k
j )} (3.37)

that is, Sk+1
i is the set of vertices of the fine grid Gk belonging to the finite element support of vertex nk+1

i of
Gk+1. Let ϕk+1

Tk+1(nk
j ),l

denotes the basis function associated to vertex l of Tk+1(n
k
j ).

3.3.2.2.1 Restriction operator. The result of the restriction of the global state vector Wk onto the coarse
grid Gk+1 is obtained by a linear interpolation based on the P1 finite element basis functions. Let nk

l denote
the vertices of element Tk(nk+1

i ) ∈ τk. For each vertex nk+1
i ∈ τk+1 we obtain:

Wk+1(n
k+1
i ) = Rk+1

k (Wk)(nk+1
i ) =

∑

l=1,L

ϕk
Tk(nk+1

i ),l
(nk+1

i )Wk(nk
l ) (3.38)

where L = 3 in 2D and L = 4 in 3D.

3.3.2.2.2 Distribution operator. The distribution of the global residual vector Rk onto the coarse grid
Gk+1 makes use of the elements of the set Sk+1

i (3.37) for each coarse grid vertices nk+1
i . Recall that the

Galerkin interpolation of a function f(~x) on an element T is given by:

f(~x) |T =
∑

l=1,L

ϕT (~x)fl

where fl = f(~xl). In particular, the P1 finite element basis functions satisfy:

∑

l=1,L

ϕT (~x) = 1 , ∀~x

The global value of the function f(~x) is obtained by gathering the elementary values f(~x) |T . Using these
remarks, a linear distribution scheme is used for the evaluation of the global residual vector Rk+1. For each
vertex nk+1

i ∈ τk+1 we obtain (see figure 3.31):

Rk+1(n
k+1
i ) = Dk+1

k (Rk)(nk+1
i ) =

∑

j∈Sk+1

i

ϕk+1
Tk+1(nk

j ),i
(nk

j )Rk(nk
j ) (3.39)

3.3.2.2.3 Prolongation operator. The result of the prolongation of the global correction vector Ck+1

onto the fine grid Gk is obtained by a linear interpolation based on the P1 finite element basis functions. Let
nk+1

l denote the vertices of element Tk+1(n
k
i ) ∈ τk+1. For each vertex nk

i ∈ τk we obtain:

Ck(nk
i ) = P k

k+1(Ck+1)(n
k
i ) =

∑

l=1,L

ϕk+1
Tk+1(nk

i ),l
(nk

i )Ck+1(n
k+1
l ) (3.40)

where L = 3 in 2D and L = 4 in 3D.
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3.3.2.3 The FAS V-cycle algorithm

The underlying strategy of the FAS multigrid method is to solve on the coarse grids the discretized non-linear
equations including source terms coming from the finer grids. These coarse grid resolutions result in corrections
that contribute to the construction of a new fine grid solution. The FAS algorithm relies on a defect correction
type iteration. Let W k denotes an approximate solution of the non-linear system Ψk(Wk) = Sk defined on the
fine grid Gk. The most common multigrid cycles are the V-cycle, the F-cycle and the W-cycle. Here we describe
the simplest cycle i.e. the V-cycle.
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The different steps of the algorithm are the following:

- initialization of the cycle : the input data is given by the fine grid global state vector W old
1 calculated at the

previous cycle. On the fine grid G1, the source term S1 is set to 0.

- downward phase : G1 → GK . The goal is to evaluate coarse grid corrections of the approximate solution W 1

resulting from the smoothing of the input data W old
1 :

• pre-smoothing step on the finest grid G1 : W 1 = L1(W
old
1 , S1)

• non-linear residual evaluation on the finest grid G1 : R1 = R1(W 1, S1)

• FOR k = 2, · · · ,K DO

– inter-grid transfers : Wk = Rk
k−1(W k−1) and Rk = Dk

k−1(Rk−1)

– calculation of the source term on grid Gk: Sk = Ψk(Wk) +Rk

– smoothing step and non-linear residual update on grid Gk:

W k = Lk(Wk, Sk) and Rk = Rk(W k, Sk)

– calculation of a correction on grid Gk : Ck = W k −Wk

• END FOR

- upward phase : GK → G1. The goal is to evaluate a new iterate Wnew
h using the prolongated coarse grid

corrections :

• FOR k = K, · · · , 2 DO

– solution update on grid Gk−1 using the prolongated coarse grid correction :

W̃k−1 = W k−1 + P k−1
k (Ck)

– smoothing step and solution update on grid Gk−1:

Wk−1 = Lk(W̃k−1, Sk−1)

• END FOR

• Wnew
h = W1

3.3.2.4 FMG strategy

Multigrid principles often yield very efficient solvers for the algebraic systems of equations resulting from the
discretizations of systems of PDEs. For linear elliptic problems, it is possible to show that a multigrid (MG) cycle
is charactenrized by an h-independent convergence factor. This result and the fact that the number of operations
per cycle is O(NV ) operations where NV is the number of grid points of the finest mesh, together imply the
optimality of the MG cycle. In order to achieve a (fixed) error (or defect) reduction by a factor of ε, O(NV log ε)
operations are sufficient. The Full Multigrid (FMG) variant consists in initializing a series of MG cycles with an
approximate solution which is computed on a coarser mesh and is assumed to be sufficiently close to the targeted
solution (if the underlying mesh is coarse enough, this solution can be the result of an exact resolution of the
problem defined on this mesh). This coarse mesh solution is then interpolated to the finer mesh of the multigrid
hierarchy used for the MG iteration. Several MG cycles are performed using these two grid levels and the resulting
solution is again prolongated to a finer mesh which is included in the multigrid hierarchy. This process is illustrated
on figure 3.32 for a MG iteration based on a V-cycle. Under natural assumptions, FMG provides approximations
with discretization accuracy. Together with the fact that the number of operations is O(NV ), this is the reason
for the optimality of FMG: discretization accuracy is achieved in O(NV ) operations.
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Figure 3.32: Standard FMG strategy

3.3.2.4.1 Standard FMG strategy: outline of the theory. As mentioned above, the first step of the
FMG strategy consists in computing a fully converged solution of the problem on the coarsest grid level. The
second step is to prolongate this coarse grid solution on a finer grid. By this wemean, one obtains an appropriate
initial guess to a classical MG cycle acting on these two grid levels. Because this initial guess is obtained from a
fully converged solution, one can determine a stopping criterion for the subsequent MG cycling in order to insure
that the error of the fine grid solution is smaller than the order of accuracy of the spatial discretization scheme. In
this paragraph, we recall some theoretical aspects underlying the evaluation of this stopping criterion for the MG
cycling, in each phase of the FMG strategy. For this purpose, we make use of a series of finite element subspaces
H1, · · · ,HN defining a sequence of not-nested meshes included in the Hilbert space (H, ‖ . ‖).

Lemma 1 Let Πk be an operator from H to Hk, u and uk the solutions of a variational problem in H and
Hk respectively. If the following estimations are verified (where p is the consistency order of the discretization,
q the interpolation (prolongation) order, P k

k+1 the prolongation operator from grid Gk+1 to grid Gk and hk the
discretization step on grid level k):

‖ Πk(u)− uk ‖ = O(hp
k) (3.41)

‖ Π ‖ = O(1) (3.42)

‖ P k
k+1 ‖ = O(1) (3.43)

‖ P k
k+1 (Πk+1(u))−Πk(u) ‖ = O(hq

k) (3.44)

(3.45)

then the relative discretization error of uk+1 compared to uk is given by:

‖ P k
k+1(uk+1)− uk ‖≤ C1h

min(p,q)
k (3.46)

The proof of this lemma can be found in [102] and [22]. From now on, we assume that the interpolation order
q is greater than the consistency order p of the spatial discretization. This means that eq. (3.46) is written:
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‖ P k
k+1(uk+1)− uk ‖≤ C1h

p
k (3.47)

Definition 1 Let sk be the reduction factor of a MG cycle on grid level Gk, u
(n)
k the approximation of the

discrete solution after the n-th MG cycle, then:

‖ uk − u(n+1)
k ‖≤ sk ‖ uk − u(n)

k ‖ ∀k ∈ [1, N − 1] , sk ≤ s < 1 (3.48)

where s is the reduction factor of the MG process independent of the grid level (uk is the initial guess).

Lemma 2
‖ uk − u(n)

k ‖≤ C3C1h
p
k (3.49)

where:

C3 =
sn

1− C2sn
with C2 = sup

k

(
hk+1

hk

)p

> 1 (3.50)

The proof of this lemma is also given in [102]. Since C2 > 1, we obviously have:

‖ uk − u(n)
k+1 ‖≤

C2s
n

1− C2sn
C1h

p
k (3.51)

In order to reach the discretization accuracy, one must have:

‖ Πk(u)− u(n)
k ‖= O(hp

k) (3.52)

The left-hand side of eq. (3.52) can be bounded as:

‖ Πk(u)− u(n)
k ‖≤‖ Πk(u)− uk ‖ + ‖ uk − u(n)

k ‖ (3.53)

From eq. (3.41) we have that the first term of the right-hand side of (3.53) is O(hp
k). Now, if we can insure

that:

‖ uk − u(n)
k ‖= O(hp

k) (3.54)

then condition (3.52) will be fulfilled. In order to satisfy condition (3.54) with the help of eq. (3.51) and assuming
that the coefficient C1 is small enough, Morano[102] proposed to impose the following condition:

C2s
n

1− C2sn
≤ 1 (3.55)

This leads to:

C2s
n ≤ 1

2
(3.56)

For a second order accurate discretization scheme (p = 2) and assuming that C2 ≈ 2, one obtains:

sn ≤ 1

8
(3.57)

We assume that if the iterative error is reduced by a factor K then the residual is also reduced by the same
factor. Form this, we can apply criterion (3.57) to the residual for deciding when to stop the MG cycling.

In practice, the initial residual R
(0)
k on grid level Gk is defined using the prolongated solution from grid level

Gk+1 and the MG cycling is stopped when the current residual R
(n)
k is such that:

R
(n)
k

R
(0)
k

<
1

10
(3.58)
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3.3.2.4.2 Influence of the prolongation operator. In order to insure that criterion (3.58) leads to an

accurate solution, we must estimate the initial residual R
(0)
k . If the result of the application of the prolongation

operator to the coarse grid solution is polluted by high frequency error terms then the initial residual R
(0)
k will

have a high value. Because a MG smoother is by definition an efficient damping method for the upper part of the
iterative error spectrum, it will rapidly remove these high frequency terms with only minor changes on the initial
solution. The main consequence of this process is a rapidly decreasing residual in such a way that criterion (3.58)
on the residual is satisfied whereas the solution has not been converged sufficiently. Carré[22] has illustrated this
behavior for a simple 1D Poisson problem, This is shown on figure (3.33) for a linear interpolation method from
a 3 nodes coarse grid to a 5 nodes fine grid. It is seen that one node over two has a null error and the other one
has an important error. This leads to a high frequency error and, in some sense, to an artificially high value of
the initial residual. The remedy to this problem is to use a high order prolongation operator based on a quadratic
or a cubic interpolation method. By this mean, the artificial high frequency error term is notably reduced.
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Figure 3.33: Impact of the prolongation operator on the initial solution

3.3.2.4.3 Failing FMG computations. Despite the use of high order prolongation operator, failing FMG
computations have been reported by Carré and Dervieux [24] in the case of convection dominated viscous flow prob-
lems. In their study, the authors use a multigrid by agglomeration method for the acceleration of two-dimensional
Navier-Stokes calculations on unstructured triangular meshes. The 2D viscous flow around a NACA0012 airfoil,
characterized by a free-stream Mach number equal to 0.8, an angle of attack which has been fixed to 10◦ and
a Reynolds number equal to 73, has been computed with a standard FMG strategy. With these parameters,
the FMG computation gives accurate results. Deviation of the pressure lift and drag coefficients is less than
10−5 compared to values obtained with a FAS computation with zero machine convergence. However, when the
Reynolds number is increased to 500 (everything else being unchanged), the standard FMG is not able to produce
an accurate approximation of the fully converged discrete solution. Final values of the pressure lift and drag
coefficients present a large deviation with respect to the fully converged values. According to the authors, the
initial solution on the fine mesh τk obtained by prolongating the solution of the coarse mesh τk+1 is not adapted

to τk. In other words, we have that ‖ P k
k+1(u

(n)
k+1) − uk ‖6= O(hp

k) because one pf the assumptions (3.41) to
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(3.44) is not satisfied. Two strategies can be used to cure this problem: (1) the number of MG cycles can be
increased arbitrarily or, (2) the quality of the solution obatined on τk can be estimated (since uk is not avalable).
In [24], the authors adopt the second strategy and propose a method to detect and characterize the problem,
resulting in the so-called controlled (or residual monitored) FMG strategy. This method essentially consists in

comparing the initial residuals R
(0)
k+1 (after prolongation of the solution from grid level k + 2 to grid level k + 1)

and R
(0)
k (after prolongation of the solution from grid level k + 1 to grid level k). For a second order accurate

discretization scheme (p = 2) and if the ratio
hk+1

hk
= 2, one should have:

R
(0)
k

R
(0)
k+1

<
1

4
(3.59)

This comparison presents a difficulty that arises from the fact that the finite element approximation is not
node-wise consistent except on structured meshes. This behavior is illustrated below using a model problem.
Indeed, let us consider the following 2D Poisson problem with Dirichlet boundary conditions:

∀(x, y) ∈ Ω : −△u(x, y) = f(x, y) with u = 0 on ∂Ω (3.60)

Let φi be the nodal basis function associated to node si of a triangulation τ of Ω containing a total of Nn

nodes. The variational finite element formulation of the Poisson problem (3.60) is:

∀i ∈ [1, Nn] :

Nn∑

j=1

uj

∫

Ω

~∇φj .~∇φidΩ =

∫

Ω

fφidΩ (3.61)

Let us assume that the domain Ω is discretized using the mesh partially depicted on figure 3.34 and let us
consider in more details the discretization of the Poisson equation at node 5. In doing so, φi,k denotes the P1
basis function associated to node si and defined on triangle tk (φi,k(si) = 1 and 0 on the other nodes). The
discretized form of the Poisson equation at node 5 involves the triangles τ1, τ2, τ3 and τ4 and is written:

S
[
u1

(
~∇φ1,4.~∇φ5,4 + ~∇φ1,1.~∇φ5,1

)
+ u2

(
~∇φ2,1.~∇φ5,1 + ~∇φ2,2.~∇φ5,2

)

+ u3

(
~∇φ3,2.~∇φ5,2 + ~∇φ3,3.~∇φ5,3

)

+ u4

(
~∇φ4,3.~∇φ5,3 + ~∇φ4,4.~∇φ5,4

)
+

u5

(
~∇φ5,1.~∇φ5,1 + ~∇φ5,2.~∇φ5,2 + ~∇φ5,3.~∇φ5,3 + ~∇φ5,4.~∇φ5,4

)]
=

∑

i=1

4

∫

τi

fφ5,isτi

(3.62)

where S =
h2

2
is the area of one triangle. Let us call ai the coefficient of ui. We have:





a1 = ~∇φ1,4.~∇φ5,4 + ~∇φ1,1.~∇φ5,1

a2 = ~∇φ2,1.~∇φ5,1 + ~∇φ2,2.~∇φ5,2

a3 = ~∇φ3,2.~∇φ5,2 + ~∇φ3,3.~∇φ5,3

a4 = ~∇φ4,3.~∇φ5,3 + ~∇φ4,4.~∇φ5,4

a5 = ~∇φ5,1.~∇φ5,1 + ~∇φ5,2.~∇φ5,2 + ~∇φ5,3.~∇φ5,3 + ~∇φ5,4.~∇φ5,4

(3.63)

The gradients of the basis functions are given by:

115



5 6

7

8

910

3

4 1

2 2

3

4

1

5

h

h

Figure 3.34: Example of a mesh leading to an inconsistent scheme

~∇φ1,1 = |0−1/h
~∇φ1,4 = |0−1/h

~∇φ2,1 = |1/h
0

~∇φ2,2 = |1/h
0

~∇φ3,2 = |01/h
~∇φ3,3 = |01/h

~∇φ4,3 = |−1/h
0

~∇φ4,4 = |−1/h
0

~∇φ5,1 = |−1/h
1/h

~∇φ5,2 = |−1/h
−1/h

~∇φ5,3 = |1/h
−1/h

~∇φ5,4 = |1/h
1/h

(3.64)

Then, we obtain the values of the coefficients ai:

a1 = a2 = a3 = a4 = − 2

h2
and a5 =

8

h2
(3.65)

Let us calculate the contribution of triangle τ2 to the right hand side of eq. (3.62) assuming that the source
term f is constant over the whole domain Ω:

∫

τ2

fφ5,2dτ2 = b2f (3.66)

For this triangle, the basis function φ5,2 is written:

φ5,2(x, y) =
1

h
(h− x− y) (3.67)

and the expression of the coefficient b2 is given by:

b2 =
1

h

x=h∫

x=0

y=h−x∫

y=0

(h− x− y) dxdy (3.68)

that is:

b2 =
h2

6
=
S

3
(3.69)

The calculation of the other terms of the right hand side of eq. (3.62) yields the same result. We finally
obtain:
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∑

i=1

4

∫

τi

fφ5,isτi =
4S

3
f (3.70)

From the previous result and taking into account a simplification by S and a division by 2, we obtain a discrete
equation at node 5 which is very similar to the one resulting from a finite difference type method:

− 1

h2
(u1 + u2 + u3 + u4 − 4u5) =

2

3
f (3.71)

Because the mesh depicted on figure 3.34 is a cartesian mesh, we can easily expand u1, u2, u3 and u4 in
Taylor’s series and replace the resulting expressions in eq. (3.71). By this mean, we can show that the local finite

element discretization at node 5 is not consistent because of the coefficient
2

3
in the right hand side of eq. (3.71).

Moreover, if we write the finite element discretization at node 2, we obtain a right hand side equal to
4

3
f . This

is because, in that case, node 2 belongs to 8 triangles while node 5 only belongs to 4 triangles. Fig. 3.35 shows a
mesh configuration that leads to a consistent finite element discretization. Thus, the finite element formulation is
not node-wise consistent depending on the underlying mesh. This means that if an exact continuous solution u is
injected in a mesh τ , the residual (Rk(u))i on a given node may not tend to zero with h. This does not prevent
the scheme from being convergent but makes difficult the use of the residual to monitor the FMG strategy.

1

2

3

4

5

6

7

8

2

3

4

1

5

Figure 3.35: Example of a mesh leading to a consistent scheme

3.3.2.4.4 Residual monitored FMG strategy. In [24], Carré and Dervieux propose a functional treat-
ment of this problem in the context of a multigrid by volume agglomeration method. The main idea is to remap
the residual in a space allowing its estimation with a L2 norm. This is done by introducing a coarse space of
smooth functions:

WH = span[χ1 , χ2 , · · · , χN ] (3.72)

The symbol H indicates that we consider an approximation space for function defined on Ω, independently of
the mesh size h. These functions are defined on a coarse mesh of characteristic size H such that ∀k : hk << H .
Assuming that WH is generated by an orthonormal basis (χk)k and that the functions χk are smooth, one can
define a projection operator SH from a distribution space D onto WH by:

LHwk =

N∑

i=1

(wk , χi)χi (3.73)

Let us now consider the actual discrete residual at the beginning of a FMG phase for solving the discrete
system Ahuh = fh (resulting from the discretization of the Poisson problem (3.60)):
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Rk = AkP
k
k+1uk+1 − fk = Ak(P k

k+1uk+1 − uk) (3.74)

where uk+1 is the solution obtained on grid level k + 1 and uk is the fully iteratively converged solution of the
discrete system on grid level k. In the present context, Rk is considered as belonging to the distribution space D.
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Then, it is shown in [24] that the following estimation is valid:

‖ LH

(
Ak(P k

k+1uk+1 − uk)
)
‖L2(Ω)≤ Khp

k (3.75)

In other words, the function R̄k = LHRk is an approximation of the actual residual Rk which satisfies the
estimate ‖ R̄k ‖≤ Khp

k. In [27], we describe how this result can be used to design a residual monitored FMG
strategy, inspired from the method proposed by Carré and Dervieux[24]. In practice, the operator LH is defined
as:

LHRk = Dk+1
k Dk+2

k+1 · · ·DK
K−1

Let us assume that we are face with a second order accurate discretization scheme (p = 2) and that the

coarsening ratio is equal to
hk+1

hk
= 2. From this point, ‖ R̄k ‖ is called the relative residual norm. We now

consider the case where the discrete system is fully converged at each FMG phase. In these conditions, one should
observe that the relative residual norm is such that:

R̄
(0)
k

R̄
(0)
k+1

<
1

4
(3.76)

In the case of an incomplete convergence, this ratio has to be controlled. If the initial relative residual norm

R̄
(0)
k is not 4 times smaller than that of the previous FMG phase (i.e. R̄

(0)
k+1) then the convergence process has

to be extended in order to compensate for the poor initial guess. This is performed by first requiring additional
iterations until the relative residual norm reaches the expected value (i.e. divided by 4 with reference to the initial
relative residual norm obtained at the previous FMG phase) and then continuing the iterations until the relative
residual is further divided by 10. The main steps of the residual monitored FMG algorithm are the following:

1. Estimate the initial residual: R̄init
k = R̄

(0)
k = LHR

(0)
k

2. Estimate C0 such that: ‖ R̄init
k ‖L2=

C1

4
‖ R̄init

k+1 ‖L2 with C0 = max(1 , C1)

3. Stop the the MG cycling when: ‖ R̄final
k ‖L2=‖ LHR

final
k ‖L2≤ 1

C0
× 1

10
‖ R̄init

k ‖L2

Note that, on one hand, one needs at least two grid levels k and k + 1 to be able to evaluate the relative
residual R̄k and, on the other hand, the test in 3. can only be applied for the first time when starting the
computation on the third grid level. Convergence to zero machine is not a costly operation on the two first coarse
grid levels. Figure 3.36 illustrates the residual monitored FMG algorithm as exposed above.

3.3.3 Generation of the multigrid hierarchy

In contrast to structured grids, the use of unstructured meshes offers some major advantages in the mesh generation
process. Moreover, it allows a larger flexibility in adapting the mesh to complex geometries and solutions. As a
consequence, this type of data representation is now a common tool in CFD. However, this approach also requires
sophisticated discretization methods and solution algorithms. As a matter of fact, classical discretization schemes
and solvers using the regularity of the mesh may fail or become less efficient on unstructured meshes. This is in
particular the case for multigrid methods that were originally formulated for structured grids. To run efficiently on
non-structured meshes, the solution algorithms have to be adapted to the irregularity of the mesh. In structured
multigrid algorithms, the building blocks of the methods are the inter-grid transfer and coarse grid operators.
Unstructured multigrid algorithms add the additional difficulty of defining the coarse levels.

In the past ten years, two main multigrid techniques have appeared in CFD on non-structured meshes. The
first one, already applied in structural mechanics, relies on the use of non-nested triangulations. The second
technique is specific to CFD and is associated to finite volume discretization and agglomeration/aggregation
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Figure 3.36: Principle of the residual monitored FMG algorithm

techniques. This approach has been considered in details in sections 3.1 and 3.2. For the first class of methods
that explicitly define a hierarchy of grids, an important practical problem is to construct a sequence of grids with
different resolutions. A coarse to fine path can be used, i.e., fine levels are generated by successive refinements
starting from a given coarse mesh. While this approach possesses the advantages of simplicity, it requires that the
coarse level is sufficiently large to adequately represent the geometry and that the successive refinements do not
introduce artificial features in the geometry (for instance sharp edges). Moreover, in three dimensions, successive
refinements of tetrahedra results in a loss of the quality of the mesh in such a way that the overall quality of the
fine mesh can be rather poor. These reasons explain why an efficient multigrid strategy cannot be entirely based
on successive refinements and that these methods have to be complemented by other techniques to generate the
coarse meshes. An alternative is to generate all the mesh levels independently. However, this method places an
excessive burden on the mesh generation step with the result that industrial users are not able to use multigrid in
a production setting. Thus for practical purpose, one has to derive strategies for the automatic construction of
coarse grids from a given non-structured one. In this section, we present several ways to perform this task. While
the problem in two dimension appears to be relatively simple, this is not the case in a three dimensional setting
and practical algorithms have appeared only very recently. We review some of them with a particular emphasis
on the node nested strategy first advocated in [67].

3.3.3.1 Nested mesh approach

Let Ω be a bounded domain of IRd(d = 2, 3), and consider a coarse triangulation τ1 of this domain defined by
the set of nodes N1. Associated to this triangulation is the finite element space of piecewise linear functionsM1.
The spacesMj will be recursively defined by adding nodes at the midpoints of the edges of the simplices of τj−1

and decomposing each simplex into 2d simplices. Hence, each element of Mj belongs to Mj+1 and thus we
obtain a sequence of nested spaces:

M1 ⊂M2 ⊂ · · · ⊂ Mn (3.77)
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To connect the different levels, we need linear operators between them. The prolongation operator is simply
the identity, and the restriction operator Rj

j+1 can be defined by the L2 projection onMj :

(Rj
j+1 uj+1, vj)L2 = (uj+1, vj)L2 (3.78)

The previous definitions are very simple and gives everything we need to define a multigrid method. The
coarse grid operators can be defined by a variational formulation:

Aj−1 = Rj−1
j AjP j

j−1 (3.79)

but, for CFD applications, are usually defined from a discretization of the coarse grid τj−1. However, for d = 3,
this method has some major drawbacks that make it unsuitable for practical applications. First, it implies a large
dependence of the fine mesh node distribution on the coarsest level. Indeed, the mesh division algorithm is a mesh
generation algorithm, and unfortunately this is a very poor one. The point is that, in contrast to the 2D case
where the refinement of a triangle, produces four congruent triangles, the subdivision of a tetrahedron produces
four congruent tetrahedra but also four additional tetrahedra with deteriorated aspect ratio. As an illustration of
this effect, figure 3.37 shows the deterioration of a sequence of tetrahedra generated by successive division from
an equilateral tetrahedra. In table 3.17 is indicated the quality of the tetrahedra shown in figure 3.37. It is clear
that the meshes generated this way are of poor quality and hence, the fine mesh solution will also be of poor
quality.

Figure 3.37: Deterioration of the mesh quality by element refinement

Table 3.17: Quality of Tetrahedra generated by successive refinement
Fine level First refined level Second refined level Third refined level

Mesh quality 1.0 0.9 0.79 0.66

A second drawback of the mesh refinement multigrid algorithm is that this technique requires that the coarse
initial mesh is already fine enough to describe properly the geometry. Moreover if the geometry is described by
a curved boundary, it is necessary to project the fine level boundary nodes on the boundary. If this is not done,
the fine mesh geometry will contain artificial sharp edges resulting in a decrease of the solution quality or in
the creation of geometrical artifacts in the solution. To illustrate this point, consider in figure 3.38 the Mach
number distribution on an ONERA M6 wing with a 0.84 inflow Mach number and a 3.06◦ angle of attack. One can
observe large irregularities in the Mach number distribution on the surface of the wing. Comparison with the mesh
(figure 3.38 right) shows that these irregularities are totally artificial and are due to the mesh refinement process.
Therefore, to avoid this effect, the boundary curvature must be represented in accordance to the resolution of
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the current mesh. This imposes that the exact geometry is stored either by an additional surface fine mesh or by
a CAD system. Note also that the projection of the boundary nodes on the true surface can result in extremely
badly shaped elements. This is illustrated in figure 3.39

Figure 3.38: Mach number distribution and mesh on ONERA M6 wing

Figure 3.39: Creation of badly shaped element by node projection

3.3.3.2 Automatic coarsening of unstructured meshes

In the previous subsection, we have explained why a practical multigrid method cannot be solely based on
successive refinements. Multigrid methods have to be complemented by other techniques to generate the coarse
meshes. A solution is to relax the constraint on the way meshes are nested. The most radical method in this
direction considers that the coarse and fine triangulations are generated independently using any given mesh
generators. In CFD, this not-nested multigrid method appeared to be one of the most successful strategies
and has been successfully used by several authors (see for instance the work of Mavriplis et al.[99]). In this
approach the solution, residuals, and corrections are transferred back and forth through the different levels using
linear interpolation between two successive levels. This introduces an additional complexity in the multigrid
approach because the transfer operators between the different levels are now difficult to compute. Regardless of
the accuracy of the transfer operators, one must determine the simplices where the nodes of the other levels are
located. Efficient search algorithms exist for this purpose. However, this increases the cost and complexity of
the multigrid algorithm. Moreover, the need to generate multiple meshes of the same geometry (that have in
addition to respect some ratio between the discretisation parameters of the different levels) results in an excessive
burden on the user. Clearly, a method that relies on the use of many independently generated meshes is hardly
exploitable in an industrial environment. Consequently, algorithms that consider the generation of the coarse grid
levels as part as the solution process have to be developed to make multigrid techniques practical.

Recently, different methods have been proposed to perform this task. Several algorithms use the concept of
Maximal Independent Set[67]-[28]-[3] to generate a cloud of coarse grid nodes that are reconnected by a Delaunay
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algorithm. Application of this method in CFD can be found in [104] for Euler computations and in [103] for Euler
and Navier-Stokes ones. An alternative is to use edge collapsing algorithm [106]. However, all these methods
experience difficulties in the respect of the boundary. The coarsening algorithm proposed here is based on a local
mesh optimization primitive that includes the respect of the boundary in a very simple way. A 3D simplicial
mesh is composed of vertices, edges, faces and tetrahedra. For each of these objects, it is possible to define a
local operation consisting in removing this object from the mesh (considered as a graph) and re-meshing the shell
formed by the deletion of this object. From the point of view of mesh coarsening, the only interesting primitive
is the deletion of a node. Assume that to each node si of the fine triangulation is associated a scalar h(i) that
represents the desired length of the edges connected to si. Let E(i) be the set of nodes connected to node si

and let F(i) be the set of exterior faces of the tetrahedra that contain node si. The re-meshing of the shell
can be performed by exploring successively all the triangulations formed by connecting an arbitrary node in E(i)
to the faces of F(i). From all these triangulations, we retain the ones whose volume is minimal (and equal to
the original volume of the shell) and from the set of remaining triangulations, we retain the one that minimize a
criterion based on the desired length h(j) of the edges connected to the nodes sj ∈ E(i). Note that in practice,
we only explore a partial list of the possible tetrahedrizations of the shell, however experiments show that this
partial exploration is sufficient to detect an acceptable tetrahedrization. The deletion of a boundary node is done
with the same algorithm by using a trick due to Coupez and Chenot[34]. Let si be a boundary node, then the
set of nodes E(i) connected to si is completed by a fictitious node whose coordinates are those of si. Tetrahedra
(of null volume) are formed by connecting this fictitious node to the boundary faces containing si, embedding si

into an artificial tetrahedrization. Then the node deletion algorithm is used as for true interior nodes. The only
modification to the original algorithm stands in the fact that up to a prescribed tolerance, the volume (equal to
zero) of the tetrahedra connected to the fictitious node is preserved in the new tetrahedrizations.

As an illustration, the proposed algorithm has been applied to the coarsening of tetrahedral mesh around a
Falcon aircraft. The initial mesh consists of 30,514 nodes and 163,732 tetrahedra. We present in table 3.18
the results of the coarsening algorithm for different values of the coarsening ratio which is defined as the ratio
between the desired length of the edges to the length of the edges of the initial tetrahedrization. Thus with a
coarsening ratio of 2.0, the algorithm will try to generate a mesh where the edges connected to the remaining
nodes have a length twice the original length. Table 3.18 shows that the coarsening algorithm is able to generate
meshes with a large reduction of the number of nodes. Figure 3.40 shows that this is done with little influence
on the geometry that appears to be preserved by the algorithm. For a large value of the coarsening ratio (> 2.5),
the algorithm stalls and the number of points remains larger than what is requested.

Table 3.18: Meshes generated using different values of the coarsening ratio
NV : # vertices - NT : # tetrahedra

NV NT Coarsening ratio Measured coarsening ratio

7728 37853 1.5 1.51
3813 16519 2.0 2.00
2913 15960 2.2 2.19
1982 8437 3.0 2.48
1982 8071 3.0 2.48

3.3.4 Localization problems

Since in this study the FAS and FMG multigrid algorithms are developed with no assumption regarding the link
between tetrahedral meshes in the multigrid hierarchy, an appropriate (pre-processing) tool has been designed for
solving the localization problems that yield the data required for implementing the inter-grid transfer operators.
Here, we describe the main principles of this tool. Two localization problems must be solved:

L1 : find the identifier of the tetrahedra of the fine grid Gk that surrounds the vertex nk+1
i of the coarse grid

Gk+1 i.e. Tk(nk+1
i ) ∈ τk,
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Figure 3.40: Rear view of the Falcon aircraft

L2 : find the identifier of the tetrahedra of the coarse grid Gk+1 that surrounds the vertex nk
i of the fine grid

Gk i.e. Tk+1(n
k
i ) ∈ τk+1.

The resolution of these two localization problems can be very costly when the grids have a large number of
vertices and elements. Therefore, specific strategies must be taken into account when scanning through the mesh
elements while trying to locate a given point. Let us consider two grids: a fine grid FG and a coarse grid CG.
Both localization problems can be solved using the same function with the two grids as parameters. However one
particular problem often arises: a FG vertex can be outside the envelope of the coarse grid. Similarly, a CG node
can be outside the envelope of the fine grid. This means that a localization algorithm based on the search of the
element that strictly surrounds a given vertex can fail. For this reason, the resolution of a localization problem is
decomposed in several steps that use different algorithms. Each algorithm has specific characteristics:

LOCALG1 : a search algorithm that requires O(Nl) operations where Nl is the number of vertices to be
localized.

LOCALG2 : a search algorithm that requires O(Nr ×Ne) where Nr is the number of vertices that have not
been localized by algorithm LOCALG1 (Nr << Nl) and Ne the number of elements of the second mesh.
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LOCALG3 : a search algorithm that requires O(No ×Nb) where No is the number of vertices that have not
been localized by algorithm LOCALG2 and Nb the number of boundary elements of the second mesh.

Here and in the following, the term ”second mesh” is used to reference the mesh whose elements are tested
in order to localize a given vertex (i.e. the fine grid for localization problem L1 and the coarse grid for L2).

Algorithm LOCALG1 : let P denotes the vertex to be localized. Figure 3.41 shows the principle of this
algorithm. The search is started with the element # 1 on figure 3.41. First, the inward normals ~na, ~nb and ~nc of

this element are evaluated. Then, the scalar products ~na.
−−→
~BP , ~nb.

−−→
~CP and ~nc.

−→
~AP are calculated. If these threes

scalar products are positive then vertex P is inside the element. If one scalar product is negative then P is not
located in the current element and another element must be tested. The next element is the neighboring one

by the side corresponding to the negative scalar product. On figure 3.41, the negative scalar product is ~na.
−−→
~BP

and element # 2 is selected. This process is repeated until element # 10 that surrounds vertex P is reached.
However, situations where no solution is found can occur. An example of such a situation is shown on figure 3.42.
LOCALG1 can fail if an element is tested several times and an infinite loop appears (closed path). A failure
can also happen when the path reaches a boundary. To overcome the problems of multiple testings and infinite
loop, a constraint is added that limits the total number of tested elements (in practice this limit can be set around
50). Nevertheless, it is clear that the success or failure of the search depends on the first element to be tested. In
order to increase the rate of success and decrease the number of tested elements for a single search, a wavefront
scanning strategy has been implemented. This strategy makes use of the connectivity graph of the underlying
tetrahedral mesh. The idea is to select the next vertex to be localized from the set of vertices connected to
vertex P by a mesh edge. The vertices are organized by layers as illustrated on figure 3.43 for a regular triangular
mesh. This wavefront scanning strategy is complemented by a good choice of the next starting element which is
key feature for the success of the algorithm. In practice, this element is chosen as the surrounding element of a
previously localized vertex Q belonging to the set of neighboring vertices of N.
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Figure 3.41: Principle of localization algorithm LOCALG1

LOCALG1 is an efficient localization algorithm and, in order to demonstrate that it requires O(Nl) opera-
tions, it has been evaluated using a sequence of four not-nested tetrahedral meshes around an ONERA M6 wing.
The characteristics of these meshes are summarized in table 3.27. The localization tool is applied three times: the
first run treats meshes MU3 and MU4, the second run treats meshes MU2 and MU3 while meshes MU1 and MU2
are treated in the third run. The results of the first localization problem L1 are reported in table 3.19. In this
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Figure 3.42: Failure situations with algorithm LOCALG1

table, ”# loc. vert.” denotes the number of vertices that are localized within a given step while ”# tests” is
the average number of tested elements. The first step (”Step 1” in the table), corresponds to the application of
algorithm LOCALG1. The two other steps are performed using complementary algorithms to treat the vertices
that have not been localized by algorithm LOCALG1 (see the next paragraphs). These two steps are certainly
not optimum but the reason why they are needed will be explained later. We note that, on average, only 7 or 8 fine
grid elements are tested in the application of algorithm LOCALG1. This figure does not depend on the total
number of fine grid elements and clearly shows that algorithm LOCALG1 requires O(Nl) operations. As can
be seen in table 3.19, the CPU time requested to solve a localization problem using this algorithm is proportional
to the number of vertices to be localized. For each pair of meshes, the rate of success of algorithm LOCALG1
is respectively equal to 97.8%, 98.7% and 96.3%. Table 3.20 summarizes the results of the second localization
problem. Similar conclusions can be drawn. In that case, For each pair of meshes, the rate of success of algorithm
LOCALG1 is respectively equal to 98.9%, 98.0% and 98.0%. The main difference with the treatment of the
first localization problem is the average length of the path during the search. In the case of the first localization
problem, the average length is equal to 7 or 8 elements whereas it is only equal to 3 or 4 elements for the second
localization problem.

The fact that the path is shorter for the second localization problem is easy to explain and illustrated on
figures 3.44 and 3.45. For the fine grid vertex a (see figure 3.44), the localization algorithm starts with the coarse
grid element A that surrounds the already localized vertex c which is a neighbor of vertex a. Because the fine
grid vertices a and c are close to each other and because the coarse grid element A is large in size compared
to a fine grid element, A has a high probability to surround vertex a. Indeed, element A is the solution of this
localization problem for vertex a. In the case of vertex b, the starting element A that surrounds its neighbor c is
not the solution of the problem. But element C that surrounds vertex b is close to A and the path to go from A
to C is very short. The average length of the path for the first localization problem can be explained in the same
way (see figure 3.45). To localize the coarse grid vertex A, the algorithm starts with the fine grid element a that
surrounds the already localized vertex B which is a neighbor of A. The element a is small in size compared to
the size of a coarse grid element and it has a low probability to surround vertex A. Since A and B are distant
compared to the size of element a, the path to go from a to f (the element that surrounds A) is obviously longer
than in the case of the second localization problem.

In summary, the above results show that the cost of the resolution of the two localization problems using
algorithm LOCALG1 is linearly proportional to the number of vertices to be localized and essentially independent
of the number of elements of the second mesh. The situations for which LOCALG1 fails to localize a given
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Figure 3.43: Wavefront scanning strategy in algorithm LOCALG1

Table 3.19: First localization problem L1 using not-nested meshes around an ONERA M6 wing

Meshes MU3-MU4 Meshes MU2-MU3 Meshes MU1-MU2

# loc. vert. # tsts CPU # loc. vert. # tsts CPU # loc. vert. # tsts CPU

Step 1 92,458 8 4.0 sec 22,710 7 0.9 sec 5,185 8 0.3 sec
Step 2 2,034 - 1850.0 sec 297 - 73.0 sec 196 - 6.4 sec
Step 3 1,991 - 596.0 sec 270 - 42.0 sec 103 - 4.0 sec

vertex are the following:

1. the search path reaches a boundary,

2. the number of tested elements is larger than the allowable maximum value,

3. the vertex is outside of the envelope of the second mesh.

Situations 1. and 2. can be cured by running a new search with a better candidate for the starting element.
However, our experiences have shown that such a strategy does not yield a satisfactory rate of success. Situation
3. cannnot be overcome using algorithm LOCALG1. Indeed, there is no way a posteriori to know if the search
has failed due to a bad path or because the vertex is outside of the envelope of the second mesh. This is the
reason why a different algorithm must be used to localize the remaining vertices.

Table 3.20: Second localization problem L2 using not-nested meshes around an ONERA M6 wing

Meshes MU3-MU4 Meshes MU2-MU3 Meshes MU1-MU2

# loc. vert. # tsts CPU # loc. vert. # tsts CPU # loc. vert. # tsts CPU

Step 1 312,799 4 7.0 sec 92,560 3 2.0 sec 22,632 3 0.5 sec
Step 2 3,475 - 766.0 sec 1,932 - 77.0 sec 375 - 2.6 sec
Step 3 3,355 - 499.0 sec 1,597 - 60.0 sec 245 - 3.3 sec
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Figure 3.44: Illustration of a short LOCALG1 path in the case of the second localization problem. The blue
vertices are already localized. The starting element for the red vertex a is the element A that surrounds its
neighbor c. Because this element is also the one surrounding vertex a, the LOCALG1 path contains only
element A. The starting element for the red vertex b is also element A. The LOCALG1 path is constructed
with the three elements A, B and C.
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Figure 3.45: Illustration of a long LOCALG1 path in the case of the first localization problem. The blue
vertices are already localized. The starting element for the red vertex A is the element a that surrounds its
neighbor B. The LOCALG1 path is constructed with the six elements a, b, c, d, e and f , and is longer
than the one obtained in the case of the second localization problem.

Algorithm LOCALG2 : once most of the vertices have been localized using algorithm LOCALG1, the
remaining vertices can be split into two classes:

Class 1 : vertices not localized because of a failing LOCALG1 search due to a bad path,

Class 2 : vertices that are outside of the envelope of the second mesh.

The aim here is to localize the remaining vertices that belong to Class 1. Because of the high rate of success of
algorithm LOCALG1, the vertices that have not been localized by this algorithm are not numerous. Therefore,
a costly but robust algorithm can be used while trying to minimize the increase in total computing time. This
algorithm simply consists in testing, for each remaining vertex, all the elements of the second mesh until the
one surrounding the vertex is found. If Nr is the number of vertices that have not been localized by algorithm
LOCALG1 and Ne the number of elements of the second mesh, such an algorithm requires O(Nr ×Ne) tests.
Timings for the meshes corresponding to table 3.27 are given in the ”Step 2” entry of tables 3.19 and 3.20. Once
this step has been performed, the remaining vertices belong to Class 2.
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Algorithm LOCALG3 : the third step of the resolution of the localization problems aims at treating the
vertices that are outside of the envelope of the second mesh. A specific method has been designed for this purpose.
The objective is to decide to which element of the second mesh each vertex in Class 2 must be associated. The
strategy adopted here associates such a vertex with the element of the second mesh that minimizes the deviation
of the linear interpolation coefficients from the range [0.0 ; 1.0]. Because the vertices in Class 2 are outside of
the envelope of the second mesh, the underlying search can be limited to boundary elements. If No denotes the
number of vertices to be localized by algorithm LOCALG3 and Nb the number of elements of the second mesh
then this step requires O(No × Nb) tests. Timings for the meshes corresponding to table 3.27 are given in the
”Step 3” entry of tables 3.19 and 3.20.

3.3.5 Parallel computing aspects

3.3.5.1 Parallelization of the monogrid solver

In the THOR code, parallel computing aspects are taken into account through the Aztec[71] library. Aztec contains
a set of functions for defining and manipulating distributed sparse matrices together with implementations of
iterative solvers and associated preconditioning techniques. The sparse matrix-vector product, y ←− Ax is the
major kernel operation of Aztec. The parallelization of THOR relies on the Aztec communication data structures
and the high-level boundary exchange functions included in the Aztec library. To perform this operation in
parallel, the vectors x and y as well as the matrix A must be distributed across the processors. For sparse irregular
matrices, this is generally achieved using a graph partitioning tool such as MeTiS[80].

The main convention adopted in Aztec is that when calculating elements of y, a processor computes only
those elements in y to which it has been assigned. These vector elements are explicitly stored on the processor
and are defined by a set of indices referred to as the processor’s update set. The update set is further divided into
two subsets: internal and border. A component corresponding to an index in the internal set is updated using
only information on the current processor. As an example, the index i is in the internal set if, in the matrix-vector
product kernel, the element yi is updated by this processor and if each j defining a nonzero Aij in row i is also in
update. The border set defines elements which would require values from other processors in order to be updated
during the matrix-vector product. For example, the index i is in the border set if, in the matrix-vector product
kernel, the element yi is updated by this processor and if there exists at least one j associated with a nonzero
Aij in row i that is not in update. In the matrix-vector product, the set of indices which identify the off-processor
elements in x that are needed to update components corresponding to border indices is referred to as external.
These elements are stored locally and explicitly obtained from other processors (the neighbors) via communication
whenever a matrix-vector product is performed. Figure 3.46 illustrates how a set of vertices in a partitioning of a
grid would be used to define the internal, external and border sets. Clearly, this distribution of local data results
in the use of one layer overlapped grid partitions.

In Aztec, the three types of vector elements are distinguished by locally storing the internal components first,
followed by the border components and finally by the external components. In addition, all external components
received from the same processor are stored consecutively. If the vector possesses a total of N elements, we then
have the following repartition:

[0, Ninternal − 1 ] : internal elements updated without communication;

[Ninternal, Ninternal +Nborder − 1 ] : border elements updated with communication;

[Ninternal +Nborder, N − 1 ] : not updated, but used to update border.

Similar to vectors, a subset of matrix non-zeros is stored on each processor. In particular, each processor
stores only the rows that correspond to its update set. For example, if vector element i is updated on processor
p, then processor p also stores all the non-zeros of row i in the matrix. Further, the local numbering of vector
elements on a specific processor induces a local numbering of matrix rows and columns: if vector element k is
locally numbered as kl, then all references to row k or column k in the matrix would be locally numbered as kl.
Thus each processor contains a sub-matrix which row and column entries correspond to variables defined on this
processor.
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interprocessor boundary
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processor p processor n

Figure 3.46: Example partitioning of a finite element grid in 2D

3.3.5.2 Parallelization of the multigrid solver

The parallelization of the multigrid algorithms developed in this study induces two types of communication
operations:

intra-grid communications consist of the exchange of values at the interface between pairs of subdomain (these
communications are generally referred as local communication operations). Clearly, on the coarse grid
levels these communications can be performed by following the strategy adopted in the monogrid solver. In
particular, the parallelization of the coarse grid calculations requires the partitioning of the corresponding
meshes. This partitioning must be done with some level of consistency between the various coarse grids (i.e.
the latter canot be partitioned independently) because particular criteria must be verified by the overall set
of partitioned grids.

inter-grid communications are closely related to inter-grid transfer operations. They occur between two consec-
utive grids. These communication steps can be identified (i.e. the corresponding data structures can be
constructed) using the partitioning of the involved grids on one hand, and, on the other hand, the result
of the localization problems. Recall that the use of not-nested grids in the multigrid hierarchy requires to
solve these localization problems for the construction of inter-grid transfer operators.

In IDeMAS, a pre-processing tool has been developed in order to construct the partitions of the coarse
grids of a multigrid hierarchy given the partition of the finest grid. The goals are to minimize the cost of the
communications for the parallel version of the transfer operators (inter-grid communications) as well as the cost
of the communications on a given grid level (intra-grid communications), and to optimize the computational load
balance between the processors.

The inter-grid transfer operators are built on a geometric basis. This means that a transfer between two grid
levels will involve nodes and elements geometrically close to each other. Starting from this fact and keeping
in mind that the goal is to minimize the interprocessor communications for the parallel version of the transfer
operators, the proposed partitioning strategy is based on a geometric criterion. Let us consider a sequence of
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possibly not-nested grids τk. Let τ0 be the finest grid. The algorithm for the partitioning of the sequence of grids
is the following:

1. Build the partition P0 of the finest grid τ0 with the MeTiS graph partitioner [80].

2. k = 0.

3. k = k + 1.

4. Solve the localization problem Lk,k−1 between τk and τk−1.

5. Build the partition Pk of the grid τk using Lk,k−1 and Pk−1.

6. If τk is not the last grid of the sequence go back to point 3).

Step 5) is performed using a geometric method in order to decide to which partition a coarse node will belong
to. Recall that in the monogrid solver a node-wise partitioning is adopted. A node belongs to one partition and
only one. Because of this choice, it is possible to find some elements that have nodes belonging to different
partitions. These elements are called overlapping elements.

As pointed previously, a transfer between two grids involves elements and nodes close to each other. Typically,
the basic operation of the solution restriction operator involves a coarse grid node and the fine grid element that
surrounds this node. In order to minimize the cost of interprocessor communications for the parallel version of
the transfer operators, one must try to have the coarse node and its surrounding fine grid element located in the
same partition. This is the reason why the partitioning of a coarse grid is built with the help of the partitioning
of the fine grid and with the help of the solution of the localization problem for these two grids. Indeed, the two
localization problems needed to build the inter-grid transfer operators for the MG acceleration are the following:

1. find the fine grid element surrounding a coarse grid node;

2. find the set of fine grid nodes included in a coarse grid element.

For the partitioning of the coarse grid, we make use of the solution of the first localization problem. The
algorithm is the following :

1. Loop over the coarse grid nodes: Ni.

(a) Get the fine grid element tj surrounding Ni.
(b) Get the connectivity of the element tj : n0, n1, n2, n3.
(c) If the fine grid nodes nj are all in the same partition then Ni is put in this partition.
(d) If the fine grid nodes nj are in different partitions then the coarse grid node Ni is given the partition

number of the closest fine grid node nj .

This algorithm is illustrated on figure 3.47. The left part of the figure shows the case where the fine grid
element surrounding the coarse grid node is an overlapping element. As the graph of the coarse grid is not used,
this partitioning method can generate a partition with isolated nodes. A node is said to be isolated if none of its
neighbors is in the same partition. To correct this problem, a simple method consists in changing the partition
number of the isolated node to the partition of one of its neighbors.

Because of the purely geometric criterion, the computational load associated to a coarse grid can be unbal-
anced. In order to obtain a well balanced computational load, a simple algorithm has been implemented in the
pre-processing tool. Its principle is to move some nodes belonging to overlapping elements from an overloaded
partition to an underloaded one. A partition is said to be overloaded when its number of nodes exceeds the ideal
number of nodes calculated to have perfectly balanced processor loads. A node can be moved from a partition to
another one only if it belongs to an overlapping element and if its partition number is different from the one of the
three other nodes. The process is repeated until the correct computational load balance is achieved. Figure 3.48
illustrates this algorithm. Again, this algorithm can produce isolated nodes. To correct this problem, we have to
change the partition number of these isolated nodes. The processor’s load is then modified but tests performed
with this method have shown very few changes.
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Figure 3.47: Partitioning of a coarse grid
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Figure 3.48: Load balancing of a coarse grid
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So far, we have considered strategies for building coarse grid partitions such that, on one hand, the extra com-
munication operations incurred by the parallel implementation of the inter-grid transfer operators are minimized
and, on the other hand, the associated computational load is evenly balanced between the processors that are
concerned by the result of the partitioning. Because it is not always possible to have a coarse grid node surrounded
by a fine grid element of the same partition (see figure 3.49) and because a coarse grid element can include fine
grid nodes from different partitions, interprocessor communications have to be performed for the parallel version
of the inter-grid transfer operators. These operators are classified into two categories depending on the type of
informations required for their parallel implementation:

1. the solution restriction operator;

2. the residual distribution, the solution correction and the solution prolongation operators. These operators
belong to what we call the prolongation operators class.

In the following paragraphs, we detail the parallel implementation of the inter-grid transfer operators.

3.3.5.2.1 The parallel restriction operator. When the partitions are modified in order to insure a correct
computational load balance, extra communications for the parallel version of the transfer operators are needed
because some coarse grid nodes will be surrounded by fine grid elements of a different partition. Figure 3.49 shows
such a situation. Originally, the coarse grid node n1 belonged to the partition P1 according to the algorithm used
to build the coarse grid partition. But, because the partition P2 was under-loaded and the partition P1 was
overloaded, node n1 has been moved from P1 to P2. The same situation occurred for node n3 moved form the
partition P3 to P2. These two nodes now belong to the partition P2 but are surrounded by fine grid elements
that belong to different partitions.

P1

P3

P2

n1

n2

n3

Figure 3.49: Consequence of the load balancing on the interprocessor communications for the solution
restriction operator

The solution restriction operator uses the solution of the first localization problem i.e. a coarse grid node is
associated with the fine grid element that surrounds it. As a general rule adopted in this study, the description of
any transfer operator is done with reference to the coarsest of the two grid levels involved in the operation. This
means that in the case of the restriction operator, the main loop is over the coarse grid nodes. For each coarse
grid node, the index of the surrounding fine grid element is retrieved and the calculations are performed from
the point of view of the coarse grid. To keep this unchanged for the parallel version of this operator, additional
informations have to be stored. In particular, if a coarse grid node is surrounded by a fine grid element from a
different partition as it is the case for the nodes n1 and n2 of figure 3.49, the global index of this element and
its global connectivity are stored in an appropriate fine grid structure. Indeed, this element is added to the list of
elements of the fine grid partition and the nodes of this element are added to the list of nodes.
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3.3.5.2.2 The parallel distribution and prolongation operators. The solution prolongation, residual
distribution and solution correction operators all require the same additional informations for their parallel versions.
Figure 3.50 shows the situation which is faced in the case of the prolongation operator class. A coarse grid element
contains fine grid nodes from different partitions. All the overlapping elements are concerned by this situation.
More generally, any coarse grid element may be concerned by such a case due to the method to balance the
processor load.

P2

P3

P1

Figure 3.50: Consequence of the element overlapping between the partitions and of the load balancing on
the interprocessor communications for the distribution operator class: a coarse grid element can surround
fine grid nodes from different partitions

During the residual distribution operation, the solution of the second localization problem (fine grid nodes
in a coarse grid element) is used in the following way: a loop over the coarse grid elements is done. For each
coarse grid element, the number and the list of the fine grid nodes included in this element are retrieved. For
each fine grid node in this list, its contribution to the total residual of each coarse grid node of the current coarse
grid element is calculated by a summation. Once these two loops are achieved, the final value of the distributed
residual is known for each coarse grid node. To keep the use of the solution of the second localization problem
unchanged in order to make parallel multigrid solver easier to develop and to maintain, the fine grid nodes included
in the coarse grid element of the partition P2 (see figure 3.50) but that do not belong to this partition (the ones
belonging to the partitions P1 and P3) are added to the list of nodes of the fine grid partition P2.

The left part of figure 3.51 shows that some fine grid nodes from the partitions P1 and P3 contribute to the
residual distribution at the coarse grid node n2. The processor P2 must have received the values of the residual
at these fine grid nodes before starting the calculations. In this case, the required interprocessor communications
have to be performed at the beginning of the residual distribution function before the main loop over the coarse
grid nodes. The right part of figure 3.51 shows that the solution prolongation at the fine grid node f belonging
to the partition P1 is performed by the processor P2 without the need to know anything except its coordinates
before the calculation. In this case, the required interprocessor communications have to be performed at the end
of the solution prolongation function. Figure 3.51 clearly shows that, depending on the transfer operator under
consideration, the value at the fine grid node f from the partition P1 has to be received by the processor P2

(distribution case) or has to be sent by P2 to P1 (prolongation case).

The case of the solution correction operation is a little more complex as communications have to be performed
before and after the correction. This is due to the fact that the solution at node f is corrected by a summation:
uf = uf + ∆uf . Thus, the value of the solution at node f must be known by the processor P2 before applying
the correction. Once the solution at node f is corrected, it has to be send to the processor P1 who owns this
node.
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Figure 3.51: Contribution of the fine grid nodes from different partitions to the residual distribution to the
vertices of a coarse grid element (left figure) and contribution of the vertices of a coarse grid element to the
solution prolongation to fine grid nodes from different partitions (right figure)

3.3.6 Numerical and performance results

3.3.6.1 Computing platforms and conventions

Calculations have been performed on a SGI Origin 2000 MIMD system equipped with Mips R10000/195 Mhz
processors. The code is written in Fortran 77 and the Mips F77 compiler has been used with maximal optimization
options. The native SGI implementation of MPI has been used. Performance results are given for 64 bit arithmetic
computations. In the following tables, Np gives the number of processors for the parallel execution, Ng is the
total number of levels in the multigrid hierarchy (finest mesh included). ”Wall clock time” denotes the elapsed
time of a simulation. The parallel speedup is denoted by S(Np). Finally, the term ”linear threshold” is used to
specify the accuracy of the linear system solves (i.e. the level of reduction of the initial linear residual) while the
term ”non-linear threshold” is used to characterize the convergence to the steady flow solution.

For all the numerical experiments considered below, the simulation is started from a uniform flow. These
simulations aim at assessing the numerical and parallel efficiencies of the non-linear multi-mesh FAS-MG and
FMG algorithms for fully nested as well as not-nested multigrid hierarchies.

3.3.6.2 External flow around an ONERA M6 wing: fully nested meshes

The FAS-MG and FMG algorithms are first assessed by considering the classical test case given by the inviscid
transonic flow around an ONERA M6 wing. The free-stream Mach number is set to 0.84 and the angle of attack
to 3.06◦. The numerical experiments considered here involve a sequence of three meshes whose characteristics
are given in table 3.21. Mesh M2 (resp. M3) has been obtained through a uniform division of mesh M1 (resp.
M2). As a consequence these meshes are fully nested i.e. node and element nested.

Table 3.21: Characteristics of fully nested meshes around an ONERA M6 wing
NV : # vertices - NT : # tetrahedra - NF : # boundary faces

Mesh NV NT NF

M1 2,203 10,053 2,004
M2 15,460 80,424 8,016
M3 115,351 643,392 32,064
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We report on three series of calculations that have been performed for the following approximation schemes:
the first order N-scheme (see paragraph 1.2.2.2.1 in section 1.2.2 of chapter 1), the second order PSI-scheme (see
paragraph 1.2.2.2.2 in section 1.2.2 of chapter 1) and the second order PSI-scheme applied to the preconditioned
Euler equations (see subsection 1.2.2.4 in section 1.2.2 of chapter 1).

3.3.6.2.1 Calculations based on the first order N-scheme. Several solution strategies are compared:

• monogrid calculation. A reference monogrid calculation has been performed on the finest mesh. The
semi-discrete equations are time integrated using a linearized backward Euler implicit scheme (the CFL
has been fixed to 100). At each time step, the resulting linear system is approximately solved using the
GMRES method combined to a BMILU preconditioner (the linear threshold has been set to εl = 10−1).
The BMILU (Block Modified ILUP method is a version of the standard BILU(0) (Block ILU(0)) that only
requires the storage of an additional block diagonal matrix for the preconditioner instead of a matrix of the
size of the original matrix, which can be too memory intensive for large 3D problems. For what concern the
convergence to steady-state, the non-linear threshold has been fixed to εnl = 10−9.

• FAS-MG calculations. The multigrid hierarchy is composed of the three meshes whose characteristics
are given in table 3.21. We compare the numerical and parallel efficiencies of two FAS-MG strategies
respectively based on a V-cycle and a F-cycle, each of them involving 2 pre- and post-smoothing steps on
the fine and intermediate grid levels and 4 smoothing steps on the coarsest grid level. In the present case,
one application of the smoother consists in one time step of the backward Euler implicit scheme adopted
for the monogrid calculation.

• Controlled FMG calculations. As previously, we compare the performances of two FMG strategies re-
spectively based on the V-cycle and F-cycle defined previously, all parameters being unchanged except for
the CFL which has been set to 50. In the initial phase of these FMG strategies, the problem defined on
the coarsest mesh is solved using the backward Euler implicit scheme with a non-linear threshold fixed to
εnl = 10−9.

On figure 3.52 we compare the convergence profiles associated to the monogrid and FAS-MG strategies while
figure 3.53 is dedicated to the FMG strategies. Performance results are given in table 3.22. In this table, the
fourth column must be interpreted as follows :

• for the monogrid algorithm (SG), this column gives the total number of time steps performed for the
convergence to the steady flow solution (i.e. to reach the required non-linear threshold);

• for the FAS-MG multigrid algorithms (MG-V and MG-F), this columns gives the total number of cycles to
obtain the steady flow solution;

• for the FMG algorithms (FMG-V and FMG-F) the corresponding entries are of the form nG/n2/n3 where
nG is the number of backward Euler implicit time steps that have been performed on the coarsest grid level
while n2 and n3 respectively denote the number of two-grid and three-grid FAS-MG cycles.

For this first order calculation the monogrid algorithm appears to be an efficient solution strategy and the
MG-V and MG-F multigrid algorithms do not result in computing time savings despite a notable difference in the
convergence behaviors. The FMG-V strategy is 4.7 times faster than the monogrid algorithm on 8 processors.
Finally, for both the FAS-MG and FMG algorithms, the V-cycle is always outperforming the F-cycle in terms of
computing times.

3.3.6.2.2 Calculations based on the second order PSI-scheme. As previously, several solution strate-
gies are compared:

• monogrid calculation. A reference monogrid calculation has been performed on the finest mesh. The
semi-discrete equations are time integrated using a linearized backward Euler implicit scheme (the CFL
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Figure 3.52: External flow around an ONERA M6 wing (fully nested meshes)
Spatial approximation based on the N-scheme

Convergence of the monogrid (SG) and multigrid (MG-V and MG-F) algorithms

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

5 10 15 20 25 30

Lo
g(

L2
)

Number of cycles

FMG-V

FMG-F

Figure 3.53: External flow around an ONERA M6 wing (fully nested meshes)
Spatial approximation based on the N-scheme

Convergence of the full multigrid (FMG-V and FMG-F) algorithms
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Table 3.22: External flow around an ONERA M6 wing (fully nested meshes)
Spatial approximation based on the N-scheme

Parallel performance results on the SGI Origin 2000

Algorithm Np Ng # iter (SG) /# cycles (MG) Wall clock time S(Np)

SG 4 1 43 4162 s 1.0
8 1 43 2384 s 1.75

MG-V 4 3 10 4195 s 1.0
8 3 10 2374 s 1.75

MG-F 8 3 10 2634 s -
FMG-V 4 3 21/1/2 915 s 1.0

8 3 21/1/2 503 s 1.8
FMG-F 8 3 21/1/2 540 s -

has been fixed to 50). At each time step, the resulting linear system is approximately solved using the
GMRES method combined to a BMILU preconditioner (the linear threshold has been set to εl = 10−1).
The non-linear threshold has been fixed to εnl = 10−6.

• FAS-MG calculations. The multigrid hierarchy is composed of the three meshes whose characteristics are
given in table 3.21. Two FAS-MG strategies have been considered that are respectively based on a V-cycle
and a F-cycle, each of them involving 2 pre- and post-smoothing steps (i.e. 2 backward Euler implicit time
steps) on the fine and intermediate grid levels and 4 smoothing steps on the coarsest grid level. However,
we only present the results of the application of the V-cycle. Moreover, in the present case, the backward
Euler implicit scheme is used in conjunction with a CFL which is varying from one time step to the other
(starting value 1, final value 32, multiplication factor 2)

• Controlled FMG calculations. We compare the performances of two FMG strategies respectively based on
the V-cycle and F-cycle defined previously all parameters being unchanged. In the initial phase of these FMG
strategies, the problem defined on the coarsest mesh is solved using the backward Euler implicit scheme
with a non-linear threshold fixed to εnl = 10−6.

On figure 3.54 we compare the convergence profiles associated to the monogrid and FAS-MG strategies while
figure 3.55 is dedicated to the FMG strategies. Performance results are given in table 3.23. It is worthwhile to
mention that reducing the linear threshold in the resolution of the linear system obtained at each implicit time
step (e.g. setting εl = 10−2) did not improve the non-linear convergence of all the algorithms. The FMG-V
algorithm is 7.3 times faster than the monogrid algorithm on 8 processors. Moreover, the FMG-F algorithm is
slightly better than the FMG-V (by a factor 1.2) meaning that the overall gain over the monogrid algorithm is
now approaching 8.9 for this test case. We also note that the MG-V algorithm outperforms the monogrid one by
a factor 1.9 on 8 processors.

One important concern with the application of the FMG algorithms is related to the accuracy of the resulting
solutions. This aspect is partially assessed here through the evaluation of the components of the pressure force
acting on the wing:




Fp,x

Fp,y

Fp,z


 =

∫∫

Γb

p




nx

ny

nz


 dσ

where Γb denotes the wing surface and ~n the outward normal vector on Γb. Figures 3.56 to 3.61 show the
convergence of the X, Y and Z components of the pressure force on the wing (normalized values) for the MG-V
algorithm and the two FMG algorithms. The final values of the pressure force components are summarized in
table 3.24 showing a good agreement between the computed values.
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Figure 3.54: External flow around an ONERA M6 wing (fully nested meshes)
Spatial approximation based on the PSI-scheme

Convergence of the monogrid (SG) and multigrid (MG-V) algorithms
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Spatial approximation based on the PSI-scheme
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Table 3.23: External flow around an ONERA M6 wing (fully nested meshes)
Spatial approximation based on the PSI-scheme

Parallel performance results on the SGI Origin 2000

Algorithm Np Ng # iter (SG) /# cycles (MG) Wall clock time S(Np)

SG 4 1 113 10498 s 1.0
8 1 113 5034 s 2.0

MG-V 4 3 7 5085 s 1.0
8 3 7 2648 s 1.9

FMG-V 4 3 36/2/3 1383 s 1.0
8 3 36/2/3 692 s 2.0

FMG-F 8 3 36/2/2 570 s -

Table 3.24: External flow around an ONERA M6 wing (fully nested meshes)
Spatial approximation based on the PSI-scheme

Final (non-dimensional) values of the pressure force components on the wing

Algorithm X component Y component Z component

MG-V 0.004087 0.158572 -0.057072
FMG-V 0.004117 0.159445 -0.057067
FMG-F 0.004105 0.159166 -0.057062
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Figure 3.56: External flow around an ONERA M6 wing (fully nested meshes)
Spatial approximation based on the PSI-scheme

X pressure force component on the wing (MG-V algorithm)
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Figure 3.57: External flow around an ONERA M6 wing (fully nested meshes)
Spatial approximation based on the PSI-scheme

X pressure force component on the wing (FMG-V and FMG-F algorithms)
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Figure 3.58: External flow around an ONERA M6 wing (fully nested meshes)
Spatial approximation based on the PSI-scheme

Y pressure force component on the wing (MG-V algorithm)
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Figure 3.59: External flow around an ONERA M6 wing (fully nested meshes)
Spatial approximation based on the PSI-scheme

Y pressure force component on the wing (FMG-V and FMG-F algorithms)
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Figure 3.60: External flow around an ONERA M6 wing (fully nested meshes)
Spatial approximation based on the PSI-scheme

Z pressure force component on the wing (MG-V algorithm)
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Figure 3.61: External flow around an ONERA M6 wing (fully nested meshes)
Spatial approximation based on the PSI-scheme

Z pressure force component on the wing (FMG-V and FMG-F algorithms)
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3.3.6.2.3 Second order PSI-scheme applied to the preconditioned Euler equations. The solu-
tion strategies that have been compared are the following:

• monogrid calculation. A reference monogrid calculation has been performed on the finest mesh. The
semi-discrete equations are time integrated using a linearized backward Euler implicit scheme (the CFL
has been fixed to 100). At each time step, the resulting linear system is approximately solved using the
GMRES method combined to a BMILU preconditioner (the linear threshold has been set to εl = 10−1).
The non-linear threshold has been fixed to εnl = 10−6.

• FAS-MG calculations. The multigrid hierarchy is composed of the three meshes whose characteristics are
given in table 3.21. Two FAS-MG strategies have been considered that are respectively based on a V-cycle
and a F-cycle, each of them involving 2 pre- and post-smoothing steps (i.e. 2 backward Euler implicit time
steps) on the fine and intermediate grid levels and 4 smoothing steps on the coarsest grid level. Here, the
backward Euler implicit scheme is used in conjunction with a CFL which is varying from one time step to
the other (starting value 1, final value 32, multiplication factor 2)

• Controlled FMG calculations. We compare the performances of two FMG strategies respectively based on
the V-cycle and F-cycle defined previously all parameters being unchanged. In the initial phase of these FMG
strategies, the problem defined on the coarsest mesh is solved using the backward Euler implicit scheme
with a non-linear threshold fixed to εnl = 10−6.

On figure 3.62 we compare the convergence profiles associated to the monogrid and FAS-MG strategies while
figure 3.63 is dedicated to the FMG strategies. Performance results are given in table 3.23. As previously, we
mention that reducing the linear threshold in the resolution of the linear system obtained at each implicit time
step (e.g. setting εl = 10−2) did not improve the non-linear convergence of all the algorithms. In the present
case, the FMG-V and FMG-F algorithms are respectively 3.2 and 2.9 times faster than the monogrid algorithm
on 8 processors. The gain bewteen the FMG-V and MG-V algorithm is only by a factor 2.7 (instead of 3.8
for the same algorithms applied to the Euler equations without applying the preconditioning method). Similary,
thegain between the MG-V and monogrid algorithm is only by a factor 1.4 (instead of 1.9). This degradation of
efficiency of the FAS-MG and FMG algorithms can be attributed to two causes: on one hand, these algorithms
are here applied to the overall set of equations with no adaptation to the hyperbolic/elliptic splitting that results
from the adopted preconditioning technique; on the other hand, we note that the cost of the initial phase of
the FMG algorithms is relatively high (31 iterations of the monogrid algorithm for mesh M1 while the same
algorithm requires only 49 iterations on the finest mesh M3 for the same non-linear threshold) suggesting that
the preconditioning method does not speedup the convergence on very coarse mesh. Finally, the final values of
the pressure force components are summarized in table 3.26.

Table 3.25: External flow around an ONERA M6 wing (fully nested meshes)
Spatial approximation based on the PSI-scheme applied to the preconditioned Euler equations

Parallel performance results on the SGI Origin 2000

Algorithm Np Ng # iter (SG) /# cycles (MG) Wall clock time S(Np)

SG 4 1 49 7933 s 1.0
8 1 49 4268 s 1.8

MG-V 4 3 5 7056 s 1.0
8 3 5 3727 s 1.9

MG-F 8 3 7 3019 s -
FMG-V 4 3 31/2/3 2604 s 1.0

8 3 31/2/3 1368 s 1.9
FMG-F 8 3 31/2/3 1503 s -

145



-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

5 10 15 20 25 30 35 40 45 50

Lo
g(

L2
)

Number of time steps (SG)/cycles (MG)

SG

MG-V

MG-F

Figure 3.62: External flow around an ONERA M6 wing (fully nested meshes)
Spatial approximation based on the PSI-scheme applied to the preconditioned Euler equations

Convergence of the monogrid (SG) and multigrid (MG-V and MG-F) algorithms
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Figure 3.63: External flow around an ONERA M6 wing (fully nested meshes)
Spatial approximation based on the PSI-scheme applied to the preconditioned Euler equations

Convergence of the full multigrid (FMG-V and FMG-F) algorithms

Table 3.26: External flow around an ONERA M6 wing (fully nested meshes)
Spatial approximation based on the PSI-scheme applied to the preconditioned Euler equations

Final (non-dimensional) values of the pressure force components on the wing

Algorithm X component Y component Z component

MG-V 0.003867 0.159436 -0.057123
MG-F 0.003867 0.159420 -0.057121

FMG-V 0.004002 0.159317 -0.057111
FMG-F 0.003863 0.159453 -0.057117
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3.3.6.3 External flow around an ONERA M6 wing: not-nested meshes

We now consider a second series of numerical experiments for the same test case and using a sequence of four
meshes whose characteristics are given in table 3.27 below. These meshes have been obtained quasi-independently
and are therefore qualified as not-nested.

Table 3.27: Characteristics of not-nested meshes around an ONERA M6 wing
NV : # vertices - NT : # tetrahedra - NF : # boundary faces

Mesh NV NT NF

MU1 5,382 27,199 3,348
MU2 42,305 232,706 15,076
MU3 94,493 555,514 33,126
MU4 316,275 1,940,182 65,486

As in the previous subsection, we report on three series of calculations that have been performed for the
following approximation schemes: the first order N-scheme, the second order PSI-scheme and the second order
PSI-scheme applied to the preconditioned Euler equations. Steady contour lines of the Mach number on the
wing are represented on figures 3.64 to 3.66. As expected, the PSI-scheme applied to the preconditioned Euler
equations yields the more accurate solution as can be seen from the resolution of the shock discontinuity.

Figure 3.64: External flow around an ONERA M6 wing (not-nested meshes)
Spatial approximation based on the N-scheme

Steady contour lines of the Mach number on the wing
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Figure 3.65: External flow around an ONERA M6 wing (not-nested meshes)
Spatial approximation based on the PSI-scheme

Steady contour lines of the Mach number on the wing

Figure 3.66: External flow around an ONERA M6 wing (not-nested meshes)
Spatial approximation based on the PSI-scheme applied to the preconditioned Euler equations

Steady contour lines of the Mach number on the wing
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3.3.6.3.1 Calculations based on the first order N-scheme. Several solution strategies are compared:

• monogrid calculation. A reference monogrid calculation has been performed on the finest mesh. The
semi-discrete equations are time integrated using a linearized backward Euler implicit scheme (the CFL
has been fixed to 100). At each time step, the resulting linear system is approximately solved using the
GMRES method combined to a BMILU preconditioner (the linear threshold has been set to εl = 10−1).
The non-linear threshold has been fixed to εnl = 10−9.

• FAS-MG calculations. The multigrid hierarchy is composed of the four meshes whose characteristics are
given in table 3.27. We selected a FAS-MG strategy based on a V-cycle involving 4 pre- and post-smoothing
steps on the fine and intermediate grid levels and 4 smoothing steps on the coarsest grid level. As usual,
one application of the smoother consists in one time step of the backward Euler implicit scheme adopted
for the monogrid calculation.

• Controlled FMG calculations. The FMG strategy is based on the previously defined V-cycle all parameters
being unchanged. In the initial phase of this FMG strategy, the problem defined on the coarsest mesh is
solved using the backward Euler implicit scheme with a non-linear threshold fixed to εnl = 10−9.

On figure 3.67 we compare the convergence profiles associated to the monogrid and FAS-MG strategies while
figure 3.68 is dedicated to the FMG strategies. Performance results are given in table 3.28. As already noticed
while using a sequence of fully nested meshes, for this first order calculation, the monogrid algorithm is an
efficient solution strategy and the MG-V multigrid algorithms does not result in execution time savings (the MG-
V algorithm is even more expensive). The FMG-V strategy is 3.6 times faster than the monogrid algorithm on 16
processors.
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Figure 3.67: External flow around an ONERA M6 wing (not-nested meshes)
Spatial approximation based on the N-scheme

Convergence of the monogrid (SG) and the multigrid (MG-V) algorithm

3.3.6.3.2 Calculations based on the second order PSI-scheme. The solution strategies that have
been considered here are exactly those selected for the calculations based on the N-scheme all parameters being
unchanged except for the non-linear threshold that has been fixed to εnl = 10−6. Convergence profiles are shown
on figure 3.69 to 3.71. Performance results are given in table 3.29. This time, the FMG-V algorithm is 7.4 times
faster than the monogrid algorithm on 16 processors.
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Figure 3.68: External flow around an ONERA M6 wing (not-nested meshes)
Spatial approximation based on the N-scheme

Convergence of the full multigrid (FMG-V) algorithm

Table 3.28: External flow around an ONERA M6 wing (not-nested meshes)
Spatial approximation based on the N-scheme

Parallel performance results on the SGI Origin 2000

Algorithm Np Ng # iter (SG) /# cycles (MG) Wall clock time

SG 16 1 70 5043 s
MG-V 16 4 7 6020 s
FMG-V 16 4 19/1/1/1 1390 s
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Figure 3.69: External flow around an ONERA M6 wing (not-nested meshes)
Spatial approximation based on the PSI-scheme
Convergence of the monogrid (SG) algorithm
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Figure 3.70: External flow around an ONERA M6 wing (not-nested meshes)
Spatial approximation based on the PSI-scheme
Convergence of the multigrid (MG-V) algorithm
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Figure 3.71: External flow around an ONERA M6 wing (not-nested meshes)
Spatial approximation based on the PSI-scheme

Convergence of the full multigrid (FMG-V) algorithm

Table 3.29: External flow around an ONERA M6 wing (not-nested meshes)
Spatial approximation based on the PSI-scheme

Parallel performance results on the SGI Origin 2000

Algorithm Np Ng # iter (SG) /# cycles (MG) Wall clock time

SG 16 1 151 9307 s
MG-V 16 4 6 4744 s
FMG-V 16 4 38/1/2/2 1258 s
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3.3.6.3.3 Second order PSI-scheme applied to the preconditioned Euler equations. The so-
lution strategies that have been considered are again identical hose selected for the calculations based on the
N-scheme except that the CFL has been fixed to 50 for the monogrid calculation (this was found to be the
maximum allowable value for this algorithm). Moreover, we only present results for the FMG-V algorithm. The
non-linear threshold has been fixed to εnl = 10−6. Convergence profiles are shown on figure 3.72 and 3.73.
Performance results are given in table 3.30. For this calculation, the FMG-V algorithm appears to be 7.6 times
faster than the monogrid algorithm on 16 processors. Note that the computing time associated to the monogrid
algorithm is approximately twice as high as the corresponding figure obtained when the PSI-scheme is applied
to the Euler equations without applying the preconditioning method, despite a slight decrease in the number of
time steps. The reason for this behavior is a notable increase in the number of GMRES/BMILU iterations while
solving the linear systems resulting from the backward Euler implicit scheme, suggesting that the preconditioning
method can have a dramatic impact on the stiffness of the underlying Jacobian matrices.

We conclude this series of results by summarizing in table 3.31 the final values of the X, Y and Z components
of the pressure force on the wing (normalized values) for the three schemes.
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Figure 3.72: External flow around an ONERA M6 wing (not-nested meshes)
Spatial approximation based on the PSI-scheme applied to the preconditioned Euler equations

Convergence of the monogrid (SG) algorithm

Table 3.30: External flow around an ONERA M6 wing (not-nested meshes)
Spatial approximation based on the PSI-scheme applied to the preconditioned Euler equations

Parallel performance results on the SGI Origin 2000

Algorithm Np Ng # iter (SG) /# cycles (MG) Wall clock time

SG 16 1 143 18729 s
FMG-V 16 4 32/1/1/1 2470 s
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Figure 3.73: External flow around an ONERA M6 wing (not-nested meshes)
Spatial approximation based on the PSI-scheme applied to the preconditioned Euler equations

Convergence of the full multigrid (FMG-V) algorithm

Table 3.31: External flow around an ONERA M6 wing (not-nested meshes)
Spatial approximation based on the PSI-scheme

Final (non-dimensional) values of the pressure force components on the wing

Scheme X component Y component Z component

N-scheme 7.34225e-03 -5.57764e-02 1.40685e-01
PSI-scheme 3.65002e-05 -5.12173e-02 1.47435e-01

PSI-scheme + prec -2.73849e-05 -5.13257e-02 1.47583e-01
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3.3.6.4 External flow around a Falcon aircraft

The aim of this subsection is to apply the non-linear multi-mesh FAS-MG and FMG algorithms to a flow calculation
involving a rather complex geometry. The test case under consideration is the external inviscid subsonic flow around
a Falcon aircraft. The free-stream Mach number is set to 0.5 and the angle of attack to 0◦. As with the previous
test case, the simulation is started from a uniform flow.

A sequence of three meshes has been constructed whose characteristics are given in table 3.32. In the present
case, the finest mesh (mesh F1) was constructed first, using the GHS3D tetrahedral mesh generator[63]. Then,
meshes F2 and F3 have been obtained by the coarsening method described in subsection 3.3.3.2. Using this
method, the resulting meshes are such that vertices of the coarse meshes (i.e. F2 and F3) are a subset of the
vertices of the finest mesh (i.e. F1). For this reason, they are qualified as node-nested.

Table 3.32: Characteristics of node-nested meshes around a Falcon aircraft
NV : # vertices - NT : # tetrahedra - NF : # boundary faces

Mesh NV NT NF

F1 7,320 37,964 6,262
F2 58,926 363,124 11,820
F3 455,160 2,647,040 50,208

Calculations have been performed for the first order N-scheme and the second order PSI-scheme. Steady
contour lines of the pressure on the aircraft are represented on figures 3.74 to 3.75.

3.3.6.4.1 Calculations based on the first order N-scheme. The following solution strategies are
compared:

• FAS-MG calculation. The multigrid hierarchy is composed of the three meshes whose characteristics are
given in table 3.32. We selected a FAS-MG strategy based on a V-cycle involving 4 pre- and post-smoothing
steps on the fine and intermediate grid levels and 4 smoothing steps on the coarsest grid level. As usual,
one application of the smoother consists in one time step of the backward Euler implicit scheme adopted
for the monogrid calculation. A constant CFL of 50 has been used and the linear solver is GMRES with a
BMILU preconditioning (the linear threshold has been set to εl = 10−1).

• Controlled FMG calculations. The FMG strategy is based on the previously defined V-cycle all parameters
being unchanged. In the initial phase of this FMG strategy, the problem defined on the coarsest mesh is
solved using the backward Euler implicit scheme with a non-linear threshold fixed to εnl = 10−6.

Convergence profiles are shown on figures 3.76 and 3.77. Performance results are given in table 3.33. In the
present case, the FMG-V algorithm is 14.1 times faster than the MG-V algorithm on 24 processors. Note that the
convergence of the MG-V algorithm requires more than 20 cycles which is a relatively high value. In comparison,
for the ONERA M6 geometry using the sequence of not-nested meshes, the convergence of the MG-V algorithm
(with the same numbers of smoothing steps on each grid level) was obtained in 7 cycles, for the same value of
the non-linear threshold. However, in this case, the coarsening ratio characterizing two successive meshes in the
multigrid hierarchy is respectively equal to 7.8 (MU1-MU2), 2.2 (MU2-MU3) and 3.4 (MU3-MU4). Recall that
the corresponding meshes were obtained independently through several calls to the same mesh generation tool.
On the contrary, for the meshes of table 3.32, this ratio is respectively equal to 8.0 (F1-F2) and 7.7 (F2-F3)
and was actually taken as a constraint when using the coarsening method described in subsection 3.3.3.2. From
the theoretical viewpoint, a coarsening ratio of 8.0 corresponds to the maximum allowable value for an isotropic
coarsening strategy. Reducing the coarsening ratio would probably yield a more efficient MG-V algorithm.

154



Figure 3.74: External flow around a Falcon aircraft (node nested meshes)
Spatial approximation based on the N-scheme

Steady contour lines of the pressure on the aircraft

Table 3.33: External flow around a Falcon aircraft (node nested meshes)
Spatial approximation based on the N-scheme

Parallel performance results on the SGI Origin 2000

Algorithm Np Ng # cycles (MG) Wall clock time S(Np)

MG-V 12 3 21 23827 s 1.0
24 3 21 13004 s 1.85

FMG-V 12 3 50/1/1 1594 s 1.0
24 3 50/1/1 919 s 1.75
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Figure 3.75: External flow around a Falcon aircraft (node nested meshes)
Spatial approximation based on the PSI-scheme

Steady contour lines of the pressure on the aircraft
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Figure 3.76: External flow around a Falcon aircraft (node nested meshes)
Spatial approximation based on the N-scheme

Convergence of the multigrid (MG-V) algorithm
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Figure 3.77: External flow around a Falcon aircraft (node nested meshes)
Spatial approximation based on the N-scheme

Convergence of the full multigrid (FMG-V) algorithm

3.3.6.4.2 Calculations based on the second order PSI-scheme. The solution strategies that have
been considered here are exactly those selected for the calculations based on the N-scheme all parameters being
unchanged except for the CFL that has been set to 10 and the non-linear threshold that has been fixed to
εnl = 10−6. Convergence profiles are shown on figures3.78 and 3.79. Performance results are given in table 3.34.
Note that in the initial phase of the FMG calculation, the required non-linear threshold has not been obtained
within 100 time steps (this value has been set for the maximun number of time steps that could be performed in
this phase). As a result, the FMG-V algorithm is only 7.5 times faster than the MG-V algorithm on 24 processors.
It is worthwhile to mention that and ideal parallel speedup is obtained for the MG-V algorithm. For the FMG
algorithm, a slight degradation is observed which is the result of the reltively high number of time steps in the
initial phase which is involving a very coarse mesh f

Table 3.34: External flow around a Falcon aircraft (node nested meshes)
Spatial approximation based on the PSI-scheme

Parallel performance results on the SGI Origin 2000

Algorithm Np Ng # cycles (MG) Wall clock time S(Np)

MG-V 12 3 21 22394 s 1.0
24 3 21 11140 s 2.0

FMG-V 12 3 100/1/2 2737 s 1.0
24 3 100/1/2 1478 s 1.85
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Figure 3.78: External flow around a Falcon aircraft (node nested meshes)
Spatial approximation based on the PSI-scheme
Convergence of the multigrid (MG-V) algorithm
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Figure 3.79: External flow around a Falcon aircraft (node nested meshes)
Spatial approximation based on the PSI-scheme

Convergence of the full multigrid (FMG-V) algorithm
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3.3.7 Conclusion

In this section, we have described our contributions concerning the development of parallel non-linear multigrid
algorithms for the acceleration of three-dimensional compressible flows on unstructured tetrahedral meshes. The
approach considered here is an alternative to the multigrid by volume agglomeration method studied in section
3.1. Its main features are the following:

• contrary to what is done in section 3.1, the multigrid algorithms directly act on the non-linear, space
discretized equations. In this context, the basic multigrid algorithm is the Full Approximation Scheme
(FAS). The time stepping scheme (either explicit or implicit) plays the role of the smoother. Both standard
V-, F- and W-cycle based MG algorithms, as well as the Full Multigrid (FMG) algorithm, have been studied.

• the formulation of the multigrid algorithms rely on a multi-mesh hierarchy. Each element of this hierarchy is a
tetrahedral mesh τk corresponding to the discretization of the same geometry. For inviscid flow calculations,

two successive meshes of this hierarchy are characterized by a coarsening ratio
hk+1

hk
= 2 where hk is the

maximal length of the edges of τk. Such meshes can be obtained using different strategies: (1) by successive
refinement of a very coarse mesh, (2) through a series of independent mesh generation steps or, (3) with the
help of an appropriate (automatic) coarsening tool. In this study, no assumption has been made regarding
the way meshes are nested in the multi-mesh hierarchy. This means that a specific localization tools has
been developed for obtaining the data needed for implementing the inter-grid transfer operators. Moreover,
an original algorithm has been designed for coarsening tetrahedral meshes while respecting the boundary of
the underlying geometry.

The main advantages of the present approach are: (1) its simplicity of implementation (the FAS-MG and FMG
algorithms are built on top of the existing monogrid solver) and (2) the same space approximation method can be
applied on each (finite element) grid level. It is also worthwhile to mention that the developed multigrid kernels
(inter-grid transfer operators, FAS-MG cycles and FMG algorithm) are essentially independent of the numerical
framework characterizing the starting point monogrid solver. Thus, they can easily be reused in another application
context.
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Chapter 4

Domain decomposition methods for

compressible flows

The objective of this chapter is to present our contributions concerning the design of domain decomposition
methods for the calculation of compressible flows modeled by the system of Euler (case of an inviscid fluid)
or Navier-Stokes (case of a viscous fluid) equations. In both cases, the methods that we propose rely on the
formulation of an additive Schwarz algorithm involving transmission conditions that are derived from a weak
formulation of the underlying boundary value problem. In the case of inviscid flows, these interface conditions are
equivalent to requiring the continuity of the components of the normal convective flux. For laminar viscous flows,
the interface conditions generalize the one used for the Euler conditions by imposing also the continuity of the
components of the normal viscous flux. We note that similar formulations were previously studied by Quarteroni
and Stolcis[116].

Section 4.1 is dedicated to the calculation of inviscid flows while section 4.2 concentrates on the solution
of the Navier-Stokes equations for the calculation of steady and unsteady laminar viscous flows. In section 4.1,
the proposed method is studied from both the theoretical and numerical points of view. For what concern the
calculation of viscous flows, we only only discuss the numerical aspects of the application of the methodology to
the solution of the Navier-Stokes equations.

4.1 Domain decomposition for inviscid flows

4.1.1 Introduction

As mentioned above, our approach to domain decomposition solution of inviscid flows relies on the formulation of
an additive Schwarz algorithm involving transmission (or interface) conditions that are naturally derived from a
weak formulation of the underlying boundary value problem. These interface conditions (from now on referred as
natural or classical interface conditions) amount to impose the continuity of the normal convective flux. Neverthe-
less, we will show that well posed local boundary value problems are obtained by simply using interface conditions
that are Dirichlet conditions for the characteristic variables corresponding to incoming waves, thus taking into
account the hyperbolic nature of the Euler equations. We note that similar formulations were previously studied
by Bjørhus[11] for the semi-discrete Euler equations and by Quarteroni and Stolcis[116] for more complicated
models (e.g. the Navier-Stokes equations for viscous flows).

When dealing with supersonic flows, whatever the space dimension is, imposing the appropriate characteristic
variables as interface conditions leads to a convergence of the algorithm which is optimal with respect to the
number of subdomains. This property is generally lost for subsonic flows except for the case of one-dimensional
problems, when the optimality is again expressed as the number of iterations being equal to the number of
subdomains (see Bjørhus [11] and Quarteroni [115] for more details). For higher space dimensions, one cannot
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analyze the convergence of the algorithm in the same way. Therefore, a new kind of approach is required in the
latter case. In a similar context, Clerc [33] gives a convergence proof for the additive Schwarz algorithm applied
to the solution of a general linear hyperbolic system of PDEs, in the two- and three-dimensional cases, based on
an energy estimate of the error vector. We note that this proof is limited to a non-overlapping decomposition of
the computational domain and no quantitative results on the convergence rate are provided.

In section 4.1.2, we outline the basic principles for the formulation of non-overlapping domain decomposition
algorithms for hyperbolic systems of partial differential equations. The proposed framework is greatly inspired
from Gastaldi and Gastaldi[61], Gastaldi et al.[62], Quarteroni and Stolcis[116], Quarteroni and Valli[117] and
Nataf[107]. We also refer to Smith et al.[130] and Quarteroni and Valli[119] for a general introduction, as well
as an in-depth description of domain decomposition algorithms. Most of the discussion here is undertaken in the
context of a general linear hyperbolic system. Then, in section 4.1.3, we apply the proposed methodology to the
solution of the Euler equations and we study the convergence of the additive Schwarz algorithm in the two- and
three-dimensional case, for overlapping and non-overlapping decompositions, by applying a Fourier analysis. For
the sake of simplicity, we limit the analysis to two- and three-subdomain decompositions and we provide analytical
expressions of the convergence rate of the Schwarz algorithm applied to the linearized equations. Surprisingly,
there exists flow conditions for which the asymptotic convergence rate is equal to zero. In this section, we also
present results of numerical experiments that aim at validating the theoretical analysis. Finally, in section 4.1.4,
we apply the proposed algorithm to the calculation of two-dimensional steady inviscid compressible flows.

4.1.2 Additive Schwarz algorithm for a general hyperbolic system

Here, we briefly review the main definitions and properties of hyperbolic systems of conservation laws that are of
interest to our study. Then we introduce an additive Schwarz algorithm which is based on transmission conditions
at subdomain interfaces that take into account the hyperbolic nature of the problem. In addition, we recall some
existing results concerning the convergence of the algorithm.

We consider a general system of hyperbolic conservation laws of the form :

∂W

∂t
+ div(~IF(W )) =

∂W

∂t
+

d∑

i=1

∂Fi(W )

∂xi
= 0 with W ∈ IRp (4.1)

where d denotes the space dimension and p the dimension of the system. The flux functions Fi are assumed
differentiable with respect to the state vector W = W (x, t). In the general case, the flux functions are non-
linear functions of W . Under the assumption that the solution W = W (x, t) is regular, we can also write a
non-conservative (or quasi-linear) equivalent form of equation (4.1) :

∂W

∂t
+

d∑

i=1

Ai(W )
∂W

∂xi
= 0 (4.2)

where the Ai(W ) =
∂Fi

∂W
(W ) are the Jacobian matrices of the flux vectors. Recall that system (4.1) is said to

be hyperbolic if, for any unitary real vector ~n ∈ R
d, the matrix An(W ) =

d∑

i=1

niAi(W ) is diagonalizable with

real eingenvalues. We are particularly interested in the situation where system (4.1) is integrated in time using a
backward Euler implicit scheme involving a linearization of the flux functions. In that case we have :

δW

∆t
+

d∑

i=1

∂

∂xi

[
∂Fi

∂W
(W̄ )δW

]
= −div(~IF(W̄ )) (4.3)

where δW = W − W̄ . When δW is assumed regular, we can write the non-conservative form of system (4.3) :
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[
1

∆t
Id +

d∑

i=1

∂

∂xi

[
∂Fi

∂W
(W̄ )

]]
δW +

d∑

i=1

[
∂Fi

∂W
(W̄ )

]
∂δW

∂xi
= −div(~IF(W̄ )) (4.4)

System (4.4) can be symmetrized through the multiplication by an operator Σ (see for example Barth[8])
which, for hyperbolic systems admitting an entropy function, is given by the Hessian matrix of this entropy. This
operation results in the following first order system :

A0(W̄ )δW +
d∑

i=1

Ai(W̄ )
∂δW

∂xi
= f (4.5)

with :





A0(W̄ ) = Σ

[
1

∆t
Id +

d∑

i=1

∂δ

∂xi

[
∂Fi

∂W
(W̄ )

]]

Ai(W̄ ) = Σ

[
∂Fi

∂W
(W̄ )

]

f = −Σdiv(~IF(W̄ ))

(4.6)

Now, let ~n denote the outward normal vector to ∂Ω. From now on, we simply note An instead of An(W̄ ).
Moreover, AnW will denote the normal trace ofW on ∂Ω. When dealing with boundary conditions for a hyperbolic
system of PDEs, it is well known that one cannot impose all the components of W on the boundary ∂Ω. Instead,
the direction of propagation of the information has to be taken into account in order to obtain a well posed
boundary value problem (BVP) for system (4.5). More precisely, the number and type of boundary conditions
that must be imposed on ∂Ω are deduced from the expression of system (4.5) in terms of characteristic variables
and is related to information entering the domain Ω. A more rigorous discussion of boundary conditions treatment
for hyperbolic systems from gas dynamics, in terms of characteristic variables, is for example given in [64] (see
also Quarteroni and Valli[119] for a discussion in the context of domain decomposition algorithms). Using the
diagonalization of An which writes as An = TΛnT

−1 we have :





A±n = TΛ±nT
−1

Λ±n = diag(λ±i )1≤i≤p with λ±i =
1

2
(λi ± |λi|)

and with A+
nW = −A−−nW

In order to obtain a well posed BVP, we have to impose boundary conditions of the form :

A−nW = A−n g

where A−n is used to select the information entering the domain Ω. We recall below a well known result concerning
the boundary value problem associated to system (4.5)-(4.6) that can be found in [32] :

Theorem 1 Assume f ∈ L2(Ω)p and g ∈ L2
A(∂Ω) with :

L2
A(∂Ω) = {W such that

∫

∂Ω

|An|W ·Wdσ <∞}

L2
1/A(∂Ω) = {W such that

∫

∂Ω

|An|−1W ·Wdσ <∞}

the following BVP problem is well posed :
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



L(W ) = A0W +

d∑

i=1

Ai
∂W

∂xi
= f in Ω

A−nW = A−n g on ∂Ω

(4.7)

where the unique solution W of (4.7) lies in the space H̃ with :

H̃ = {W ∈ L2(Ω)p such that

d∑

i=1

Ai
∂W

∂xi
∈ L2(Ω)p and W |∂Ω ∈ L2

A(∂Ω)}

Furthermore, if f = 0 we have the estimate :

C0‖W‖2L2(Ω) + ‖A+
nW‖2L2

1/A
(∂Ω) ≤ ‖A−n g‖2L2

1/A
(∂Ω)

In the following, we are interested in solving the BVP problem (4.7) by an additive Schwarz algorithm based on
transmission conditions at subdomain interfaces that consist in Dirichlet conditions for the characteristic variables
corresponding to incoming waves (a formulation already considered by Quarteroni and Stolcis[116]). In other
words, the treatment of the condition on the physical boundary in eq. (4.7) will be extended to the artificial
boundaries defined by interfaces between neighboring subdomains.

We consider a decomposition of the domain Ω intoN overlapping or non-overlapping subdomains Ω̄ =

N⋃

i=1

Ω̄i.

We denote by ~nij the normal vector at any point of the interface between Ωi and a neighboring subdomain Ωj

directed from Ωi to Ωj . The domain decomposition approach for solving (4.7) consists in defining well posed
subproblems so that a local solution on a given subdomain Ωi is the restriction of the global solution on Ω to Ωi.
The subproblems will inherit the physical boundary conditions of the global problem for the part of ∂Ωi which
intersects ∂Ω; in addition, appropriate interface conditions are added to the definition of the subproblems for the
part of ∂Ωi which is common to its neighboring subdomains:





L(Wi) = f |Ωi = fi

A−nWi = A−n g on ∂Ωi ∩ ∂Ω

Interface conditions on Γij = ∂Ωi ∩ Ωj for Ωi ∩ Ωj 6= ∅
(4.8)

Assume that local solution Wi is prolongated by zero on Ω/Ωi; then a necessary and sufficient condition to

insure that

N∑

i=1

Wi is the solution of the global problem (4.7) is that on Γij the following conditions are verified :

A−nij
Wi +A+

nji
Wj = 0 and A+

nij
Wi +A−nji

Wj = 0 (4.9)

This result can be deduced from the variational formulation of problem (4.9). For simplicity, we consider the
two-subdomain case Ω = Ω1 ∪ Ω2. Let ~n∂Ω denote the outward normal on ∂Ω and ~n = ~n1 = −~n2 the outward
normal on Γ12 (directed from Ω1 to Ω2), and let W = W1 + W2 and f = f1 + f2. We introduce variational
formulations which are based on the following space of test functions :

V = {X ∈ L2(Ω)p such that

d∑

i=1

AiX ∈ H(div,Ω)p, AnX ∈ L2
A(Γ)}
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On one hand, we integrate by parts on the global domain Ω and, on the other hand, we integrate by parts on

each subdomain Ω1 and Ω2 (the notation ∂xk
is used to denote

∂

∂xk
) :

∫

Ω

[A0W +
d∑

k=1

Ak∂xk
W ]Xdω =

∫

Ω

[AT
0 X −

d∑

k=1

∂xk
(AkX)]Wdω +

∫

∂Ω

(An∂Ω
W )Xdγ

=

∫

Ω1

[AT
0 X −

d∑

k=1

∂xk
(AkX)]W1dω +

∫

∂Ω1∩∂Ω

(An∂Ω
W1)Xdγ

+

∫

Ω2

[AT
0 X −

d∑

k=1

∂xk
(AkX)]W2dω +

∫

∂Ω2∩∂Ω

(An∂Ω
W2)Xdγ

=

∫

Ω1

[A0W1 +

d∑

k=1

Ak∂xk
W1]Xdω −

∫

Γ12

(An1
W1)Xdγ

+

∫

Ω2

[A0W2 +

d∑

k=1

Ak∂xk
W2]Xdω −

∫

Γ12

(An2
W2)Xdγ

=

∫

Ω1

[A0W1 +
d∑

k=1

Ak∂xk
W1]Xdω

+

∫

Ω2

[A0W2 +

d∑

k=1

Ak∂xk
W2]Xdω +

∫

Γ12

[AnW2 −AnW1]Xdγ

If W1 and W2 are the (local) solutions of (4.8) then we must have :

∫

Γ

[AnW1 −AnW2]Xdγ = 0 ∀X ∈ V

Therefore a necessary and sufficient condition to insure that W1 +W2 is the (global) solution of (4.7) is :

AnW1 = AnW2 on Γ12 (4.10)

Since An is non-singular then (4.10) implies that :

W1 = W2 on Γ12 (4.11)

therefore :

(
TΛ±nT

−1
)
W1 =

(
TΛ±nT

−1
)
W2 on Γ12 (4.12)

which yields :

A−nW1 = A−nW2 and A+
nW1 = A+

nW2 (4.13)

Conversely, since An = A+
n +A−n , conditions (4.13) imply (4.12), which concludes the proof.

Let W
(0)
i denote the initial approximation of the solution in subdomain Ωi. A general formulation of an

additive Schwarz algorithm for computing (W
(k+1)
i )1≤i≤N from (W

(k)
i )1≤i≤N (where k defines the iteration of

the Schwarz algorithm) is written:





L(W
(k+1)
i ) = fi in Ωi

CnijW
(k+1)
i = CnijW

(k)
j on Γij = ∂Ωi ∩ ∂Ω̄j for Ωi ∩Ωj 6= ∅

A−nW
(k+1)
i = A−n g on ∂Ω ∩ ∂Ωi

(4.14)
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According to the hyperbolic nature of the original system of PDEs and taking into account eq. (4.9), we set
Cnij = A−nij

. This choice for the interface operator corresponds to the so-called classical or natural interface
conditions.

Domain decomposition algorithms of the form (4.14) have been extensively studied by Nataf[108], for con-
vection-diffusion problems and Engquist and Zhao[45] for elliptic equations. In particular, these authors have
considered the use of high-order optimal interface conditions, inspired from the concept of absorbing boundary
conditions for unbounded domains[44], for improving the convergence of the Schwarz algorithm.

For general linear hyperbolic systems of PDEs, whatever the space dimension is, we have the following result due
to Clerc[32] who proves the convergence of the Schwarz algorithm in the case of non-overlapping decompositions.

Theorem 2 Let us denote by Ek
i = W k

i −W|∂Ωi
the error vector associated to the restriction to subdomain Ωi

of the global solution of the problem. Then, the Schwarz algorithm converges in the following sense :

lim
k→∞

‖E(k)
i ‖L2(Ωi)p = 0 and lim

k→∞
‖

d∑

j=1

Aj
∂E

(k)
i

∂xj
‖L2(Ωi)p = 0

4.1.3 Convergence analysis for the Euler equations

In this section, we study the convergence of the proposed additive Schwarz algorithm (4.14) based on the classical
interface conditions Cij = A−nij

when applied to the solution of the 2D and 3D Euler equations that model inviscid
compressible flows. We consider both overlapping and non-overlapping decompositions. First, we recall the
expression of the Euler equations in the two-dimensional case. Then, we consider a two-subdomain decomposition
and study the convergence of the Schwarz algorithm in the two- and three-dimensional cases assuming subsonic
flow conditions. Let us recall that in the multidimensional supersonic case, the Schwarz algorithm converges in
two steps for a two-subdomain decomposition. A Fourier analysis applied to the linearized Euler equations allows
us to derive the convergence rate of the ξ-th Fourier component of the error vector. Finally, we conclude this
section by studying a three-subdomain decomposition in the two-dimensional case.

The conservative form of the Euler equations in the two-dimensional case is given by:

∂W

∂t
+ ~∇.~IFc

(W ) = 0 , W =
(
ρ , ρ~V , E

)T

, ~∇ =

(
∂

∂x
,
∂

∂y

)T

(4.15)

In eq. (4.15), W = W (~x, t) where ~x and t respectively denote the spatial and temporal variables. The

components of the conservative flux ~IF
c
(W ) = (F1(W ), F2(W ))

T
write as:

F1(W ) =




ρu
ρu2 + p
ρuv

u(E + p)


 , F2(W ) =




ρv
ρuv

ρv2 + p
v(E + p)




Note that we have adopted here a notation which is slightly different than the one used in eq. (1.2) of section

1.1 (that is, we use F1(W ) instead of F c
x(W ) and so on). In the above expressions, ρ is the density, ~V = (u , v)T

is the velocity vector, E is the total energy per unit of volume and p is the pressure. The pressure is deduced
from the other variables using the state equation for a perfect gas:

p = (γe − 1)(E − 1

2
ρ ‖ ~V ‖2)

where γe is the ratio of specific heats (γe = 1.4 for the air).

4.1.3.1 The two-subdomain case

Here, we consider a decomposition of the real space R
d (d = 2 or 3) into two overlapping subdomains such that

Ω1 =]−∞, γ[×R
d−1 and Ω2 =]β,+∞[×R

d−1 where β < γ.
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The starting point of our analysis is given by the linearized form (4.3) of the Euler equations:

L(W ) ≡ Id

∆t
W +A1

∂W

∂x1
+

d∑

i=2

Ai
∂W

∂xi
= f (4.16)

with Ai ≡ Ai(W ) where W denotes the constant vector state used for the linearization of the Euler equations.
First, we apply to the above system the change of variable U = T−1W which is based upon the eigenvector
factorization of A1 = TΛT−1. Then, (4.16) becomes:

L̃(U) ≡ bU +B1
∂U

∂x1
+

d∑

i=2

Bi
∂U

∂xi
= T−1f , b =

1

∆t
(4.17)

where Bi = T−1AiT and B1 = Λ = diag(λi) is the diagonal matrix deduced from the diagonalization of A1.
As will be seen in the following, eq. (4.17) is the symmetrized form of the Euler equations corresponding to
eq. (4.5)-(4.6).

In order to estimate the convergence rate of the Schwarz algorithm (4.14), we need to solve local boundary
value problems in each subdomain. In the present case where we consider the solution of the two- or three-
dimensional Euler equations, we cannot do this directly. The mathematical tool that will allow us to overcome
this difficulty is the Fourier transform. More precisely, we now proceed to a Fourier transform (denoted by F) of all
the spatial directions except the first one. The vector of Fourier variables is denoted by ξ = (ξj , j = 1, . . . , d−1).

Let (E
(k)
i )(x) = (U

(k)
i − U|∂Ωi

(x) be the error vector in subdomain Ωi at the k-th iteration of the Schwarz
algorithm. We denote by:

Ê(x1, ξ1, . . . , ξd−1) = FE(x1, . . . , xd) =

∫

R

e−iξ1x2−...−iξd−1xdE(x1, . . . , xd)dx2 . . . dxd

the Fourier symbol of the error vector. This transformation can be done only if the Ai matrices are constant
which is the case here because we have considered the linearized form of the Euler equations around a constant
state W . The Schwarz algorithm in the Fourier space can be written as follows:

Ω1 :





dÊ
(k+1)
1

dx1
= −M(ξ)Ê

(k+1)
1 for x1 < γ

(Ê
(k+1)
1 )j = (Ê

(k)
2 )j for λj < 0 at x1 = γ

Ω2 :





dÊ
(k+1)
2

dx1
= −M(ξ)Ê

(k+1)
2 for x1 > β

(Ê
(k+1)
2 )j = (Ê

(k)
1 )j for λj > 0 at x1 = β

(4.18)

where:

M(ξ) = B−1
1 (bId + i

d∑

m=2

Bmξm−1) (4.19)

In (4.18), the subscript j denotes the component of the error vector that must be imposed at a subdomain
interface. We obtain local problems that for a given ξ are ODEs whose solutions can be expressed as linear
combinations of the eigenvectors ofM(ξ) :

Ê(k)
m (x1, ξ) =

p∑

j=1

(αm
j )(k)(ξ)e−µj(ξ)x1Vj(ξ) (4.20)

where µj(ξ) are the eigenvalues ofM(ξ). Here we have assumed that the eigenvectors Vj(ξ) ofM(ξ) are linearly
independent. Furthermore, we require that these local solutions are bounded at infinity (−∞ and +∞ respectively)
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which implies that, in the decomposition of Ê1(x1, ξ) (respectively Ê2(x1, ξ)), we need to use the eigenvectors
corresponding to the negative (respectively the positive) eigenvalues. Then, we replace the expressions of the
local solutions (4.20) into the interface conditions (4.18) which results in:

In Ω1
 ∑

j,ℜ(µj)<0

(α1
j (ξ))(k+1)e−µj(ξ)γVj(ξ)




l

=


 ∑

j,ℜ(µj)>0

(α2
j (ξ))(k)e−µj(ξ)γVj(ξ)




l

, ℜ(λl) < 0

In Ω2
 ∑

j,ℜ(µj)>0

(α2
j (ξ))(k+1)e−µj(ξ)βVj(ξ)




l

=


 ∑

j,ℜ(µj)<0

(α1
j (ξ))(k)e−µj(ξ)βVj(ξ)




l

, ℜ(λl) > 0

(4.21)

By solving the above equations for the coefficients αm
j , we obtain the following general form of interface

iterations:





(α1
j )

(k+1)
j,ℜ(µj)<0(ξ) = T1(α2

j )
(k)
j,ℜ(µj)>0(ξ)

(α2
j )

(k+1)
j,ℜ(µj)>0(ξ) = T2(α1

j )
(k)
j,ℜ(µj)<0(ξ)

(4.22)

Then, the square of the convergence rate of the ξ-th component of the error vector of the Schwarz algorithm
can be computed as the spectral radius of one of the matrix products T1T2(ξ) or T2T1(ξ):

ρ2
2 ≡ ρ2

Schwarz2
= ρ(T1T2) = ρ(T2T1) (4.23)

4.1.3.2 The two-dimensional case

As a first step, we apply the general methodology described previously to the solution of two-dimensional Euler
equations. In that case ξ ≡ ξ is a scalar and the linearized form (4.17) is characterized by:

B1 = diag(u− c , u+ c , u , u) B2 =




v 0
c√
2

0

0 v
c√
2

0

c√
2

c√
2

v 0

0 0 0 v




(4.24)

where we have assumed that W =
(
ρ , ρ~V , E

)T

denotes the constant vector state used for the linearization

of the Euler equations. The matrixM(ξ) corresponding to (4.19) is written:

M(ξ) =




a

u− c 0
iξc√

2(u− c)
0

0
a

u+ c

iξc√
2(u+ c)

0

iξc√
2u

iξc√
2u

a

u
0

0 0 0
a

u




(4.25)

with a = b+ iξv.
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We obtain the following expressions for the eigenvalues and the corresponding eigenvectors of the matrix
M(ξ):





µ1(ξ) =
−au− cR(ξ)

c2 − u2
, V1(ξ) =

[
− (R(ξ) + a)(c+ u)√

2
,
(R(ξ)− a)(c− u)√

2
, iξ(c2 − u2), 0

]T

µ2(ξ) =
−au+ cR(ξ)

c2 − u2
, V2(ξ) =

[
(R(ξ)− a)(c+ u)√

2
,− (R(ξ) + a)(c− u)√

2
, iξ(c2 − u2), 0

]T

µ3,4(ξ) =
a

u
, V3(ξ) =

[
− iξu√

2
,
iξu√

2
, a, 0

]T

, V4(ξ) = [0, 0, 0, 1]T

where R(ξ) =
√
a2 + ξ2(c2 − u2).

Remark 1 A very simple calculation shows that the eigenvectors are linearly dependent only for v = 0 and

ξ2 =
b2

u2
(in that case, two of the eigenvalues are equal and the matrix M(ξ) cannot be diagonalized by

eigenvectors). In order to get a more general result, we should apply rigorously the solution proposed in [44] but
since the eigenvectors are linearly dependent in a very specific case, we adopt the method previously described

and assume in the sequel that ξ2 6= b2

u2
.

At that point, we make the assumption that the flow is subsonic that is, the local Mach number defined by

M =

√
u2 + v2

c
is such that M < 1. Note that this also means that

|u|
c
< 1 and

|v|
c
< 1. Finally, we also

assume that the flow is such that u > 0 and thus, we have that 0 < u < c. Under these conditions, one can
verify that ℜ(µ1) < 0 and ℜ(µ2,3,4) > 0. For the sake of a better interpretation of the results of the analysis, we

introduce the dimensionless wave number defined by ξ̄ =
cξ

b
and the associated dimensionless quantities:





ā =
b

c
+ iξ̄Mt =

a

c

R̄(ξ) =
√
ā2 + ξ̄2(1−M2

n) =
R(ξ̄)

c

µ1,2 =
c

b
(µ1 − µ2) = − 2R̄(ξ̄)

1−M2
n

µ1,3 =
c

b
(µ1 − µ3) = − ā+MnR̄(ξ̄)

Mn(1−M2
n)

where Mn =
u

c
and Mt =

v

c
respectively denote the local normal and tangential Mach numbers. Then, by solving

(4.21) and using (4.23) we obtain the square of the convergence rate of the algorithm:

ρ2
2(ξ̄, δ̄) =

∣∣∣∣
[R̄(ξ̄)− ā]2[ā+MnR̄(ξ̄)]

[R̄(ξ̄) + ā]2[ā−MnR̄(ξ̄)]
eµ1,2 δ̄− 2[R̄(ξ̄)− ā][Mn(1−Mn)]R̄(ξ̄)

[R̄(ξ̄) + ā][1 +Mn][āc−MnR̄(ξ̄)]
eµ1,3δ̄

∣∣∣∣ (4.26)

where:

δ̄ =
γ − β
c∆t

is the dimensionless size of the overlapping area.
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The following Proposition concerns the convergence of the additive Schwarz algorithm (4.14) applied to the
solution of the two-dimensional Euler equations (1.1) that is the inequality ρ2

2(ξ̄, δ̄) < 1.

Proposition 1 In the non-overlapping case, δ̄ = 0, we have ρ2
2(ξ̄, 0) < 1 for all ξ̄, Mn and Mt. In the

overlapping case, there exists δ̄0 > 0 such that ρ2
2(ξ̄, δ̄) < 1 for all δ̄ > δ̄0, ξ̄, Mn and Mt.

The proof is given in [42].

We recall that the above result has already been proved only in the non-overlapping case by Clerc[32] using
an energy estimate method.

For small values of the overlap, we needed additional assumptions on the velocity field. Numerical experiments
indicate that these assumptions are not necessary. The difficulty in proving a general convergence result comes
from the fact that the convergence rate is not decreasing with respect to the size of the overlap. For some small
values of δ̄, we can find at least one pair of (Mn , Mt) and an interval of wave numbers [ξ̄1, ξ̄2] such that :

ρ2
2(ξ̄, δ̄) > ρ2

2(ξ̄, 0) for ξ̄ ∈ [ξ̄1, ξ̄2],

as can be seen on figure 4.1 which illustrates this behavior for (Mn = 0.3 , Mt = 0.01). This behavior is very
different from the one characterizing the scalar case where the convergence rate is a decreasing function of the
size of the overlap, see for example [77].

The convergence rate does not depend on µ4 since, as one can see from (4.25), the fourth component of
U = T−1W is decoupled from the others.

With the discrete Courant number :

CFLh =
(M + 1)c

bh
=

(M + 1)c∆t

h
(4.27)

where h denotes a characteristic dimension of the grid used for space discretization, we see that if the overlap
between subdomains is equal to h, then the dimensionless overlap size δ̄ found in the expression of the convergence

rate is of the order
1

CFLh
. Figure 4.1 shows that for large discrete Courant number, the overlap may decrease

the performance of the algorithm.

For the non-overlapping case, Figure 4.2 represents the norm ‖ρ2‖∞ for a given value of the tangential Mach
number, as a function of the normal Mach numbers Mn, and shows the global behavior of the convergence rate
for different pairs of (Mn , Mt). In addition, the convergence rate as ξ →∞ satisfies :

lim
ξ→+∞

ρ2(ξ) =

√(
1− 3Mn

1 +Mn

)2

+
8MnM

2
t

(1 +Mn)3
< 1 (4.28)

In the particular case where Mn =
1

3
and Mt = 0, this limit becomes null. This is surprising and certainly

not expected. It is obtained for v = 0 everywhere in the flow field which is very particular and probably ideal
situation.

We note that we have limited our analysis to a subsonic flow which is the case of interest from the point of
view of information propagation at subdomain interfaces.

Remark 2 The inequality (4.28) has a numerical meaning: for a given discretization, let kmax denote the

largest frequency that can be represented on a grid. This largest frequency is of the order
π

h
where h denotes a

characteristic grid size. The convergence rate of the additive Schwarz algorithm on this grid can be estimated by
ρh
2 = max

|k|<kmax

ρ2(k). From (4.28), we have that ρh
2 ≤ max

k∈IR
ρ2(k) < 1 meaning that for finer grids, the number of

iterations may increase slightly but should not go to infinity.
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The behavior of the convergence rate with respect to the dimensionless wave number ξ̄ is represented on figure
4.3 in the case of a non-overlapping decomposition for different values of Mn and Mt. Note that we have only
considered situations such that M2

n +M2
t < 1. We remark that the behavior of the Schwarz algorithm deteriorates

and becomes less sensitive to the value of the normal Mach number when the tangential Mach number tends to
1.

Remark 3 For a larger number of subdomains we cannot calculate easily the convergence rate using the previous
technique because this leads to evaluate the spectral radius of a 4(N − 1) × 4(N − 1) matrix where N is the
number of subdomains. We will only do this in the three-subdomain case (see section 4.1.3.4).

4.1.3.3 The three-dimensional case

As in the two-dimensional case, the starting-point of the convergence analysis is given by the linearized system:

L̃U ≡ bU +B1
∂U

∂x1
+B2

∂U

∂x2
+B3

∂U

∂x3
= T−1f (4.29)

where B1 = diag(u− c , u+ c , u , u , u):

B2 =




v 0
c√
2

0 0

0 v
c√
2

0 0

c√
2

c√
2

v 0 0

0 0 0 v 0

0 0 0 0 v




B3 =




w 0 0
c√
2

0

0 w 0
c√
2

0

0 0 w 0 0

c√
2

c√
2

0 w c

0 0 0 0 w




are the associated transformed Jacobian matrices.

The matrixM(ξ) corresponding to (4.19) is written:

M(ξ) =




a(ξ)

u− c 0
1√
2

iξ1c

u− c
1√
2

iξ2c

u− c 0

0
a(ξ)

u+ c

1√
2

iξ1c

u+ c

1√
2

iξ2c

u+ c
0

1√
2

iξ1c

u

1√
2

iξ1c

u

a(ξ)

u
0 0

1√
2

iξ2c

u

1√
2

iξ2c

u
0

a(ξ)

u
0

0 0 0 0
a(ξ)

u




(4.30)

with a(ξ) = b + iξ1v + iξ2w and ξ = (ξ1, ξ2). We obtain the following expressions for the eigenvalues and
associated eigenvectors:
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



µ1(ξ) =
−au− cR(ξ)

c2 − u2

V1(ξ) =

[
− (R(ξ) + a)(c+ u)√

2
,
(R(ξ)− a)(c− u)√

2
, iξ1(c

2 − u2), iξ2(c
2 − u2), 0

]T

µ2(ξ) =
−au+ cR(ξ)

c2 − u2

V2(ξ) =

[
(R(ξ)− a)(c+ u)√

2
,− (R(ξ) + a)(c− u)√

2
, iξ1(c

2 − u2), iξ2(c
2 − u2), 0

]T

µ3,4,5(ξ) =
a

u

V3(ξ) =

[
− iξ1u√

2
,
iξ1u√

2
, a, 0, 0

]T

V4(ξ) = [0, 0,−ξ2, ξ1, 0]T

V5(ξ) = [0, 0, 0, 0, 1]
T

(4.31)

where R(ξ) =
√
a2 + (ξ21 + ξ22)(c2 − u2). We note that we can derive the expression of the convergence rate in

the 3D case in the same way as we did for the two-dimensional case and we get:

ρ2
2(ξ̄, δ̄) =

∣∣∣∣
[R̄(ξ̄)− ā]2[ā+MnR̄(ξ̄)]

[R̄(ξ̄) + ā]2[ā−MnR̄(ξ̄)]
eµ1,2δ̄− 2[R̄(ξ̄)− ā][Mn(1−Mn)]R̄(ξ̄)

[R̄(ξ̄) + ā][1 +Mn][āc−MnR̄(ξ̄)]
eµ1,3 δ̄

∣∣∣∣ (4.32)

where ξ̄ = (ξ̄1, ξ̄2) =

(
cξ1
b
,
cξ2
b

)
is the vector of dimensionless wave numbers and:

ā(ξ̄) = 1 + iξ̄1Mt1 + iξ̄2Mt2 , Mt1 =
v

c
, Mt2 =

w

c

where Mt1 and Mt2 denote the tangential local Mach number on the interface. We note that this result could
have been obtained simply by replacing in (4.26) ā(ξ̄) with ā(ξ̄) and R̄(ξ̄) with R̄(ξ̄). As a consequence, the
asymptotic behavior of the convergence rate is independent of the space dimension.

4.1.3.4 The three-subdomain case in the two-dimensional case

We now consider the case of a decomposition in three overlapping or non-overlapping subdomains in the context of
the solution of the two-dimensional Euler equations : Ω1 =]−∞ , β[×R, Ω2 =]β′ , γ[×R and Ω3 =]γ′ , +∞[×R

where β′ ≤ β and γ′ ≤ γ. Proceeding in a similar way as previously, we estimate the convergence rate of the
additive Schwarz algorithm (4.14) by means of a Fourier transform technique.
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In terms of the local error vectors, the Schwarz algorithm is written:

Ω1 :





dÊ
(k+1)
1

dx1
= −M(ξ)Ê

(k+1)
1 for x1 < β

(Ê
(k+1)
1 )j = (Ê

(k)
2 )j for λj < 0 and x1 = β

Ω2 :





dÊ
(k+1)
2

dx1
= −M(ξ)Ê

(k+1)
2 for β < x1 < γ

(Ê
(k+1)
2 )j = (Ê

(k)
1 )j for λj > 0 and x1 = β′

(Ê
(k+1)
2 )j = (Ê

(k)
3 )j for λj < 0 and x1 = γ

Ω3 :





dÊ
(k+1)
3

dx1
= −M(ξ)Ê

(k+1)
3 for x1 > γ′

(Ê
(k+1)
3 )j = (Ê

(k)
2 )j for λj > 0 and x1 = γ′

(4.33)

Similarly to the two-subdomain case, we take into account the behavior of the local solutions at ±∞ (i.e.

Ê
(k+1)
1 and Ê

(k+1)
3 are bounded respectively at −∞ and +∞ ). We make the same assumptions concerning the

nature of the flow that is, M < 1 and 0 < u < c. Then, we obtain the local solutions as combinations of the
eigenvectors of the matrix M(ξ) (see equation (4.25)):





Ê
(k)
1 (x, ξ) = (α1

1)
(k)e−µ1(ξ)xV1(ξ)

Ê
(k)
2 (x, ξ) = (α2

1)
(k)e−µ1(ξ)xV1(ξ) + (α2

2)
(k)e−µ2(ξ)xV2(ξ)

+ (α2
3)

(k)e−µ3(ξ)xV3(ξ) + (α2
4)

(k)e−µ4(ξ)xV4(ξ)

Ê
(k)
3 (x, ξ) = (α3

2)
(k)e−µ2(ξ)xV2(ξ) + (α3

3)
(k)e−µ3(ξ)xV3(ξ) + (α3

4)
(k)e−µ4(ξ)xV4(ξ)

(4.34)

where the upper index in αi
j identifies the subdomain number. We note that if we know the (α2

j)
(k) for j = 1, 2, 3, 4

then we can determine (α1
1)

(k+1) and (α3
j )

(k+1) for j = 2, 3, 4 by solving the local problems in Ω1 and Ω3.

Reversely, if we have (α1
1)

(k) and (α3
j )

(k) for j = 2, 3, 4 by solving the local problem in subdomain Ω2 we get

(α2
j )

(k+1) for j = 1, 2, 3, 4. Therefore by solving the problems defined in each subdomain we obtain the expression
of the interface iterations in terms of the αm

j :








α1
1

α3
2

α3
3

α3
4




(k+1)

= T1




α2
1

α2
2

α2
3

α2
4




(k)

= T1T2




α1
1

α3
2

α3
3

α3
4




(k−1)




α2
1

α2
2

α2
3

α2
4




(k+1)

= T2




α1
1

α3
2

α3
3

α3
4




(k)

= T2T1




α2
1

α2
2

α2
3

α2
4




(k−1) (4.35)

where the T1,2 are matrices with complex entries. As in the two-dimensional case, the square of the convergence
rate of the algorithm ρ2

3 ≡ ρ2
Schwarz3

is given by the spectral radius of one of the matrices T1T2 or T2T1.
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After some algebraic calculations and by introducing the dimensionless wave number ξ̄ =
cξ

b
we obtain the

following expression for the convergence rate:

ρ2
3(ξ̄, δ̄1, δ̄2, L̄) =

∣∣∣∣∣
ρ2
2(ξ̄, δ̄1) + ρ2

2(ξ̄, δ̄2)− 2ρ2
2(ξ̄, L̄) +

√
F

2(1− ρ2
2(ξ̄, L̄))

∣∣∣∣∣ (4.36)

where δ̄1 =
β − β′
c∆t

and δ̄2 =
γ − γ′
c∆t

denote the dimensionless size of the overlapping zones between the subdo-

mains and L̄ =
γ − β′
c∆t

is the dimensionless width of the second subdomain. In the above expression, ρ2(ξ̄, δ̄) is the

convergence rate of the Schwarz algorithm in the two-subdomain case (see equation (4.26)) with an overlapping
zone of size δ̄ and:

F =
√

(ρ2
2(ξ̄, δ̄1) + ρ2

2(ξ̄, δ̄2)− 2ρ2
2(ξ̄, L̄))2 − 4(1− ρ2

2(ξ̄, L̄))(ρ2
2(ξ̄, δ̄1)ρ

2
2(ξ̄, δ̄2)− ρ2

2(ξ̄, L̄))

We can further assume that the overlap is the same for each pair of subdomains L̄1 = L̄2 = δ̄. With this
hypothesis the expression of the convergence rate becomes:

ρ2
3(ξ̄, δ̄, L̄) =

∣∣∣∣
ρ2
2(ξ̄, δ̄) + ρ2(ξ̄, L̄)

1 + ρ2(ξ̄, L̄)

∣∣∣∣ (4.37)

Proposition 2 There exists L̄0 > 0 such that for L̄ > L̄0 we have ρ2
3(ξ̄, δ̄, L̄) < 1 under the same assumptions

on the size of the overlap and the velocity field as in Proposition 1.

The proof is given in [42].

In the non-overlapping case (δ̄ = 0) we have the following properties:

• the asymptotic value as ξ̄ tends to infinity is the same as in the two-subdomain case that is:

lim
ξ̄→+∞

ρ2
3(ξ̄, 0, L̄) = lim

ξ̄→+∞
ρ2
2(ξ̄, 0)

• the following inequality (which holds for L̄ sufficiently large):

ρ2
3(ξ̄, 0, L̄) > ρ2

2(ξ̄, 0)

shows that the convergence is slower when the number of subdomains increases and, as the size of the
middle subdomain becomes small, we have:

lim
L̄→0

ρ2
3(ξ̄, 0, 0, L̄) = ρ2(ξ̄, 0)

4.1.3.5 Summary

From the results of the analyses undertaken in the previous sections we can conclude that the additive Schwarz
algorithm (4.14) demonstrates a qualitatively similar behavior, irrespectively of the number of subdomains, when
dealing with high frequencies and non-overlapping decompositions. This stems from the fact that the expression of
the convergence rate in the three-subdomain case can be related to that obtained in the two-subdomain case using
an overlapping decomposition. At the same time, these results are independent of the dimension of the problem.
It is important to notice that, even in the non-overlapping case, the use of classical transmission conditions is
sufficient to obtain a convergent algorithm which was not the case when dealing with scalar problems, see for
example [76].
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We note that the results obtained in this preliminary convergence analysis have motivated an ongoing study
where we apply the Smith factorization theory[60] to the convergence analysis of the proposed algorithm in the
two-dimensional case and for a two-subdomain non-overlapping decomposition. This mathematical tool allows
us to obtain a formulation of the Schwarz algorithm which is more representative of the system of PDEs under
consideration. This intrinsic formulation of the Schwarz algorithm has two implications on our study : on one
hand, it allows us to explain the good convergence properties of the Schwarz algorithm based on classical interface
conditions and, on the other hand, it is used as the basis for the construction of optimized interface conditions
that improve the convergence of the Schwarz algorithm.

4.1.3.6 Numerical assessment of the convergence of the Schwarz algorithm

In this section, we present numerical results concerning the convergence of the additive Schwarz algorithm (4.14)
based on the classical interface conditions characterized by transmission operators of the form Cij = A−nij

. This
experimental assessment is done in the context of the calculation of compressible flows that are modeled by the
two-dimensional Euler equations. Moreover, we only consider the non-overlapping variant of algorithm (4.14).
The implementation of the proposed domain decomposition method is described in details in section 4.1.4. We
simply recall here the main characteristics of this implementation that are relevant for the interpretation of the
results of the numerical experiments considered in the following.

4.1.3.6.1 Brief overview of the implementation of the Schwarz algorithm. The Euler equations
are discretized in space by using the mixed element/volume formulation on unstructured triangular meshes which
is described in section 1.2.1 of chapter 1. Time integration of the resulting semi-discrete equations makes use of
the linearized implicit scheme described in section 1.4.1. Then, at each pseudo-time step, a linear system must
be solved to advance the solution in time. This is where the additive Schwarz algorithm (4.14) is introduced.
The parallelization strategy adopted in the original flow solver combines a partitioning of the underlying triangular
mesh and a message-passing programming model. According to the form of interface conditions used in (4.14),
it is interesting to consider mesh partitions involving a one-triangle wide overlapping region that is shared by
neighboring subdomains. As a matter of fact, it is easily seen that within this setting, the interface between two
neighboring subdomains is a non-overlapping one from the point of view of the dual discretization of Ω in terms
of control surfaces (see figure 4.10 of section 4.1.4). Then, if Ω1 and Ω2 are neighboring subdomains:

Γ12 = Ω1 ∩ Ω2 =
⋃

Ci∈Ω1,Cj∈Ω2

∂Ci ∩ ∂Cj

Remark 4 Since an approximate Riemann solver such as the one proposed by Roe[120] provides an approxi-
mation of an elementary numerical flux at the boundary ∂Ci ∩ ∂Cj , the above choice for the definition of Γ12

allows for a natural introduction of interface unknowns in terms of numerical fluxes as discussed in section 4.1.4.
However, the main problem with this choice is that the interface is not a straight line but rather a broken line
contrary to the assumption done for the convergence analysis (see section 4.1.3).

One particularity of our implementation is that we make use of a specific set of interface unknowns that are
expressed in terms of positive and negative parts of elementary numerical fluxes computed using the approximate
Riemann solver of Roe[120]. In order to do so, we need to consider a preliminary step which consists in the
introduction of a redundant variable W ⋆ at the interface between two control surfaces (see figure 4.10). Clearly,
the interface conditions that need to be taken into account in the additive Schwarz algorithm (4.14) are of
the form A−nij

W ⋆ for Ω1 and A+
nij
W ⋆ for Ω2 (if we assume that the normal vector nij is directed from Ω1

to Ω2). In section 4.1.4 we explain how these interface conditions can be used to modify the linearization of
the approximate Riemann solver of Roe[120] for mesh edges [si, sj ] such that Ci (associated with si) and Cj

(associated with sj) belong to two neighboring subdomains. This approach results in a linearized implicit time
integration scheme involving a global Jacobian matrix that has a block structure. As classically done in this
context, a sub-structuring technique is applied to this matrix which results in the formulation of a reduced system
involving interface unknowns that, in the present case, are expressed in terms of as positive and negative parts of
elementary numerical fluxes.
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It is shown in [40] that the additive Schwarz algorithm (4.14) is equivalent to a Richardson iterative method
acting on the reduced interface system. In practice the solution of this interface system is accelerated using
a Krylov method such as GMRES which is more efficient and robust. However, our goal here is to perform
numerical experiments that are representative of the conditions of the convergence analysis of section 4.1.3.
Therefore, the numerical results presented below are based on the standard approach resulting in the application
of a Richardson method to solve the interface system. As usual, each iteration of the Richardson method requires
solving independent linear systems in each subdomain. In the present study, a point-wise Gauss-Seidel relaxation
method is used for the solution of these local systems. In the following, we will refer to εl for the linear threshold
associated with the solution of the local systems and to εi for the linear threshold associated with the solution of
the interface system.

4.1.3.6.2 Test cases definition. The numerical simulations considered here aim at assessing the conver-
gence results of section 4.1.3 from an experimental viewpoint. We thus focus on the solution of the linear system
resulting from the first implicit time step starting from a uniform flow. The CFL number is set to 1000 for all the
numerical simulations. We consider two geometries: a rectangular domain of size [0, 8]× [0, 1] and a NACA0012

airfoil. For the first geometry, two types of discretization are used : the first type consists of a regular triangulation
(obtained from a finite difference grid, see figure 4.4) while the second type is an unstructured triangulation (see
figure 4.5). The characteristics of the unstructured triangulations are given in table 4.2. The meshes RS2 and
RS3 (respectively, meshes RU2 and RU3) have been obtained by uniform divisions of mesh RS1 (respectively,
mesh RU1). For both geometries, the initialization is given by a uniform flow characterized by ρ0 = 1, u0 = 1,

v0 = 0 and p0 =
1

γeM2
where M denotes the free-stream Mach number. For the first geometry, a slip condition

is applied on the horizontal sides while an inflow (respectively, outflow) condition is applied on the left (respec-
tively, right) vertical side. For the NACA0012 airfoil, three unstructured triangular meshes have been used whose
characteristics are given in table 4.3 (see figure 4.6 for a partial view of mesh N1). Mesh N2 and N3 have been
obtained by uniform divisions of mesh N1.

Figure 4.4: Structured triangular mesh of a rectangular domain
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Table 4.1: Characteristics of the regular triangular meshes for the rectangular domain

Mesh # Vertices # Triangles # Edges

RS1 4,000 7,562 11,561
RS2 16,000 31,442 47,441
RS3 64,000 126,962 190,961

Figure 4.5: Unstructured triangular mesh of a rectangular domain

Table 4.2: Characteristics of the unstructured meshes for the rectangular domain

Mesh # Vertices # Triangles # Edges

RU1 3,740 7,041 10,780
RU2 14,520 28,164 42,683
RU3 57,203 112,656 169,858

Table 4.3: Characteristics of the meshes for the NACA0012 airfoil

Mesh # Vertices # Triangles # Edges

N1 3,114 6,056 9,170
N2 12,284 24,224 36,508
N3 48,792 96,896 145,688
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Figure 4.6: Unstructured triangular mesh around the NACA0012 airfoil

4.1.3.6.3 Flow inside a rectangular domain: regular triangulations. We consider the solution of
the linear system resulting from the first time step for several flow conditions corresponding to values of the
free-stream Mach number M ranging from 0.1 to 0.9 and using a two-subdomain decomposition of meshes RS1
to RS3 of table 4.1. The results are summarized on figure 4.7 where we have represented, for each mesh, the
required number of Richardson iterations to reduce the initial normalized residual to the threshold εi = 10−10.
The linear threshold for the solution of the local systems has been set to εl = 10−10. We observe that, as the mesh
is refined from RS1 to RS3, the number of iterations increases slightly. This behavior is consistent with remark
2 of section 4.1.3. Moreover, the curves of figure 4.7 are in qualitative agreement with the theoretical behavior
shown on figure 4.2. In the present case, the value M =

√
M2

t +M2
n = 0.6 always yield the best convergence

of the Schwarz algorithm. The analysis of section 4.1.3 as shown that a super-convergence behavior is obtained

for a normal Mach number M⋆
n =

1

3
with M⋆

t = 0. where M⋆
n and M⋆

t respectively denote the tangential and

normal Mach number at the interface which is supposed to be a straight line. Here, due to remark 4, the local
tangential Mach Number is not equal to 0 in practice. Moreover, the local normal Mach number actually takes
two values resulting from the fact that the interface Γ12 has a regular broken line shape since we make use of
regular triangulations. For M = 0.6, these two values are respectively equal to 0.476 and 0.566 for all the meshes
of table 4.1. We simply conclude this series of results by noting that, as the tangential Mach number increases
from 0, figure 4.2 shows that the optimal value of the normal Mach number increases too resulting in a value of

M⋆ =
√

(M⋆
t )2 + (M⋆

n)2 >
1

3
. Clearly, the optimal value of M obtained in practice is consistent with the results

of section 4.1.3.

4.1.3.6.4 Flow inside a rectangular domain : unstructured triangulations. As in the previous
series of numerical experiments, we consider the solution of the linear system resulting from the first time step for
several flow conditions corresponding to values of the free-stream Mach number M ranging from 0.1 to 0.9 and
using a two-subdomain decomposition of meshes RU1 to RU3 of table 4.2. The results are summarized on figure
4.8 where we show, for each mesh, the required number of Richardson iterations to reduce the initial normalized
residual to the threshold εi = 10−10. The linear threshold for the solution of the local systems has been set to
εl = 10−10. Clearly, this second series of experiments confirm the observations made when using the meshes
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based on regular triangulations. The value M =
√
M2

t +M2
n = 0.6 is still the one that yield the best convergence

of the Schwarz algorithm (in that case the normal Mach number values are in the range [0.240 , 0.600]).

4.1.3.6.5 Flow around a NACA0012 airfoil. We conclude this section with results of numerical experi-
ments involving the NACA0012 geometry. Figure 4.9 summarizes the results obtained for several flow conditions
corresponding to values of the free-stream Mach number ranging from 0.1 to 0.7 and using a two-subdomain
decomposition of meshes N1 to N3 of table 4.3. As previously, the curves on this figure represent the required
numbers of Richardson iterations to reduce the initial normalized residual to the threshold εi = 10−10. The linear
threshold for the solution of the local systems has been set to εl = 10−10. This figure calls for several remarks:

• the consequences of using unstructured triangulations on the shape of the interface Γ are more remarkable
here than for the flow calculations inside a rectangular domain since the mesh is refined in the vicinity of
the airfoil. This time, the optimal number of Richardson iterations is essentially the same (that is, the best
convergence of the Schwarz algorithm is observed) when M ∈ [0.6 , 0.7] for each of the underlying meshes.

• For M = 0.7, the number of Richardson iterations is respectively equal to 63 and 89 for mesh N1 and N3
that is, this number increases by a factor 1.4 whereas the characteristic dimension of the triangulation has
decreased by a factor 4. We can conclude that the additive Schwarz algorithm is slightly sensible to the
refinement of the discretization as it was already the case with the previous test cases.

• The reader will note that we do not provide experimental values for flow calculations corresponding to a
free-stream Mach number in the range [0.7 , 1.0]. As a matter of fact, for this range of values, the flow
approaches the transonic regime and the non-linearity characterizing the resulting flow features tends to
stiffen the implicit system. As a consequence, the Richardson method fails to converge. In that case, it is
preferable to use a Krylov method such as GMRES for solving the interface system. This has been done
but, since the other figures are given for the Richardson method, we decided to limit our presentation of
results to the ones obtained with this method. Also, contrary to the previous test cases, even though the
initial flow is uniform, the solution obtained at the end of the first time step is no more uniform due to
the presence of the obstacle. In some sense, the constant coefficient theory developed in section 4.1.3 is
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questionable. For these reasons, the correlation between theoretical and experimental results is only partially
demonstrated for the present test case.

4.1.4 Calculation of steady flows

In the first part of this section, we describe a particular implementation of the additive Schwarz algorithm (4.14)
proposed in section 4.1.2 in the framework of the mixed element/volume formulation of section 1.2.1. The
objective is to obtain a discrete variant of (4.14) for time advancing the solution of the Euler equations using the
linearized implicit scheme described in section 1.4.1. In other words, we place ourselves in the context of section
4.1.2 since the additive Schwarz algorithm will be applied to the linearized Euler equations. Moreover, the discrete
approach which is described here has two main distinctive features: on one hand, the resulting algorithm aims at
solving an interface system acting on a reduced set of unknowns; on the other hand, the local systems that are
obtained at each iteration of the algorithm are approximately solved using a multigrid method. In the second part
of this section, we apply the resulting algorithm to the calculation of steady compressible flows modeled by the
two-dimensional Euler equations.

4.1.4.1 Implementation of the additive Schwarz algorithm

4.1.4.1.1 Definition of the interface and formulation of the interface conditions. We recall
that the parallelization strategy adopted in the original flow solver combines a partitioning of the domain and a
message-passing programming model. In section 4.1.3.6.1 we motivated the use of a one-triangle wide overlapping
region that is shared by neighboring subdomains. Then, it is easily seen that within this setting, the interface
between two neighboring subdomains is a non-overlapping one from the viewpoint of the dual discretization of Ω
in terms of control surfaces; if Ω1 and Ω2 are neighbors then:

Γ = Ω1 ∩ Ω2 =
⋃

C1k
∈Ω1,C2k

∈Ω2

∂C1k
∩ ∂C2k
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In order to be able to construct an interface system, we need to consider a preliminary step which consists in
the introduction of a redundant variable at the interface between two control surfaces (see figure 4.10), following a
strategy adopted by Clerc[32]. Our approach is however different from the one described in [32] for what concern
the nature of this redundant variable since, as detailed below, the latter is here defined as the normal flux between
two control surfaces belonging to different subdomains.

To simplify the presentation, let us consider the case of a decomposition of Ω into two subdomains. Let [si, sj ]
be and edge such that Ci (associated with si) and Cj (associated with sj) belong to two neighboring subdomains.
We note that in the context of the classical solution approach discussed in section 1.4.1, [si, sj ] is an internal
edge of the mesh. Thus, the corresponding elementary convective flux (1.12) is computed using the approximate
Riemann solver of Roe[120]. Then, an additive Schwarz formulation is obtained by setting the following interface
conditions that are taken into account in the integral formulation (1.10) locally in each subdomain:

{
Ac,−(W̃ij , ~ηij)W

(k+1)
i = Ac,−(W̃ij , ~ηij)W

(k)
j

Ac,+(W̃ij , ~ηij)W
(k+1)
j = Ac,+(W̃ij , ~ηij)W

(k)
i

(4.38)

where W̃ij is given by eq. 1.16. Using the notation (1.15), we rewrite the interface conditions (4.38) as:

A−ij(W̃ij)W
(k+1)
i = A−ij(W̃ij)W

(k)
j and A+

ij(W̃ij)W
(k+1)
j = A+

ij(W̃ij)W
(k)
i (4.39)

In the following, we show how the interface conditions (4.39) can be introduced in the linearization of the
approximate Riemann solver of Roe (see eq. (1.86) and (1.87) of section 1.4.1) in order to obtain a new form
of the global Jacobian matrix P (Wn) (see eq. (1.84)) that will characterize the discrete variant of the additive
Schwarz algorithm (4.14).

4.1.4.1.2 The discrete variant of the Schwarz algorithm. We introduce an auxiliary variable denoted
by W ⋆ (see figure 4.10) such that:

(
A−ij(W̃ij)Wj

)
|sj=

(
A−ij(W̃ij)W

⋆
)
|sij and

(
A+

ij(W̃ij)Wi

)
|si=

(
A+

ij(W̃ij)W
⋆
)
|sij (4.40)
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Figure 4.10: Definition of a redundant variable at the interface Γ = Ω1 ∩ Ω2

with sij =
si + sj

2
, and we define:

ΦΓ,ij = |Aij(W̃ij)|W ⋆ =
(
A+

ij(W̃ij)−A−ij(W̃ij)
)
W ⋆

= A+
ij(W̃ij)Wi −A−ij(W̃ij)Wj

(4.41)

In the present approach, ΦΓ,ij is an interface unknown which is expressed as a normal flux associated to the
edge [si, sj ]. Then, we can write:

ΦΓ,ij =
(
T (W̃ij , ~ηij)|Λ(W̃ij , ~ηij)|T−1(W̃ij , ~ηij)

)
W ∗

m

W ⋆ =
(
T (W̃ij , ~ηij)|Λ(W̃ij , ~ηij)|−1T−1(W̃ij , ~ηij)

)
ΦΓ,ij

The positive and negative parts of the interface flux ΦΓ,ij are given by:

Φ±Γ,ij = A±ij(W̃ij)W
∗ =

(
T (W̃ij , ~ηij)Λ

±(W̃ij , ~ηij)T
−1(W̃ij , ~ηij)

)
W ∗

=
(
T (W̃ij , ~ηij)Λ

±(W̃ij , ~ηij)|Λ(W̃ij , ~ηij)|−1T−1(W̃ij , ~ηij)
)

ΦΓ,ij

(4.42)

and can be written in condensed form as Φ±Γ,ij = P±(W̃ij)ΦΓ,ij .
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Moreover, the elementary linearized fluxes associated with the control surfaces Ci and Cj can be written as
(see eq. (1.85) of section 1.4.1) :





Φ(Wn
i ,W

n
j ,W

n+1
i ,Wn+1

j , ~ηij) = Φ(Wn
i ,W

n
j , ~ηij)

+
(
Ac(Wn

i , ηij)−A−ij(W̃n
ij)
)
δWn+1

i +A−ij(W̃n
ij)δW

n+1
j

Φ(Wn
j ,W

n
i ,W

n+1
j ,Wn+1

i , ~ηji) = −Φ(Wn
i ,W

n
j , ~ηij)

− A−ij(W̃n
ij)δW

n+1
j −

(
Ac(Wn

i , ηij)−A−ij(W̃n
ij)
)
δWn+1

i

(4.43)

By making the following approximation at the interface:

Ac(Wn
i , ηij)−A−ij(W̃n

ij)
∼= A+

ij(W̃
n
ij)

we can rewrite the right-hand side terms of (4.43) as:





RHSij = Φ(Wn
i ,W

n
j , ~ηij) +

(
Ac(Wn

i , ηij)−A−ij(W̃n
ij)
)
δWn+1

i +A−ij(W̃n
ij)δW

⋆

= Φ(Wn
i ,W

n
j , ~ηij) +

(
Ac(Wn

i , ηij)−A−ij(W̃n
ij)
)
δWn+1

i + P−(W̃ij)δΦΓ,ij

RHSji = −Φ(Wn
i ,W

n
j , ~ηij)−A−ij(W̃n

ij)δW
n+1
j −A+

ij(W̃
n
ij)δW

⋆

= −Φ(Wn
i ,W

n
j , ~ηij)−A−ij(W̃n

ij)δW
n+1
j − P+(W̃ij)δΦΓ,ij

(4.44)

Putting together eq. (4.43) for purely internal edges and eq. (4.44) for interface edges we can form a global
linear system that characterizes the discrete variant of the additive Schwarz algorithm (4.14):



M1 0 M1Γ

0 M2 M2Γ

F1Γ F2Γ Id






δWn+1
1

δWn+1
2

δΦΓ


 =




b1
b2
0


 (4.45)

where we have made a distinction between the vectors of purely interior unknowns associated to subdomains Ω1

and Ω2 (that is δWn+1
1 and δWn+1

2 ) and the vector of interface unknowns represented by δΦΓ. Moreover, M1

(respectively M2) is the matrix that couples the unknowns associated with vertices internal to Ω1 (respectively
Ω2) whereas F1Γ, F2Γ, M1Γ and M2Γ are coupling matrices between internal and interface unknowns. These
matrix operators are detailed in [39]. At this point, the internal unknowns can be eliminated in favor of the
interface ones by applying a sub-structuring technique to system (4.45) yielding the following interface system:

SδΦΓ = [Id− (F1ΓM−1
1 M1Γ + F2ΓM−1

2 M2Γ)]δΦΓ = g
= −[F1ΓM−1

1 b1 + F2ΓM−1
2 b2]

(4.46)

As usual in this context, once system (4.46) has been solved for δΦΓ, one obtain the values of the purely
internal unknowns by performing independent local solves :

{
δWn+1

1 = M−1
1 (b1 −M1ΓδΦΓ)

δWn+1
2 = M−1

2 (b2 −M2ΓδΦΓ)
(4.47)

Note that, in practice, the interface operator S in never formed. Instead, since a Krylov type method such as
GMRES[124] is used to solve system (4.46), only the matrix/vector product involving S needs to be computed.
Again, this requires solving local systems with the matrix operatorsM1 andM2.
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Remark 5 It is worthwhile to note that the vector of interface unknowns δΦΓ (or δW ⋆) is only introduced for
the formation of the global linear system (4.45) that is, it does not define an additional set of unknowns for the
overall problem. This justifies the notation δΦΓ instead of δΦn+1

Γ .

4.1.4.2 Solution strategy for the local problems

As mentioned above, eq. (4.47) defines independent linear system solves in each subdomain. In the domain
decomposition framework and especially for CSM (Computational Structural Mechanics) applications, these local
problems are generally solved exactly using a factorization method which is also the reference solver when a global
approach is adopted. The situation is somewhat different for most CFD applications since, in practice, the global
linear system associated to the Jacobian matrix P (Wn) (see eq. (1.84)) is solved iteratively and with a low
accuracy. In the present study, we have decided to adopt the same approach for local linear system solves of eq.
(4.47). In particular, we are interested in studying (at least experimentally) the influence of approximate local
solutions on the convergence of the interface system solver (that is GMRES) as well as on the convergence of the
overall domain decomposed flow solver. We note that the robustness of Krylov methods such as GMRES, with
respect to inexact matrix-vector products has been the subject of several investigations; see for example Bouras
and Fraysse[12] and also Bouras et al.[13] for a discussion of that point in the context of Schur complement type
domain decomposition methods. A rigorous theory of inexact Krylov subspace methods has been proposed in a
recent paper from Simoncini and Szyld[129]. We note that, in the present study, we do not make use of a specific
stopping criteria for monitoring the accuracy of the computed matrix-vector products such as the one proposed
in [129] since, as will be seen in the results section, the underlying linear systems are solved with a low accuracy.
In this study, a linear multigrid strategy applied at the subdomain level has been adopted for the local solutions.
The smoother is a point-wise Gauss-Seidel method. The method is described in more details in section 3.1 of
chapter 3. Its main features are recalled below.

• Grid coarsening by agglomeration. The coarsening strategy is based on the use of macro elements
(macro control surfaces) which form the coarse discretizations of the computational domain. Starting from
a fine unstructured triangulation, one wants to generate a hierarchy of coarse levels; this can be achieved
using a “greedy” type coarsening algorithm that assembles neighboring control volumes of the finest grid
to build the macro elements of the coarser level.

• Coarse grid approximation for convective terms. The convective fluxes are integrated between
two control volumes of the finest mesh; they are computed in the same way on a coarse level, between two
macro elements. However, on the coarse grids, this computation is limited to first order accuracy because
nodal gradients cannot be evaluated as they are on a fine mesh; this is really not a problem here as the
multigrid method is used to accelerate the solution of a linear system whose Jacobian matrix is based on
the linearization of a first order convective flux.

• Coarse grid approximation for diffusive terms. To evaluate the diffusive terms on a coarse level,
related basis functions are needed. Indeed, in the finite element formulation on the fine grid, the equations
are integrated and assembled by edges (convective terms) and triangles (diffusive terms). As triangles do
not exist on the coarser grids, it is necessary to define a new formulation for the calculation of diffusive
terms.

• Inter-grid transfer operators. The solution restriction operator is constructed as a weighted approx-
imation of fine grid components while the right-hand side restriction operator is obtained by a summation
of fine grid components. Finally, the prolongation operator is a trivial injection of coarse grid components.

4.1.4.3 Numerical results

In this section we apply the domain decomposition algorithm proposed in section 4.1.4.1 to the calculation of
steady inviscid flows and make some comparisons with the global approach described in section 1.4.1 of chapter
1. The test cases under consideration correspond to the calculation of external flows around a NACA0012 airfoil
(see figure 4.6). In addition to the unstructured meshes given in table 4.3, a finer discretization has been
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considered: mesh N4 contains 194,480 vertices, 387,584 elements and 582,064 edges. The following situations
have been considered :

S1 : the subsonic flow at a free stream Mach number M∞ equal to 0.3 and an angle of attack of 0◦. In that
case, the extension to second order accuracy in space does not make use of a limiter. The time step is
obtained using constant values of the CFL number. The value CFL=1000 has been used for the steady flow
computation however, as will be seen in the sequel, we have also investigated the influence of the value of
the CFL number on the convergence of the domain decomposition solver.

S2 : the transonic flow at a free stream Mach M∞ number equal to 0.85 and an angle of attack of 0◦. In that
case, the time step is obtained using the law CFL=5 × kt where kt denotes the time iteration. The Van
Albada limiter is used in the MUSCL technique (see Fezoui and Dervieux[52] for more details).

In each case, the calculation starts from a uniform flow characterized by ρ0 = 1, u0 = 1, v0 = 0 and

p0 =
1

γeM2
∞

. The results presented below are all characterized by the fact that the local systems induced by

the domain decomposition solver are solved approximately. The steady solutions corresponding to these two test
cases are shown on figure 4.11 in the form of steady contour lines of the Mach number for calculations based on
mesh N3.

4.1.4.3.1 Computing platforms and conventions. Numerical experiments have been performed on a
cluster of 216 HP e-vectra nodes (Pentium III/733 Mhz with 256 Mb of SDRAM 133 Mhz each) interconnected
by several Ethernet 100 Mbit/s switches. The MPI implementation is MPICH. The code is written in Fortran 77
and the GNU G77 compiler has been used with maximal optimization options. Performance results are given for
64 bit arithmetic computations. In the following tables, Np is the number of processes for the parallel execution
(Np also represents the number of subdomains); Ng is the total the number of grid levels (including the finest
grid level) used in the multigrid solver for local systems; ”# it” is the required number of pseudo-time steps
to reach the steady state (convergence to the steady state is monitored using the normalized energy residual);
”Total time” denotes the total (elapsed) execution time and ”CPU time” denotes the total CPU time (taken as
the maximum value of the local per process measures); ”% CPU” denotes the ratio of ”CPU time” to ”Total
time”. This ratio is our principal measure of parallel efficiency. The difference between ”Total time” and ”CPU
time” basically yields the sum of the communication and idle times, the latter being related to computational
load unbalance. The parallel speedup S(Np) is always calculated using the elapsed execution times. Finally, the
term ”linear threshold” is used to characterize the accuracy of the linear system solves (i.e. the level of reduction
of the initial linear residual).

In the following, we consider and compare the performances of two parallel solution strategies:

• the global solution strategy (see section 1.4.1 of chapter 1) where the implicit system of eq. (1.84) is solved
using Jacobi relaxations (the corresponding linear threshold is denoted by εg);

• the hybrid domain decomposition/multigrid method introduced in section 4.1.4.1 where the GMRES method
is used to solve the interface system (4.46) (the corresponding linear threshold is denoted by εddm). In this
approach, the multigrid by agglomeration domain is used to solve the linear system obtained at each iteration
of the GMRES method (the corresponding linear threshold is denoted by εmg). A point-wise Gauss-Seidel
relaxation method is playing the role of the smoother in a multigrid V-cycle.

4.1.4.3.2 Performance results for the S1 test case. The solution methods differ through the strategy
used for solving the linear systems obtained at each time step:

- GLOB.a : the global solution strategy with εg = 10−1;

- DDM/MG.a : the hybrid domain decomposition/multigrid with εddm = 10−1. The local linear systems
obtained at each GMRES iteration are (approximately) solved using several V(2,2,2) multigrid cycles with
εmg = 10−1.
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Figure 4.11: Inviscid flow around a NACA0012 airfoil
Steady contour lines of the Mach number: S1 (top) and S2 (bottom) test cases
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- DDM/MG.b : the DDM/MG.a strategy where the local systems are solved using only 2 V(2,2,2) multigrid
cycle, all other components and parameters being unchanged.

The effective numbers of time steps to reach the steady state (initial normalized energy residual reduced by
a factor 106) and corresponding execution times are given in table 4.4 for calculations based on the finest mesh
(i.e. mesh N4). The reference result is given by the convergence to steady state of the global solution strategy
based on the Jacobi relaxation method GLOB.a (141 time steps independently of the number of subdomains).
We note that reducing the linear threshold from εg = 10−1 to εg = 10−2 did not result in a noticeable reduction
of the number of time steps to reach the steady state but required larger execution times. The hybrid domain
decomposition/multigrid strategy DDM/MG.a yields essentially the same number of time steps with a slight
increase for Np = 64. Obtaining exactly the same number of time steps as the one resulting from the application
of the GLOB.a strategy would require reducing by one order of magnitude the values of the linear thresholds
εddm and εmg at the expense of a large increase of the execution times which is clearly not a viable option.
Nevertheless, the solution strategy DDM/MG.a is the one demonstrating the best parallel performances which
is of course related to the fact that this method has the most favorable computation to communication ratio
of the three methods tested. We note that the hybrid domain decomposition/multigrid strategy DDM/MG.b
based on a fixed (and minimal) number of V(2,2,2) cycles for the solution of the local linear systems (i.e. strategy
DDM/MG.b) is characterized by a number of time steps which is more sensitive to the number of subdomains
and always higher than the one characterizing the reference solution (from 147 to 155 depending on the value
of Np instead of 141). Despite this fact, this solution strategy yields a reduction by a factor 2.0 of the total
simulation time as compared to the reference strategy GLOB.a.

We conclude this series of results with a scalability analysis of the solution strategy DDM/MG.a. This
kind of performance assessment is particularly important for domain decomposition methods whose convergence
rate generally depends on two parameters: the characteristic size h of the computational mesh (which is directly
related to the global number of degrees of freedom) and the characteristic size H of the macro-mesh associated
to the partitioning of the computational domain (which is related to the number of subdomains Np). Table 4.5
summarizes the results of the application of the solution strategy DDM/MG.a to meshes N2 to N4 and for
a number of subdomains increasing from 8 by the same factor as the refinement ratio between two consecutive
meshes (4 in the present case). The increase of the number of pseudo-time steps required to obtain the steady
state solution (non-linear convergence) is a natural consequence of the refinement of the mesh. Therefore, we have
reported in this table, the average CPU time and average total time for one pseudo-time step. In addition, figure
4.12 shows the evolution of the effective number of GMRES iterations for solving the interface system (4.46) versus
the pseudo-time step number. When switching from Np = 8 (respectively, mesh N2) to Np = 128 (respectively,
mesh N4), the average CPU time per pseudo-time step increases by 25.5% while the corresponding figure for the
total time is 91%. Figure 4.12 shows that the conditioning of the interface system is weakly dependent on both
h and H . However, this remark has to be moderated by the fact that, in the present case, the interface systems
are solved with a low accuracy since the corresponding linear threshold has been fixed εddm = 10−1. Nevertheless,
we can state that the increase in CPU time when switching from Np = 8 to Np = 128 subdomains is essentially
due to the increase in the number of GMRES iterations. For what concern the total CPU time, the observed
degradation can be related to two factors that classically impact parallel performances of numerical algorithms:

• communication times: the interconnection network of the underlying computing platform (i.e. Ethernet
100 Mbit/s) is rather standard and, at the time of this study, probably the less efficient one among other
possibilities. The solution strategy considered here is characterized by a reduced communication load as
compared, for instance, to the global solution strategy GLOB.a. As already noticed, this favorable behavior
is well illustrated by the results reported in table 4.4 for computations based on mesh N4. However, for large
values of Np (i.e. Np > 64) the parallel efficiency of the domain decomposition solvers DDM/MG.a and
DDM/MG.b remains rather low. It is clear that this rapid degradation of the parallel efficiency (especially
for Np = 128) is for a great part due to the poor communication performances of the interconnection
network.

• idle times: in the present case, the main source of idle times is found in the local system solution phase.
Indeed, since in the solution strategy DDM/MG.a the resolution of the local systems is characterized
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by a linear threshold εmg = 10−1, we can reasonably expect that the effective number of multigrid cycles
demonstrates slight variations from one subdomain to another, depending on the conditioning of the local
problems. This necessarily incurs synchronization points at each GMRES iteration when computing the
matrix/vector product SδΦΓ of eq. 4.46.

Table 4.4: S1 test case - timings for the steady state calculation (mesh N4)
Global solution strategy (parallel Jacobi linear solver) versus DDM/MG strategy (full GMRES)

Method Np Ng # it CPU time Total time % CPU S(Np)

GLOB.a 32 1 141 661 sec 884 sec 75.0 1.00
- 64 1 141 351 sec 614 sec 57.0 1.45
- 128 1 141 231 sec 551 sec 42.0 1.60

DDM/MG.a 32 5 142 715 sec 872 sec 82.0 1.00
- 64 4 145 368 sec 502 sec 73.5 1.75
- 128 3 142 213 sec 338 sec 63.0 2.60

DDM/MG.b 32 5 147 484 sec 581 sec 83.5 1.00
- 64 4 155 291 sec 406 sec 72.0 1.45
- 128 3 152 147 sec 275 sec 53.5 2.15

Table 4.5: S1 test case - scalability analysis using method DDM/MG.a

Mesh Np Ng # it CPU time Total time % CPU
per time step per time step

N2 8 3 98 1.12 sec 1.25 sec 89.5
N3 32 3 102 1.27 sec 1.65 sec 77.0
N4 128 3 142 1.50 sec 2.40 sec 63.0

4.1.4.3.3 Performance results for the S2 test case. As with the S1 test case, the solution methods
differ through the strategy used for solving the linear systems obtained at each time step:

- GLOB.a : the global solution strategy with εg = 10−2;

- DDM/MG.a : the hybrid domain decomposition/multigrid with εddm = 10−1. The local linear systems
obtained at each GMRES iteration are (approximately) solved using several V(4,4,4) multigrid cycles with
εmg = 10−1.

- DDM/MG.b : the DDM/MG.a strategy where the local systems are solved using only 1 V(4,4,4) multigrid
cycle, all other components and parameters being unchanged.

- DDM/MG.c : the DDM/MG.a strategy where the local systems are solved using only 2 V(4,4,4) multigrid
cycle, all other components and parameters being unchanged.

The effective numbers of time steps to reach the steady state (initial normalized energy residual reduced
by a factor 106) and corresponding execution times are given in table 4.6 for calculations based on the finest
mesh (i.e. mesh N4). Figure 4.13 shows the convergence profiles to steady-state for all the methods considered
here using mesh N4 and for Np = 128. The reference result is given by the convergence to steady state of the
global solution strategy based on the Jacobi relaxation method GLOB.a (275 time steps independently of the
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Figure 4.12: S1 test case - scalability analysis of solution strategy DDM/MG.a
Effective number of GMRES iterations for solving the interface system
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number of subdomains). We note that, contrary to the S1 test case, a value εg = 10−1 of the linear threshold
resulted in number of pseudo-time steps and resulting total simulation times notably larger than those obtained
for εg = 10−2. For the domain decomposition solvers, a value εmg = 10−1 has been found to be sufficient for
obtaining comparable and, in some cases, faster convergence to the steady state. Similarly to the S1 test case, the
domain decomposition solver based on a minimal, constant complexity strategy for the solution of local systems
DDM/MG.b consistently outperforms the global solution strategy GLOB.a. For Np = 128, this method
yields a reduction of the total simulation time by a factor 2.1 as compared to the reference strategy GLOB.a.
Results of a scalability analysis of the solution strategy DDM/MG.a are reported in table 4.7 and figure 4.14
leading to conclusions identical to those drawn for the S1 test case.

Table 4.6: S2 test case - timings for the steady state calculation (mesh N4)
Global solution strategy (parallel Jacobi linear solver) versus DDM/MG strategy (full GMRES)

Method Np Ng # it CPU time Total time % CPU S(Np)

GLOB.a 32 1 275 1090 sec 1479 sec 74.0 1.00
- 64 1 275 588 sec 1001 sec 59.0 1.45
- 128 1 275 385 sec 910 sec 42.5 1.65

DDM/MG.a 32 5 258 1560 sec 1907 sec 82.0 1.00
- 64 4 268 870 sec 1060 sec 82.0 1.80
- 128 3 280 444 sec 676 sec 66.0 2.85

DDM/MG.b 32 5 291 867 sec 1047 sec 83.0 1.00
- 64 4 298 463 sec 660 sec 70.0 1.60
- 128 3 304 246 sec 431 sec 57.0 2.45

DDM/MG.c 32 5 262 1399 sec 1600 sec 87.5 1.00
- 64 4 270 736 sec 957 sec 77.0 1.70
- 128 3 281 356 sec 574 sec 62.0 2.80

Table 4.7: S2 test case - scalability analysis using method DDM/MG.a

Mesh Np Ng # it CPU time Total time % CPU
per time step per time step

N2 8 3 138 1.13 sec 1.26 sec 89.0
N3 32 3 187 1.33 sec 1.70 sec 78.5
N4 128 3 280 1.58 sec 2.41 sec 66.0
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Figure 4.13: S2 test case (mesh N4) - non-linear convergence to the steady state
Normalized energy residual (log scale) versus pseudo-time step number
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Figure 4.14: S2 test case - scalability analysis of solution strategy DDM/MG.a
Effective number of GMRES iterations for solving the interface system
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4.2 Domain decomposition for laminar viscous flows

The objective of the present section is to solve the Navier-Stokes equations modeling compressible viscous flows
by a non-overlapping domain decomposition method. The method presented here extends the one proposed in
section 4.1 for the solution of the Euler equations. It relies on the formulation of an additive Schwarz type
algorithm where the interface conditions express the continuity of normal flux components. As in section 4.1.4,
the Navier-Stokes equations are discretized in space using the mixed element/volume formulation on unstructured
triangular meshes described in section 1.2.1. Time integration of the semi-discrete equations relies on a linearized
implicit scheme. However, in this section we will consider both steady and unsteady laminar viscous flows. For
that purpose, we will used the time integration schemes described in sections 1.4.1 and 1.4.2. In each case, the
non-overlapping domain decomposition algorithm is used for advancing the solution at each implicit time step
or sub-time step. Algebraically speaking, the additive Schwarz algorithm is equivalent to a Jacobi iteration on
a linear system whose matrix has a block structure. A sub-structuring technique can be applied to this matrix
in order to obtain a fully implicit scheme in terms of interface unknowns. In the approach proposed here, the
interface unknowns are numerical fluxes; more precisely, the vector of interface unknowns is composed, on one
hand, of discrete convective fluxes computed on interface edges using the approximate Riemann solver of Roe[120]
and, on the other hand, of discrete diffusive fluxes computed on interface triangles.

4.2.1 Additive Schwarz algorithm for the Navier-Stokes equations

The formulation of a domain decomposition algorithm in the continuous case is inspired from Quarteroni and
Stolcis[116]. Assume that the computational domain Ω ∈ IR2 is decomposed into a set of non-overlapping
subdomains Ωi with Ωi ∩ Ωj = Γij if Ωj is a neighboring subdomain of Ωi. Let Wi be the restriction of the
solution of the Navier-Stokes equations (1.3) (see section 1.1 of chapter 1) to subdomain Ωi. Then, Wi is the
solution of the following BVP problem:





∂Wi

∂t
+ ~∇.~IFc

(Wi) =
1

Re
~∇.~IFv

(Wi) for ~x ∈ Ωi

[(
~IF

c
(W )− 1

Re
~IF

v
(W )

)
.~nij

]

Γij

= 0 for ~x ∈ Γij

Boundary conditions on ∂Ω ∩ ∂Ωi

(4.48)

where ~IF
c
(W ) =

(
F c

x(W ) , F c
y (W )

)T
and ~IF

v
(W ) =

(
F v

x (W ) , F v
y (W )

)T
; ~nij denotes the normal vector at

every point of Γij directed from Ωi to Ωj . Moreover, [a]Γij stands for the jump of the quantity a at the interface

Γij that is [a]Γij = a |Γ+

ij
− a |Γ−

ij
where Γ+

ij and Γ−ij respectively denote the right and left sides of the interface

Γij . The interface condition is valid when Ωj is a neighboring subdomain of Ωi; it expresses the continuity of
normal fluxes. This flux matching property is a natural consequence of the fact that the variable W is the weak
solution of eq. (1.3) and so are the local solutions Wi.

As in section 4.1.4, we formulate an additive Schwarz algorithm which is applied to the linearized Navier-
Stokes equations. Then, the goal is to devise a strategy for implementing the interface condition of eq. (4.48)
in the context of the mixed element/volume formulation on unstructured triangular meshes of section 1.2.1 and,
to deduce a new form of the global Jacobian matrix P (Wn) (see eq. (1.84)) that will characterize the discrete
variant of the additive Schwarz algorithm. This is the subject of the next section.

4.2.2 Implementation of the domain decomposition algorithm

In the discrete case, the definition of the interface is unchanged from section 4.1.4.1.1. We recall that the
parallelization strategy adopted in the original flow solver combines a partitioning of the domain and a message-
passing programming model. The partitioning of the domain is characterized by a one-triangle wide overlapping
region that is shared by neighboring subdomains. For the implementation of the additive Schwarz algorithm, the
main difficulty that we have to deal with is related to the fact that, in the mixed element/volume formulation,
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convective fluxes are computed edgewise (see eq. (1.12)) while diffusive fluxes are evaluated element-wise (see
eq. (1.22)). Indeed, a discretization method based on a finite volume formulation for both the convective and the
diffusive fluxes, such as the one proposed by Rostand and Stoufflet[123], would have been more appropriate for
the realization of this task. Here, in order to overcome this difficulty, we have adopted a strategy which consists
in treating separately the convective and diffusive parts of the interface condition of eq. (4.48). To simplify the
presentation, let us consider the case of a decomposition of Ω into two subdomains Ω1 and Ω2.

4.2.2.1 Continuity of the convective fluxes

Let [si, sj ] be and edge such that Ci (associated with si) and Cj (associated with sj) belong to two neighboring
subdomains. We recall that in the mixed element/volume formulation, the corresponding elementary convective
flux (1.12) is computed using the approximate Riemann solver of Roe[120]. Then, the convective part of the
interface condition of eq. (4.48) is equivalent to setting:

{
Ac,−(W̃ij , ~ηij)W

(k+1)
i = Ac,−(W̃ij , ~ηij)W

(k)
j

Ac,+(W̃ij , ~ηij)W
(k+1)
j = Ac,+(W̃ij , ~ηij)W

(k)
i

(4.49)

at the interface Γij (W̃ij is given by eq. 1.16). The strategy used to exploit the conditions (4.49) in the
formulation of the discrete Schwarz algorithm is exactly the same than the one used for the Euler equations (see
section 4.1.4.1.2) thus yielding the definition of the vector of interface unknowns δΦΓ.

4.2.2.2 Continuity of the diffusive fluxes

The goal of this section if to construct the interface unknowns associated with the diffusive or viscous fluxes. Since
an elementary diffusive flux is computed on a triangle (see eq. (1.22)) and also to facilitate the implementation,
we have chosen to impose the continuity of the whole diffusive flux components instead of the normal ones only
as normally required in (4.48). As a consequence, for a given interface triangle τ (a triangle whose vertices
are located in the overlapping area), the components of (1.22) are considered as interface unknowns. Now, the
problem at hand consists of two tasks: first, we need to construct an appropriate coupling between the interface
flux components and the corresponding nodal unknowns (i.e. the components of the vector of conservative
variables W for each vertex of the interface triangle τ); second, we have to define an associated linearization of
the flux components for the implicit time integration. Using eq. (1.22) we can write:

Υτ,i(τ) = area (τ)
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where ri(τ) and si(τ) are the components of the viscous flux vectors ~IF
v

x(τ) and ~IF
v

y(τ) which are constant on

the triangle τ . According to the expressions of the components of ~IF
v

x(W ) and ~IF
v

y(W ), we can further write:
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(4.51)

where ∂x,yϕ
τ
i =

∂ϕτ
i

∂x, ∂y
. The above formula can be seen as an alternative linearization of the viscous flux at

the interface (with respect to the original one) where the new variables are given by the quantities ri(τ) and
si(τ). Therefore the coupling between the nodal variables located in the overlapping area will be replaced by the
coupling between these variables and the new flux variables, this interaction being expressed via the 4× 5 blocks
of the formula (4.51).
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Conversely, the coupling between the new interface variables and the nodal variables can be written using the
classical linearization:

r2,3,4(τ) =
∑

ki∈τ

∂r2,3,4(τ)

∂Wki

Wki and s3,4(τ) =
∑

ki∈τ

∂s3,4(τ)

∂Wki

Wki (4.52)

4.2.2.3 Formulation of an interface system

Putting together eq. (4.43) and (4.44) corresponding to the linearizations of internal and interface convective
fluxes and, eq. (1.88)-(1.89) and (4.51)-(4.52) corresponding to the linearizations of internal and interface diffusive
fluxes, we can form a global linear system that characterizes the discrete variant of additive Schwarz algorithm:
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where M1 and M2 are the matrices resulting from the original linearization for vertices internal to Ω1 and Ω2.
On the other hand, F1c, F2c, F1v, F2v, M1c, M1v, M2c and M2v are coupling matrices between internal and
interface unknowns. Moreover, ΦΓ,c is the vector of convective interface unknowns (see section 4.1.4.1.2) while

ΦΓ,v is the vector of diffusive interface unknowns with ΦΓ,v(τ) = (r2(τ) , r3(τ) , r4(τ) , s3(τ) , s4(τ))
T
. At

this point, the internal unknowns can be eliminated in favor of the interface ones to yield the following interface
system:

S

(
δΦΓ,c

δΦΓ,v

)
=

(
(Id− S1c) δΦΓ,c − S1vδΦΓ,v

−S2cδΦΓ,c + (Id− S2v) δΦΓ,v

)
= g (4.54)

with:
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As usual in this context, once this system has been solved for (δΦc , δΦv)T , we obtain the values of the
purely internal unknowns by performing independent (i.e. parallel) local solutions:





δWn+1
1 = M−1

1 (b1 −M1cδΦΓ,c −M1vδΦΓ,v)

δWn+1
2 = M−1

2 (b2 −M2cδΦΓ,c −M2vδΦΓ,v)
(4.55)

Similarly to what has been done in section 4.1.4 for the solution of the Euler equations, the interface system
(4.54) is solved using a full GMRES method while the multigrid by volume agglomeration method introduced in
section 3.1 of chapter 3 is used to solved approximately the local systems (4.55).

4.2.3 Calculation of steady flows

In this section we apply the domain decomposition algorithm proposed in section 4.2.2 to the calculation of steady
viscous flows and make some comparisons with the global approach described in section 1.4.1 of chapter 1.
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4.2.3.1 Test cases definition

The test cases under consideration correspond to the calculation of external flows around a NACA0012 airfoil (see
figure 4.6). In addition to mesh N3 of table 4.3, a finer discretization has been considered: mesh N4 contains
194,480 vertices, 387,584 elements and 582,064 edges. The following situations have been considered :

S1 : the transonic flow characterized by a free-stream Mach number M∞ = 0.85 and an angle of attack θ = 0◦.
The Reynolds number based on the airfoil chord length is equal to Re = 2000. The time step is obtained
using the rule CFL=500× it where it denotes the time step number.

S2 : the subsonic flow characterized by M∞ = 0.8, θ = 10◦ and Re = 73. The time step is obtained using the
rule CFL=500× it.

S3 : the supersonic flow characterized by M∞ = 2.0, θ = 10◦ and Re = 106. The time step is obtained using
the rule CFL=50× it.

The above test cases have been taken from a GAMM workshop dedicated to the solution of the two-dimensional
Navier-Stokes equations for laminar viscous flows (see Bristeau et al.[88]). In each case, the calculation starts

from a uniform flow characterized by ρ0 = 1, u0 = 1, v0 = 0 and p0 =
1

γeM2
∞

. Similarly to what has been done

for the calculation of steady inviscid flows (see section 4.1.4.3), the results presented below are all characterized
by the fact that the local systems induced by the domain decomposition solver are solved approximately.

4.2.3.2 Computing platforms and conventions

Numerical experiments have been performed on a cluster of 14 dual node PCs (each PC is equipped with two
Pentium P3/500 Mhz and 512 Mb of SDRAM memory) running the Linux system and interconnected via an
Ethernet 100 Mbit/s switch. The MPI implementation is MPICH. The code is written in Fortran 77 and the
GNU G77 compiler has been used with maximal optimization options. Performance results are given for 64 bit
arithmetic computations. In the following tables, Np is the number of processes for the parallel execution (Np also
represents the number of subdomains); Ng is the total the number of grid levels (including the finest grid level)
used in the multigrid solver for local systems; ”# it” is the required number of pseudo-time steps to reach the
steady state (convergence to the steady state is monitored using the normalized energy residual); ”Total time”
denotes the total simulation time and ”CPU time” denotes the total CPU time (taken as the maximum value
of the local per process measures); ”% CPU” denotes the ratio of ”CPU time” to ”Total time”. The parallel
speedup S(Np) is always calculated using the elapsed execution times. Finally, the term ”linear threshold” is used
to characterize the accuracy of the linear system solves (i.e. the level of reduction of the initial linear residual).

4.2.3.3 S1 test case

Steady contour lines of the Mach number for this test case are shown on figure 4.15 (top figure). Performance
results are given in tables 4.8 and 4.9 for calculations that have been performed using meshes N3 and N4. The first
part of tables 4.8 and 4.9 is dedicated to global single grid computations. To be more precise, the original solver is
adopted (see section 1.4.1 of chapter 1) and the global implicit system of eq. (1.84) is solved approximately using
a Jacobi relaxation method (the corresponding strategy is denoted GLOB.a in the sequel). For this strategy,
we have observed that imposing a linear threshold εg = 10−1 at each time step results in the optimal non-linear
convergence to steady state (in other words, reducing εg to 10−2 or below did not result in a reduction of the total
simulation time). The second and third parts of tables 4.8 and 4.9 correspond to the application of the domain
decomposition method developed in the present study. Two strategies have been considered; they differ from
the complexity of the local solves: in the first strategy (denoted by DDM/MG.a) we impose the (local) linear
threshold to εl = 10−1 while the second strategy (denoted by DDM/MG.b) makes use of a constant complexity
of 3 V(2,2,2)-cycles for each local solve. For both cases, the linear threshold for the interface system solver (a full
GMRES method) is set to εi = 10−1 and the V(2,2,2)-cycle is characterized by 2 pre- and 2 post-smoothing steps
(the multigrid cycle is denoted by V(2,2,2)-cycle). In table 4.8, the parallel speedup is computed relatively to the
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Figure 4.15: Viscous flow around a NACA0012 airfoil
Steady Mach lines for the S1 (top) and S2 (bottom) test cases
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Figure 4.16: Viscous flow around a NACA0012 airfoil
Steady Mach lines for the S3 test case

elapsed time obtained for Np = 4. The non-linear convergence to steady-state for the three solution strategies
applied to mesh N3 and for Np = 24 are shown on figure 4.17 (top figure). Finally, table 4.9 summarizes results
of calculations performed using mesh N4 and Np = 16.

This first series of results calls for several comments:

• as expected, the domain decomposition solver outperforms the global implicit solver for large numbers of
subdomains only. For instance, for Np = 24, the elapsed time for the global solution strategy based on
the Jacobi solver is equal to 429 sec while the domain decomposition solver based on full GMRES for the
interface system and a constant number of V(2,2,2)-cycles for the local solutions, yields an elapsed time of
239 sec. In this case, a 44% reduction in the total simulation time is obtained;

• the most remarkable characteristic of the domain decomposition solvers is their parallel efficiency which is
here assessed by the ”% CPU” ratio. This quantity degrades significantly for the global implicit solver when
the number of subdomains is increased while it remains relatively high for the domain decomposition solver.
In the conditions of the previous comparison, the improvement on the “% CPU” ratio is equal to 16%;

• the measures obtained for mesh N4 show that the domain decomposition approach based on a fixed linear
threshold for the local solutions is much more costly than the global solution strategy. On the contrary,
when a constant number of V(2,2,2)-cycles is used for the local solutions, a reduction of only 5% is
obtained (while the corresponding measures for mesh N3 demonstrate a reduction of 27%). Higher gains
are expected for larger numbers of subdomains since the cost of the local solutions is so far dominating the
overall simulation time. Despite this fact, one can note that the parallel efficiency is approaching 98% for
the domain decomposition solver while it is not higher than 90% for the global solver;

• in this study, the full GMRES iteration applied to the solution of the interface system (4.54) does not make
use of any preconditioning technique. In this context, one may ask if this choice affects the scalability
properties of the domain decomposition solver. A partial answer is given here on figure 4.17 (bottom figure)
that shows the linear convergence of the domain decomposition solver based on a constant complexity of 3
V(2,2,2)-cycles for each local system solves. It is seen that the number of GMRES iterations slightly increases
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when switching from Np = 4 to Np = 24 subdomains. However, this behavior has to be correlated with
the fact that, in the present case, the interface systems are solved with a low accuracy therefore requiring
only a few GMRES iterations (6 in average).

Table 4.8: S1 test case - timings for the steady state calculation (mesh N3)
Global solution strategy (parallel Jacobi linear solver) versus DDM/MG strategy (full GMRES)

Method Np Ng # it CPU time Total time % CPU S(Np)

GLOB.a 4 1 73 1527 sec 1611 sec 95.0 1.0
6 1 73 976 sec 1081 sec 90.5 1.5
8 1 73 755 sec 856 sec 88.0 1.9
12 1 73 495 sec 615 sec 80.5 2.6
16 1 73 384 sec 512 sec 75.0 3.1
24 1 73 272 sec 429 sec 63.5 3.8

DDM/MG.a 4 5 71 1679 sec 1751 sec 96.0 1.0
6 5 72 1030 sec 1071 sec 96.0 1.6
8 5 73 869 sec 926 sec 94.0 1.9
12 5 74 599 sec 648 sec 92.5 2.7
16 5 76 446 sec 493 sec 90.5 3.5
24 4 78 286 sec 333 sec 86.0 5.3

DDM/MG.b 4 5 74 1296 sec 1320 sec 98.0 1.0
6 5 75 844 sec 871 sec 97.0 1.5
8 5 75 663 sec 681 sec 97.0 1.9
12 5 79 489 sec 517 sec 94.5 2.5
16 5 78 338 sec 372 sec 91.0 3.5
24 4 77 212 sec 239 sec 89.0 5.5

Table 4.9: S1 test case - timings for the steady state calculation (mesh N4)
Global solution strategy (parallel Jacobi linear solver) versus DDM/MG strategy (full GMRES)

Method Np Ng # it CPU time Total time % CPU

GLOB.a 16 1 151 3705 sec 4127 sec 90.0
DDM/MG.a 16 5 149 8338 sec 8535 sec 97.4
DDM/MG.b 16 5 161 3841 sec 3928 sec 98.0

4.2.3.4 S2 test case

Steady contour lines of the Mach number for this test case are shown on figure 4.15 (bottom figure). Performance
results are given in tables 4.10 and 4.11 for calculations that have been performed using meshes N3 and N4. The
selected solution strategies are basically the same than those considered for the S1 test case, except that for the
domain decomposition solver, we have only applied a solution strategy based on a fixed number of V(2,2,2)-cycles
for the local solutions (strategy DDM/MG.b). Concerning the calculations that have been performed using
mesh N3, the remarks made for the S1 test case are still valid. Note that the domain decomposition solver always
results in a lower number of pseudo-time steps to reach the steady state, except for Np = 12. In that case we
suspect that the partitioning of the global mesh has resulted in badly shaped subdomains with a direct impact
on the quality of the produced coarse meshes via the agglomeration principle. Then, a local solution strategy
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Figure 4.17: S1 test case - calculations with mesh N3

Top figure : non-linear convergence of the global and DDM/MG solvers
Bottom figure : linear convergence of the DDM/MG solver

for 4 and 24 subdomain decompositions
(εi = 10−1/local solutions: 3 V(2,2,2)-cycles)
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based on more than 3 V(2,2,2)-cycles is probably necessary to recover a convergence to the steady state in a
lower number of time iterations. The calculations based on mesh N4 show that the domain decomposition solver
is at least 3.3 times faster than the global solution strategy. For the latter, reducing the linear threshold from
εg = 10−1 (strategy GLOB.a) to εg = 10−2 (strategy GLOB.b) allows a faster convergence to steady state
at the expense of a 5% increase in the total simulation time.

Table 4.10: S2 test case - timings for the steady state calculation (mesh N1)
Global solution strategy (parallel Jacobi linear solver) versus DDM/MG strategy (full GMRES)

Method Np Ng # it CPU time Total time % CPU S(Np)

GLOB.a 4 1 90 1805 sec 1892 sec 95.5 1.0
6 1 90 1164 sec 1270 sec 91.5 1.5
8 1 90 876 sec 993 sec 88.5 1.9
12 1 90 598 sec 723 sec 83.0 2.6
16 1 90 450 sec 594 sec 76.0 3.2
24 1 90 322 sec 488 sec 66.0 3.9

DDM/MG.b 4 5 84 1287 sec 1311 sec 98.0 1.0
6 5 86 879 sec 896 sec 98.0 1.5
8 5 84 641 sec 658 sec 97.5 2.0
12 5 94 528 sec 552 sec 95.5 2.4
16 5 84 313 sec 331 sec 94.5 4.0
24 4 85 235 sec 261 sec 90.0 5.0

Table 4.11: S2 test case - timings for the steady state calculation (mesh N2)
Global solution strategy (parallel Jacobi linear solver) versus DDM/MG strategy (full GMRES)

Method Np Ng # it CPU time Total time % CPU

GLOB.a 16 1 125 6211 sec 6903 sec 90.0
GLOB.b 16 1 117 6527 sec 7255 sec 90.0

DDM/MG.b 16 5 116 2043 sec 2090 sec 97.5

4.2.3.5 S3 test case

Steady contour lines of the Mach number for this test case are shown on figure 4.16. Performance results are
given in tables 4.12 and 4.13 for calculations that have been performed using meshes N3 and N4. The first and
the second parts of tables 4.12 and 4.13 are dedicated to computations based on the global implicit solver. Here,
results are reported for two values of the linear threshold, εg = 10−1 (strategy GLOB.a) and εg = 10−2 (strategy
GLOB.b). As will be seen below, the second value is the one that results in the faster non-linear convergence to
steady state at the expense of total simulation times slightly higher than those obtained for the first value. The
third and fourth parts of tables 4.12 and 4.13 correspond to the application of the domain decomposition solver.
The strategies DDM/MG.a and DDM/MG.b introduced for the S1 test case have again been considered
here. Table 4.13 gives a set of results for calculations performed using mesh N4 and Np = 16. In table 4.8 the
parallel speedup is computed relatively to the elapsed times obtained for Np = 4. The non-linear convergence
to steady-state for the four solution strategies and for Np = 24 are presented on figure 4.18. In this figure, it is
clear that the global solution strategy with εg = 10−1, does not yield the correct convergence to steady state as
compared to the one exhibited by the domain decomposition solver. The domain decomposition solver based on
a constant number of V(2,2,2)-cycles for the local solutions is always yielding the shortest total simulation times.
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For instance, for the calculations based on mesh N3, a comparison between the global solution strategy relying
on the value εg = 10−2 for the linear threshold and the domain decomposition strategy that uses a constant
number of V(2,2,2)-cycles for the local system solves, shows a 66% reduction of the total simulation time for
Np = 24 (470 sec for the global solver and 161 sec for the domain decomposition solver). A similar comparison
for calculations based on mesh N4 and Np = 16 shows that the domain decomposition solver is 4.2 times faster
than the global solution strategy. For the latter, reducing the linear threshold from εg = 10−1 to εg = 10−2

allows a notable reduction in the number of time steps required to reach the steady state at the expense of a 36%
increase in the total simulation time.

Table 4.12: S3 test case - timings for the steady state calculation (mesh N1)
Global solution strategy (parallel Jacobi linear solver) versus DDM/MG strategy (full GMRES)

Method Np Ng # it CPU time Total time % CPU S(Np)

GLOB.a 4 1 155 1399 sec 1463 sec 95.5 1.0
6 1 155 916 sec 999 sec 91.5 1.5
8 1 155 670 sec 754 sec 89.0 2.0
12 1 155 454 sec 552 sec 82.5 2.6
16 1 155 323 sec 434 sec 74.0 3.4
24 1 155 244 sec 367 sec 66.5 4.0

GLOB.b 4 1 66 1690 sec 1769 sec 98.0 1.0
6 1 66 1103 sec 1212 sec 91.0 1.5
8 1 66 804 sec 937 sec 86.0 1.9
12 1 66 555 sec 689 sec 80.5 2.5
16 1 66 413 sec 552 sec 74.5 3.2
24 1 66 295 sec 470 sec 63.0 3.8

DDM/MG.a 4 5 57 1163 sec 1202 sec 97.0 1.0
6 5 58 764 sec 790 sec 96.5 1.5
8 5 57 554 sec 586 sec 94.5 2.0
12 5 63 419 sec 455 sec 92.0 2.6
16 5 57 251 sec 284 sec 88.0 4.2
24 4 58 177 sec 206 sec 86.0 5.8

DDM/MG.b 4 5 57 967 sec 979 sec 99.0 1.0
6 5 58 646 sec 661 sec 98.0 1.5
8 5 57 454 sec 472 sec 96.0 2.1
12 5 62 350 sec 369 sec 95.0 2.7
16 5 57 225 sec 243 sec 92.5 4.0
24 4 58 145 sec 161 sec 90.0 6.1

4.2.4 Calculation of unsteady flows

In this section we apply the domain decomposition algorithm proposed in section 4.2.2 to the calculation of
unsteady viscous flows. For this purpose, we consider the global implicit approach described in section 1.4.2
of chapter 1. It is clear that the method proposed in section 4.2.2 can be applied to each of the two steps of
eq. (1.94) characterizing the second order linearized implicit scheme under consideration. Indeed, at each step of
eq. (1.94), an interface system (4.54) can be formed and subsequently solved using a full GMRES method. In
the following, we consider and compare the performances of two parallel solution strategies:

• a global multigrid approach: the parallelized multigrid by volume agglomeration method (see section 3.1 of
chapter 3) is applied to the solution of the two linear systems resulting from eq. (1.94). In that case, the
Jacobi relaxation method is playing the role of the smoother in a multigrid V-cycle;

204



Table 4.13: S3 test case - timings for the steady state calculation (mesh N2)
Global solution strategy (parallel Jacobi linear solver) versus DDM/MG strategy (full GMRES)

Method Np Ng # it CPU time Total time % CPU

GLOB.a 16 1 208 4693 sec 5242 sec 89.5
GLOB.b 16 1 93 6420 sec 7152 sec 90.0

DDM/MG.a 16 5 93 2206 sec 2475 sec 89.0
DDM/MG.b 16 5 91 1677 sec 1715 sec 98.0
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Figure 4.18: S3 test case - calculations with mesh N1
Non-linear convergence of the global and DDM/MG solvers
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• an hybrid domain decomposition/multigrid method: the algorithm proposed in section 4.2.2 is used to solve
the interface systems resulting from the two steps of eq. (1.94). In that case, the multigrid by agglomeration
domain is used to solve the linear system obtained at each iteration of the GMRES method applied to the
solution of a given interface system. A point-wise Gauss-Seidel relaxation method is playing the role of the
smoother in a multigrid V-cycle.

4.2.4.1 Test case definition

The test case selected here consists in the numerical simulation of an unsteady flow around a NACA0012 airfoil.
The simulation starts from a uniform flow configuration characterized by:

- ρ0 = 1,

- ρ0u0 = cos(θ) and ρ0v0 = sin(θ) with θ = 20◦,

- E0 =
1

2
ρ0

(
u2

0 + v2
0

)
+

p0

γe − 1
with p0 =

ρ0

(
u2

0 + v2
0

)

γeM2
∞

.

The flow is assumed subsonic (the free-stream Mach number is equal to M∞ = 0.2) and laminar (Reynolds
number has been set to 2100). A global time step strategy is selected. In these conditions, after a transitory
phase, the flow exhibits a permanent regime characterized by a periodic shedding of vertices at the trailing edge
of the airfoil. The flow snapshots shown on figures 4.19 and 4.20 correspond to a particular time interval such
that the periodic regime is well established. The computational mesh contains 194,480 vertices, 387,584 elements
and 582,064 edges. The corresponding calculation has been performed for a constant CFL equal to 100 and has
required 1175 time steps. Note however that the execution times reported in the following tables correspond to
100 time steps.

4.2.4.2 Computing platforms and notational conventions

Numerical experiments have been performed on several clusters of PCs:

• a cluster consisting of 14 dual nodes Pentium III/500 Mhz and 19 dual nodes Pentium III/933 Mhz, with
512 Mb of SDRAM 133 Mhz each, interconnected by an Ethernet 100 Mbit/s switch.

• a cluster of 16 dual nodes Pentium IV/2 Ghz with 1 Gb of RDRAM 800 Mhz each, interconnected by an
Ethernet 1 Gbit/s switch.

• a cluster consisting of 216 HP e-vectra nodes (Pentium III/733 Mhz with 256 Mb of SDRAM 133 Mhz
each) interconnected by several Ethernet 100 Mbit/s switches.

• a cluster of 32 dual nodes Pentium III/1 Ghz with 512 Mb of SDRAM 133 Mhz each, interconnected by a
Myrinet 2 Gbit/s network.

All these clusters are running the Linux operating system. Performance results are given for 64 bit arithmetic
computations. The code is written in Fortran 77 and parallel programming relies on the MPICH implementation
of MPI. In the following tables and discussions, Np is the number of processes for the parallel execution (Np

also represents the number of subdomains), Nn is the number of processing nodes (since most of the clusters
described previously are based on dual boards, this figure will allow to make the distinction between calculations
using one or two processes on a given node in order to assess the impact of the local memory architecture), Ng

is the total number of grid levels (including the finest grid level) used in a multigrid solution strategy. Moreover,
”Total time” denotes the total (wall clock) simulation time and ”CPU time” stands for the corresponding total
CPU time taken as the maximum of the per process values. Finally, ”%CPU” is the ratio of the total CPU time
to the total wall clock time. The parallel speedup S(Np) is always calculated using the total wall clock times.

206



Figure 4.19: Unsteady flow around a NACA0012 airfoil
Unsteady density contour lines at various times
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Figure 4.20: Unsteady flow around a NACA0012 airfoil
Unsteady density contour lines at various times
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4.2.4.3 Solution methods

Here, the linear threshold ε is used to characterize the accuracy of the linear system solves. More precisely, ε
stands for the level of reduction of the normalized linear residual. The solution methods differ through the strategy
used for solving the linear systems obtained at each time step:

- MG : the parallelized multigrid method. A V(2,2,2) cycle has been selected (i.e, using 2 pre- and post-
smoothing iterations and 2 iterations for the solution of the problem on the coarsest grid level). The linear
threshold has been set to εmg = 10−1.

- DDM/MG.a : the hybrid domain decomposition/multigrid method where the GMRES method is used to
solve the interface problem with a linear threshold that has been set to εddm = 10−1. The local linear
systems obtained at each GMRES iteration are (approximately) solved using several V(2,2,2) multigrid
cycles with a (local) linear threshold that has been set to εmg = 10−1.

- DDM/MG.b : the DDM/MG.a strategy where the local systems are solved using only 1 V(2,2,2) multigrid
cycle, all other components and parameters being unchanged.

4.2.4.4 Assessment of solution accuracy

Given the above choices for solving the linear systems resulting form the implicit time integration scheme of section
1.4.2 of chapter 1, one important question is concerned with the overall accuracy of the computed unsteady flows.
A partial answer to this question is given on fig. 4.21 that depicts the evolution of the lift coefficient as a function
of the physical time for the numerical simulations corresponding to the selected solution methods. One important
point to note is that, despite its minimal constant complexity for the local solves, the DDM/MG.b solver
results in a physical solution which is very similar to the ones resulting from the application of the MG and
DDM/MG.b solvers.
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Figure 4.21: Unsteady flow around a NACA0012 airfoil
Evolution of the lift coefficient (Y-axis) versus time (X-axis)

4.2.4.5 Performance results

Performance results are summarized in tables 4.14 to 4.19. Note that for some clusters results are given for both
the GNU G77 and Portland Group PGF77 compilers. These results call for several comments:
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• the most remarkable characteristic of the proposed hybrid domain decomposition/multigrid method cer-
tainly is its parallel efficiency. Indeed, the ”%CPU” ratio degrades significantly for the multigrid (MG)
solver when the number of subdomains is increased while it remains relatively high for the hybrid domain
decomposition/multigrid solvers (DDM/MG.a and DDM/MG.b). The higher computational efficiency
of the DDM/MG.a solver is essentially due to a better computation/communication ratio since, in most
cases, several V(2,2,2) multigrid cycles are required to reach the prescribed linear threshold (i.e εmg = 10−1).
Note that, for a given partition, the number of V(2,2,2) cycles may vary from one subdomain to another
due to different local flow features. In contrast, the values of the parallel speedup are often better for the
DDM/MG.b solver which is characterized by a constant complexity for the local solves. On the cluster of
Pentium III/733 Mhz nodes with Ethernet 100 Mbit/s interconnection (table 4.19), the overall gain resulting
from the hybrid domain decomposition/multigrid strategy reaches 27% for the DDM/MG.a solver and
13% for the DDM/MG.b when Np = 112.

• The performance gap between the MG and DDM/MG solvers is particularly evident for the measures
obtained with the PGF77 compiler. For instance, for the calculations performed on the cluster of Pentium
III/933 Mhz nodes with Ethernet 100 Mbit/s interconnection (tables 4.15 and 4.16), the CPU time of the
MG solver when Np = Nn = 14 is equal to 523 sec for the G77 compiler and 360 sec for the PGF77
compiler. However, the corresponding wall clock times are respectively equal to 626 sec and 643 sec and
the ”%CPU” degrades from 83.6% to 56.0%. In comparison, the measures obtained for the DDM/MG.b
solver are 655 sec/672 sec (CPU/REAL) for the G77 compiler and 626 sec/746 sec for the PGF77 compiler.
In that case the CPU utilization degrades from 97.5% to 83.4%. It is worthwhile to note that the results
obtained on the cluster of Pentium III/1 Ghz nodes with Myrinet 2 Gbit/s interconnection (see table
4.17) are consistently better and in favour of the MG solver even though the performance gap with the
DDM/MG.b solver decreases as the number of processes increases.

• As a general rule, the parallel speedups are better for the calculations for which only one process is running
on each computational node. This is easily explained by the fact that the numerical kernels considered
here are essentially those characterizing sparse matrix computations with irregular and indirect addressing
of data in memory. Moreover, the size of L2 caches is relatively small (256 Kb or 512 Kb depending on
the processor type). Therefore, the characteristics of RAM memory and memory bus plays a major role
in the achievable speedup on a given dual node. Comparing the CPU times obtained for Np = Nn = 14
and Np = 14 with Nn = 7 shows a performance degradation ranging from 24% to 26% on the cluster of
Pentium III/1 Ghz nodes with Myrinet 2 Gbit/s interconnection and, from 14.5% to 16.5% on the cluster of
Pentium IV/2 Ghz with Ethernet 1 Gbit/s interconnection. It is clear that the RDRAM of the Pentium IV
based node has a notable impact on the achievable floating point performance for the sparse type operations
characterizing the underlying flow solver.
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Table 4.14: Cluster of Pentium III/500 Mhz (Ethernet 100 Mbit/s interconnection)
G77 compiler using -O3 -ffast-math -static options

Method Np Nn Ng CPU time Total time % CPU S(Np)

MG 7 4 5 1203 sec 1257 sec 95.7% 1.00
- 14 7 4 584 sec 629 sec 92.9% 1.99
- 28 14 4 323 sec 369 sec 87.6% 3.50

MG 7 7 5 973 sec 1012 sec 96.2% 1.00
- 14 14 4 488 sec 515 sec 94.8% 1.96

DDM/MG.a 7 4 5 2912 sec 2954 sec 98.6% 1.00
- 14 7 4 1825 sec 1865 sec 97.9% 1.58
- 28 14 4 933 sec 1013 sec 92.1% 2.92

DDM/MG.a 7 7 5 2171 sec 2246 sec 96.7% 1.00
- 14 14 4 1472 sec 1500 sec 98.2% 1.49

DDM/MG.b 7 4 5 1780 sec 1815 sec 98.1% 1.00
- 14 7 4 1010 sec 1042 sec 97.0% 1.74
- 28 14 4 500 sec 520 sec 96.2% 3.49

DDM/MG.b 7 7 5 1403 sec 1425 sec 98.5% 1.00
- 14 14 4 807 sec 827 sec 97.6% 1.72

Table 4.15: Cluster of Pentium III/933 Mhz (Ethernet 100 Mbit/s interconnection)
G77 compiler using -O3 -ffast-math -static options

Method Np Nn Ng CPU time Total time % CPU S(Np)

MG 7 4 5 1066 sec 1134 sec 94.0% 1.00
- 14 7 4 545 sec 696 sec 78.3% 1.63
- 28 14 4 301 sec 555 sec 54.3% 2.05

MG 7 7 5 1040 sec 1111 sec 93.7% 1.00
- 14 14 4 523 sec 626 sec 83.6% 1.77

DDM/MG.a 7 4 5 2824 sec 2902 sec 97.4% 1.00
- 14 7 4 1795 sec 1857 sec 96.7% 1.56
- 28 14 4 927 sec 1048 sec 88.5% 2.77

DDM/MG.a 7 7 5 2687 sec 2739 sec 98.1% 1.00
- 14 14 4 1660 sec 1690 sec 98.5% 1.62

DDM/MG.b 7 4 5 1664 sec 1696 sec 98.2% 1.00
- 14 7 4 1075 sec 1103 sec 97.5% 1.54
- 28 14 4 490 sec 577 sec 85.0% 2.94

DDM/MG.b 7 7 5 1134 sec 1154 sec 98.3% 1.00
- 14 14 4 655 sec 672 sec 97.5% 1.71
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Table 4.16: Cluster of Pentium III/933 Mhz (Ethernet 100 Mbit/s interconnection)
PGF77 compiler using -pc 64 -fast -Mvect -Mdalign options

Method Np Nn Ng CPU time Total time % CPU S(Np)

MG 7 4 5 1077 sec 1279 sec 84.3% 1.00
- 14 7 4 563 sec 928 sec 60.7% 1.38
- 28 14 4 315 sec 1028 sec 30.6% 1.24

MG 7 7 5 697 sec 812 sec 85.8% 1.00
- 14 14 4 360 sec 643 sec 56.0% 1.26

DDM/MG.a 7 4 5 2863 sec 2959 sec 96.8% 1.00
- 14 7 4 1833 sec 1998 sec 91.8% 1.48
- 28 14 4 974 sec 1217 sec 80.0% 2.43

DDM/MG.a 7 7 5 1801 sec 1837 sec 98.0% 1.00
- 14 14 4 1203 sec 1327 sec 90.7% 1.38

DDM/MG.b 7 4 5 1665 sec 1740 sec 95.7% 1.00
- 14 7 4 1010 sec 1152 sec 87.7% 1.51
- 28 14 4 523 sec 724 sec 72.3% 2.40

DDM/MG.b 7 7 5 1200 sec 1258 sec 95.4% 1.00
- 14 14 4 626 sec 746 sec 83.4% 1.69

Table 4.17: Cluster of Pentium III/1 Ghz (Myrinet 2 Gbit/s interconnection)
PGF77 compiler using -pc 64 -fast -Mvect -Mdalign options

Method Np Nn Ng CPU time Total time % CPU S(Np)

MG 14 7 4 403 sec 404 sec 99.7% 1.00
- 28 14 4 222 sec 223 sec 99.5% 1.81
- 56 28 4 135 sec 136 sec 99.2% 2.97

MG 14 14 4 306 sec 307 sec 99.6% 1.00
- 28 28 4 166 sec 167 sec 99.4% 1.84

DDM/MG.a 14 7 4 1379 sec 1381 sec 99.8% 1.00
- 28 14 4 775 sec 776 sec 99.8% 1.78
- 56 28 4 385 sec 386 sec 99.7% 3.58

DDM/MG.a 14 14 4 1045 sec 1046 sec 99.9% 1.00
- 28 28 4 586 sec 587 sec 99.8% 1.78

DDM/MG.b 14 7 4 740 sec 742 sec 99.7% 1.00
- 28 14 4 365 sec 366 sec 99.7% 2.00
- 56 28 4 192 sec 193 sec 99.5% 3.84

DDM/MG.b 14 14 4 545 sec 546 sec 99.8% 1.00
- 28 28 4 274 sec 275 sec 99.6% 1.98
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Table 4.18: Cluster of Pentium IV/2 Ghz (Ethernet 1 Gbit/s interconnection)
G77 compiler using -O3 -ffast-math -static options

Method Np Nn Ng CPU time Total time % CPU S(Np)

MG 7 4 5 403 sec 422 sec 95.5% 1.00
- 14 7 4 182 sec 197 sec 92.4% 2.14
- 28 14 4 93 sec 110 sec 84.6% 3.84

MG 7 7 5 345 sec 359 sec 96.1% 1.00
- 14 14 4 152 sec 165 sec 92.2% 2.17

DDM/MG.a 7 4 5 958 sec 980 sec 97.8% 1.00
- 14 7 4 617 sec 629 sec 98.1% 1.56
- 28 14 4 310 sec 334 sec 92.8% 2.93

DDM/MG.a 7 7 5 832 sec 853 sec 97.6% 1.00
- 14 14 4 529 sec 538 sec 98.4% 1.58

DDM/MG.b 7 4 5 605 sec 617 sec 98.1% 1.00
- 14 7 4 332 sec 343 sec 96.8% 1.80
- 28 14 4 155 sec 164 sec 94.6% 3.76

DDM/MG.b 7 7 5 521 sec 542 sec 96.2% 1.00
- 14 14 4 284 sec 292 sec 97.3% 1.85

Table 4.19: Cluster of Pentium III/733 Mhz (Ethernet 100 Mbit/s interconnection)
G77 compiler using -O3 -ffast-math -static options

Method Np Nn Ng CPU time Total time % CPU S(Np)

MG 28 28 4 253 sec 331 sec 76.5% 1.00
- 56 56 4 134 sec 210 sec 63.9% 1.58
- 112 112 3 98 sec 212 sec 46.3% 1.56

DDM/MG.a 28 28 4 810 sec 910 sec 89.0% 1.00
- 56 56 4 398 sec 463 sec 86.0% 1.97
- 112 112 3 209 sec 285 sec 73.5% 3.19

DDM/MG.b 28 28 4 391 sec 460 sec 85.0% 1.00
- 56 56 4 193 sec 255 sec 75.7% 1.80
- 112 112 3 103 sec 174 sec 59.2% 2.65
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4.3 Conclusion

These last ten years, the design of domain decomposition methods for the solution of hyperbolic and mixed
hyperbolic/parabolic systems of PDEs has been the subject of active researches. Without entering into all the
details, one can reasonably state that such studies fall into one of the two following categories:

• development of domain decomposition solvers based on appropriate formulations at the continuous level,
Quarteroni and Stolcis[116], Quarteroni and Valli[118] and Paraschivoiu[112].

• methods that exploit domain decomposition approach to construct a parallel (additive) preconditioner
(Schwarz or Schur complement type formulations) to a linear or non-linear system of equations, see among
others Barth et al.[9], Cai et al.[19]-[20]-[21], Tidriri[136], Wu et al.[146] and Sala[125].

In this chapter, we have described our contributions concerning the development and analysis of domain
decomposition methods for the solution of the two-dimensional Euler and Navier-Stokes equations modeling
compressible inviscid and laminar viscous flows. The common framework of the methods proposed here consists
in the formulation of an additive Schwarz algorithm involving transmission conditions that are derived from
the weak formulation of the underlying boundary value problem. In the case of inviscid flows, these interface
conditions are equivalent to requiring the continuity of the components of the normal convective flux. For laminar
viscous flows, the interface conditions generalize the one used for the Euler conditions by imposing in addition
the continuity of the components of the normal viscous flux.

For the purely hyperbolic system of PDEs given by the Euler equations, we have studied the convergence
of the proposed additive Schwarz algorithm. By considering the linearized equations and assuming a specific
type of decomposition of the real space, it is possible to apply Fourier analysis to obtain an explicit expression
of the convergence rate of the additive Schwarz algorithm. Both two- and three-dimensional equations have
been treated as well as overlapping and non-overlapping domain decompositions. However, this study has been
limited to two- and three-subdomain decompositions. Experimental results have been provided for the numerical
solution of the two-dimensional Euler equations using an implementation of the additive Schwarz algorithm in
the context of the finite volume formulation on triangular meshes described in section 1.2.1 of chpater 1. This
implementation of the Schwarz algorithm is based on a non-overlapping element-based partitioning where the
elements are the finite volume cells. In general, the experimental results are in qualitative agreement with those
characterizing the convergence analysis of an overlapping Schwarz algorithm in the continuous case. Recently
[42], we have conducted a similar convergence analysis at the discrete level assuming a finite volume formulation
on a quadrilateral grid. This study has allowed us to further explain the behavior obtained experimentally.

The second part of this chapter has been devoted to the calculation of inviscid and laminar viscous flows in
the context of the mixed element/volume formulation on triangular meshes described in section 1.2.1 of chapter
1. In the latter case, both steady and unsteady flows have been considered. Discrete counterparts of the domain
decomposition solvers formulated in the continuous case have been developed in conjunction with first order and
second order implicit linearized schemes for the time integration of the Euler and Navier-Stokes equations. A
distinctive feature of our implementation is the use of a multigrid by agglomeration technique for the solution
of the local problems obtained at each iteration of the interface system solver. By doing so, we obtain hybrid
domain decomposition/multigrid methods for the solution of the sparse linear systems obtained at each implicit
time step. Such a method can also be viewed as a particular form of parallel multigrid in which multigrid
acceleration is applied to the iterative solution of the local linear systems induced by a Schwarz type domain
decomposition algorithm. In this study, we have investigated numerically the effect of an approximate solution
of local problems on the overall efficiency of the domain decomposition solver. In practice, this strategy does
not affect the convergence of the domain decomposition solver and actually is mandatory to make the domain
decomposition solver competitive with classical (global) monogrid or multigrid solution techniques. As a matter
of fact, the results presented here have shown that, for a sufficiently large number of subdomains, the resulting
domain decomposition solvers are more efficient than classical global solution strategies: first, higher parallel
efficiencies are obtained because of reduced communication costs, especially when the number of subdomains is
increased; second, the use of a multigrid principle for the local system solves largely contributes to improve the
numerical efficiency of the domain decomposition solvers.
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The performances of these hybrid domain decomposition/multigrid methods have been evaluated from the
numerical and parallel efficiency viewpoints, using several clusters of PCs with different computational nodes and
interconnection networks. For clusters of PCs based on a high performance network such as Myrinet, the use of
a hybrid domain decomposition/multigrid (DDM/MG) method is questionable since a global parallel multigrid
(MG) method scales reasonably well and simulations times are always in favor of this method. However, we note
that, as the number of subdomains increases, the gap between the hybrid DDM/MG and global MG methods
decreases which suggest that for larger numbers of subdomains than the maximum value considered here for this
type of cluster, the hybrid DDM/MG method will outperform the global MG method. For the other types of
clusters which are all based on Ethernet 100 Mbit/s or Ethernet 1 Gbit/s interconnections, performance results
show that the hybrid DDM/MG method consistently demonstrate higher parallel efficiencies than the global
MG method. In addition, when the complexity of the local solves is set to a fixed number of multigrid cycles, the
resulting hybrid DDM/MG method becomes a viable alternative to the global MG method from the point of
view of the total simulation time. It is expected that experimental results will be even more in favor of the hybrid
DDM/MG method in the context of the solution of 3D flows which will be the focus of our future works.

Acknowledgements. The cluster of HP e-vectra (Pentium III/733 Mhz) nodes is located at IMAG in Grenoble.
The cluster of Pentium III/1 Ghz nodes with Myrinet interconnection is located at the CEMEF laboratory of Ecole
des Mines in Sophia Antipolis. The other clusters are located at the INRIA center in Sophia Antipolis.
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Conclusions and perspectives

In this document, I have described several research projects in which I have been involved while I was a member of
the Sinus team at INRIA Sophia Antipolis. This covers the period from November 1993 to October 2000. Some
of these works are currently the subject of further studies and developments in various contexts.

As mentioned in section 3.1 of chapter 3, the developments concerning the linear multigrid by volume agglom-
eration method for the acceleration of three-dimensional flow calculations on unstructured meshes took place in
the N3S-NATUR industrial CFD software. However, at the time of this study, the monogrid version of this software
was still evolving to include complex physical models such as chemical reactions for combustion problems and
additional numerical ingredients for turbomachinery and combustion engine applications. These physical and nu-
merical features were not fully taken into account in our contributions that, from this point of view, have resulted
in a pre-industrial multigrid version of N3S-NATUR. Thanks to the encouraging results demonstrated in this study
for some typical industrial calculations, the multigrid version of N3S-NATUR is now considered for several upgrades
that are conducted by Snecma and Simulog.

With regards to the non-linear multi-mesh multigrid algorithms discussed in section 3.3 of chapter 3, we first
note that additional research and development activities have been conducted in order to extend the applicability
of these algorithms to laminar viscous flows[27] and turbulent viscous flows[126]. In the case of turbulent viscous
flows, a specific study was concerned with the assessment of the performances of the FAS-MG and FMG algorithms
in conjunction with highly stretched meshes[17]. Finally, it is worthwhile to mention that the software kernels
resulting from the IDeMAS are currently exploited by some of the industrial partners of the project: Daimler-Benz
Aerospace (DASA) has adopted THOR as a component of their suite of CFD simulation codes whereas Dassault
Aviation has integrated the multigrid oriented modules within their finite element unstructured mesh flow solver
based on SUPG and MDHR schemes.

Domain decomposition methods for the solution of hyperbolic and mixed hyperbolic/parabolic systems of
PDEs are still the subject of active studies worldwide. Our contributions in this field and more particularly, for the
numerical resolution of the systems of Euler and Navier-Stokes equations modeling compressible flows, have been
described in chapter 4 and are currently continuing to evolve in collaboration with V. Dolean (University of Evry
and CMAP, Ecole Polytechnique, Palaiseau) and F. Nataf (CMAP). Two main objectives are pursued: (1) the
design of domain decomposition methods for the calculation of three-dimensional flows and, (2) the construction
of optimized interface conditions for the acceleration of the convergence of additive Schwarz algorithms in the
context of inviscid flows. Clearly, the first point consists in the extension of the algorithms proposed in sections
4.1.4, 4.2.3 and 4.2.4 to the solution of the three-dimensional systems of Euler and Navier-Stokes equations. This
will be done in the context of an exsisting parallel flow solver[84] which is based on the mixed finite element/volume
approximation method on unstructured tetrahedral meshes discussed in section 1.2.1 of chapter 1. Moreover, both
overlapping and non-overlapping additive Schwarz algorithms will be studied. For what concern the second point,
the goal is to study optimized interface conditions for the system of Euler equations in the spirit of works previously
done for a convection/diffusion problem[76]-[77]. Preliminary results in this direction are presented in [41].

In November 2000, I moved from the Sinus team to the Caiman team at INRIA Sophia Antipolis. The research
activities undertaken in the Caiman team aim at designing, analyzing and implementing numerical methods for
the simulation of wave propagation phenomena characterizing electromagnetic, elastodynamic and aeroacoustic
problems. The numerical methods at the heart of these studies are directly inspired from those previsouly designed
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for CFD applications. For instance, several contributions of the Caiman team are concerned with finite volume
type approximations on unstructured meshes for the solution of the time domain Maxwell equations which is
a hyperbolic system of PDEs. While the first works were conducted using upwind schemes[31], the focus is
actually on centered finite volume[114] and discontinuous Galerkin[113] schemes. The stability of these schemes
is demonstrated thanks to the conservation of a discrete form of the electromagnetic energy. These finite volume
time domain (FVTD) schemes represent viable alternatives to the well know finite difference time domain (FDTD)
method due to Yee[149] whose application is essentially limited to uniform or locally refined cartesiang grids. In
this context, several new research topics could also benefit from some of the works that have been reported in this
document. Two examples of such topics that will be part of my near future research activities are (1) the design of
implicit time integration schemes for the time domain Maxwell equations in conjuction with the above cited FVTD
methods and, (2) the construction of domain decomposition methods for the coupling of non-matching, regular
(for the FDTD method) and irregular (for FVTD methods) meshes. Moreover, one emerging domain of application
of computational electromagnetism is concerned with the study of the interaction between electromagnetic fields
and living tissues for biological[2], environmental safety and therapeutic or diagnostic medical issues[122]. In
addition to their societal implication, these applications define challenging problems for numerical methods such
as those discussed here since they involve highly heterogenous media and irregular computational domains (e.g.
human head tissues in the numerical dosimetry of radio-frequency fields issued from mobile phones). Finally, from
the implementation viewpoint, the availability of parallel platforms consisting of clusters of multiprocessor nodes
motivate the study of hybrid parallel paradigms mixing shared memory programming, through OpenMP directives,
and message passing programming, via MPI. It is worthwhile to note that such architectures should also lead to
the development of new parallel algorithms combining numerical kernels that are individually well suited to one
of these two parallel programming models.
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Méthodes numériques performantes en maillages non-structurés et applica-
tions en mécanique des fluides compressibles

Résumé
De nos jours, la simulation numérique est couramment utilisée pour étudier des phénomènes physiques de
plus en plus complexes. Les puissances de calcul et taille mémoire nécessaires au traitement informatique des
systèmes d’équations aux dérivées partielles (EDPs) modélisant ces phénomènes ont conduit à l’utilisation quasi
systèmatique de calculateurs parallèles. Afin d’exploiter efficacement les capacités des ces ordinateurs, des travaux
de recherche spécifiques doivent être menés qui combinent des aspects allant de la programmation parallèle
jusqu’à l’analyse numérique. Il s’agit, d’une part, de développer des programmes informatiques démontrant des
accélérations parallèles quasi optimales et, d’autre part, de mettre au point de nouvelles méthodes numériques
parfaitement adaptées à ce type d’architecture de calcul. Les travaux présentés ici illustrent une telle démarche
dans le contexte de la résolution numérique des systèmes d’EDPs de la mécanique des fluides compressibles.
Nous nous intéressons plus particulièrement à des méthodes numériques reposant sur l’utilisation de maillages
non-structurés. Nos contributions portent à la fois sur l’évaluation de stratégies de parallélisation pour ce type de
méthodes mais aussi sur la mise au point de méthodes de résolution parallèles des systèmes algébriques résultant
de la discrétisation des systèmes d’EDPs en question.

Mots-clés: équations d’Euler, équations de Navier-Stokes, élément fini, volume fini, maillage non-structuré,
méthode multigrille, méthode de décomposition de domaine, calcul parallèle.

High-performance numerical methods on unstructured meshes with applica-
tions to compressible fluid dynamics

Abstract
Nowadays, numerical simulation is routinely used to study physical phenomena of ever increasing complexity. The
computational power and memory capacity that are required for the computer treatment of the systems of partial
differential equations (PDEs) modeling these phenomena are such that the use of parallel computing platforms
has quickly become essential. In order to fully benefit from the capabilities of those computers, specific reserach
activities have to be undertaken that address various topics ranging from computer science concerns to more
numerical analysis issues. On one hand, the goal is to develop computer programs that demonstrate optimal
parallel speedups. On the other hand, it is necessary to design new numerical methods that are well adapted
to this type of computer architecture. In this document, we illustrate these two aspects in the context of the
numerical solution of the system of PDEs modeling compressible flows. We consider numerical methods that work
with unstructured finite element type discretizations of the underlying computational domain. Our contributions
are concerned with both the study of parallelization strategies for existing methods and the construction of parallel
algorithms for the resolution of the algebraic systems resulting from the discretization of the underlying systems
of PDEs.

Keywords: Euler equations, Navier-Stokes equations, finite element, finite volume, unstructured mesh, multigrid
method, domain decomposition method, parallel computing.
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