HPC for the study of health issues resulting from the exposure of humans to electromagnetic fields

Tristan Cabel and Stéphane Lanteri

NACHOS project-team, INRIA Sophia Antipolis - Méditerranée 06902 Sophia Antipolis Cedex, France Stephane.Lanteri@inria.fr

International Conference for High Performance Computing, Networking, Storage and Analysis (SC10) New Orleans, Louisiana, November 13-19, 2010

Societal context

Year	2003	2004	2005	2006	2007	2008	2009
# users (×10 ⁶)	41.6	43.8	48.1	51.7	55.4	58.1	61.4
% active population	69.1	72.6	78.4	80.8	85.6	89.1	95.8

As of 2008,

- 71% of 12-14 years old kids owned a mobile phone,
- 95% coverage of the 15-17 years olds.

ElectroMagnetic (EM) waves in our environment

- Natural sources (earth magnetic field, etc.)
- Manmade sources
 - Domestic appliances: TV, radio, microwave ovens, hairdryers, fridges, etc.
 - Technological devices: mobile phones, Wi-Fi, etc.

Characterization of EM fields and related effects

- An EM field is characterized by its frequency (Hz, MHz, GHz)
- Ionising radiation
 - Upper part of the frequency spectrum
 - Can induce changes at the molecular level
 - x-rays and gamma rays
- Non-ionising radiation
 - Lower part of the frequency spectrum
 - Static and power frequency fields, radiofrequencies, microwaves and infrared radiation

Basic physiological processes

• Energy from radio-frequency fields is absorbed into the body

SAR (Specific Absorption Rate): $\frac{\sigma |\mathbf{E}|^2}{2}$

- Energy is converted to heat
- Energy is dissipated by the body's normal thermoregulatory process

Health issues related to hand-held mobile phones

- Biological effects versus sanitary effects
 - Biological effects: physiological, biochemical or behavioral changes induced in a body, tissue or cell by an external source
 - A biological effect does not necessarily represent a risk for human health
 - Sanitary effects: consequences of biological effects that change the normal behavior of a body
- Thermal effects versus non-thermal effects
 - A thermal effect results from a local or systemic heating of a tissue
 - Thermal effects are relatively well known
 - Ongoing studies are concerned with non-thermal effects

Health issues related to hand-held mobile phones

- Epidemiological studies
 - Possible links with various cancers
- Experimental studies
 - Dosimetry of animal exposure
 - In vivo and in vitro studies
- Computer simulation studies
 - Numerical dosimetry of EM fields
 - Maxwell equations for space-time evolution of the electromagnetic field (E,H)
 - Electromagnetic characteristics of the propagation media ε, σ and ρ are varying accross tissues They also depend on the frequency of the signal
 - Discontinuities of E and H occur at interfaces between different tissues
 - Evaluation of temperature elevation in tissues
 - · Bioheat equation for the steady state temperature

Cartesian grid methods (FDTD : Finite Difference Time Domain)

Advantages

- Easy computer implementation
- Computationally efficient (very low algorithmic complexity)
- Mesh generation is straightforward (medical images are voxel based)
- Modelization of complex sources (antennas, thin wires, etc.) is well established

Drawbacks

- Accuracy on non-uniform discretizations
- Memory requirements for high resolution models
- Approximate discretization of boundaries (staircase representation)

• FDTD is the prevalent approach for the numerical dosymetry analysis of mobile phone radiation

- P. Bernardi et al. (U. La Sapienza, Roma, Italy)
- O.P. Gandhi et al. (U. of Utah, USA)
- J. Wiart et al. (FTR&D, France)
- etc.

Geometric models

- Built from segmented medical images
- Extraction of surfacic (triangular) meshes of the tissue interfaces using specific tools
 - Marching cubes + adaptive isotropic surface remeshing
 - Delaunay refinement
- Generation of tetrahedral meshes using a Delaunay/Voronoi tool

Computational electromagnetics

- Challenges with the simulation of electromagnetic (EM) wave propagation in biological tissues
 - Geometrical characteristics of the propagation domain:
 - · dimensions relatively to the wavelength,
 - irregularly shaped objects and singularities.
 - Physical characteristics of the propagation medium:
 - heterogeneity and anisotropy,
 - physical dispersion and dissipation.
 - Characteristics of the radiating sources and incident fields

James Clerk Maxwell (1831-1879)

Overall objective of this study and numerical approach

- Development of a flexible and efficient finite element simulation tool adapted to hybrid CPU-GPU
 parallel systems for the study of 3D electromagnetic wave propagation problems in complex
 domains and heterogeneous media
- Application to the numerical dosimetry of EM fields
 - Industrial partner: Orange Labs (Joe Wiart, Issy-les-Moulineaux, France)
- Numerical ingredients
 - Unstructured meshes (triangles in 2D, tetrahedra in 3D)
 - Discontinuous Galerkin Time-Domain method with polynomial interpolation (DGTD-P_p method)
 - Can easily deal with discontinuous coefficients and solutions
 - · Can handle unstructured, non-conforming meshes
 - Yield local finite element mass matrices
 - · High order accurate methods with compact stencils
 - Naturally lead to discretization (h-) and interpolation order (p-) adaptivity
 - Amenable to efficient parallelization
 - Explicit time stepping

Discretization in space

Time-domain Maxwell equations

 $\begin{cases} \varepsilon \partial_t \mathbf{E} - \nabla \times \mathbf{H} = \mathbf{0} \\ \\ \mu \partial_t \mathbf{H} + \nabla \times \mathbf{E} = \mathbf{0} \end{cases}$

$$\mathbf{E} = {}^{\mathrm{T}}(E_x, E_y, E_z)$$
 and $\mathbf{H} = {}^{\mathrm{T}}(H_x, H_y, H_z)$

Weak formulation

• Triangulation of
$$\Omega$$
: $\overline{\Omega_h} \equiv \mathscr{T}_h = \bigcup_{\tau_i \in \mathscr{T}_h} \overline{\tau}_i$

• Approximation space: $V_h = \{ \mathbf{V}_h \in L^2(\Omega)^3 \mid \forall i, \mathbf{V}_{h|\tau_i} \equiv \mathbf{V}_i \in \mathbb{P}_{p_i}(\tau_i)^3 \}$

$$\begin{aligned} & \iiint_{\tau_i} \vec{\varphi} \cdot \varepsilon_i \partial_t \mathbf{E}_i d\omega &= \frac{1}{2} \iiint_{\tau_i} (\nabla \times \vec{\varphi} \cdot \mathbf{H}_i + \nabla \times \mathbf{H}_i \cdot \vec{\varphi}) d\omega - \frac{1}{2} \sum_{k \in \mathscr{V}_i} \iiint_{a_{ik}} \vec{\varphi} \cdot (\mathbf{H}_k \times \vec{n}_{ik}) ds \\ & \iiint_{\tau_i} \vec{\varphi} \cdot \mu_i \partial_t \mathbf{H}_i d\omega &= -\frac{1}{2} \iiint_{\tau_i} (\nabla \times \vec{\varphi} \cdot \mathbf{E}_i + \nabla \times \mathbf{E}_i \cdot \vec{\varphi}) d\omega + \frac{1}{2} \sum_{k \in \mathscr{V}_i} \iint_{a_{ik}} \vec{\varphi} \cdot (\mathbf{E}_k \times \vec{n}_{ik}) ds
\end{aligned}$$

Global EDO system

$$\mathbf{M}^{\varepsilon}\frac{d\mathbb{E}}{dt} = \mathbf{G}\mathbb{H} \text{ and } \mathbf{M}^{\mu}\frac{d\mathbb{H}}{dt} = -{}^{\mathsf{T}}\mathbf{G}\mathbb{E}$$

- G = K A B
- \mathbf{M}^{ε} are \mathbf{M}^{μ} block diagonal symmetric definite positive matrices
- K is a block diagonal symmetric matrix
- A is a block sparse symmetric matrix
- B is a block sparse skew symmetric matrix

Leap-Frog based explicit time integration

$$\mathbf{M}^{\varepsilon} \left(\frac{\mathbb{E}^{n+1} - \mathbb{E}^{n}}{\Delta t} \right) = \mathbf{G} \mathbb{H}^{n+\frac{1}{2}}$$
$$\mathbf{M}^{\mu} \left(\frac{\mathbb{H}^{n+\frac{3}{2}} - \mathbb{H}^{n+\frac{1}{2}}}{\Delta t} \right) = -^{\mathrm{T}} \mathbf{G} \mathbb{E}^{n+\frac{1}{2}}$$

Implementation

The DGTD method is an iterative algorithm that computes at each time step the evolution of the electric and magnetic fields

Each iteration can be decomposed into 4 steps applied at the tetrahedron level

intVolume : computes the volume integral,

$$\frac{1}{2} \iiint_{\tau_i} (\nabla \times \vec{\varphi} \cdot \mathbf{H}_i + \nabla \times \mathbf{H}_i \cdot \vec{\varphi}) d\omega$$

intSurface : computes the surface integral for internal faces $a_{ik} = \tau_i \cap \tau_i$,

$$\frac{1}{2}\sum_{k\in\mathscr{V}_i}\iint_{a_{ik}}\vec{\varphi}\cdot(\mathbf{H}_k\times\vec{n}_{ik})ds$$

IntSurfaceBdry : computes the surface integral (same as above) for boundary faces UpdateEM : updates the electromagnetic field

Initial implementation for CPU based systems

intVolume : loop over mesh elements τ_i

$$\mathbf{F}_{\tau_i} = \frac{1}{2} \iiint_{\tau_i} (\nabla \times \vec{\varphi} \cdot \mathbf{H}_i + \nabla \times \mathbf{H}_i \cdot \vec{\varphi}) d\omega$$

 \Rightarrow Update flux balance of element τ_i

intSurface and IntSurfaceBdry : loop over mesh faces $a_{ik} = \tau_i \cap \tau_i$

$$\mathsf{F}_{a_{ik}} = -\mathsf{F}_{a_{ki}} = rac{1}{2} \sum_{k \in \mathscr{V}_i} \iint_{a_{ik}} ec{arphi} \cdot (\mathsf{H}_k imes ec{n}_{ik}) ds$$

 \Rightarrow Update flux balance of elements τ_i and τ_i

UpdateEM : loop over mesh elements τ_i

 \Rightarrow Exploit flux balance of element τ_i

Specific adaptations for GPU computing

- Perform intSurface and IntSurfaceBdry at the element level
 - \Rightarrow Implies redundant calculation of $\mathbf{F}_{a_{ik}}$ and $\mathbf{F}_{a_{ki}}$
- All operations are now implemented as loops over mesh elements

A remake of the past

C. Farhat, L. Fezoui and S. Lanteri Two-dimensional viscous flow computations on the connection machine: unstructured meshes, upwind schemes, and massively parallel computations Comput. Meth. App. Mech. Engng., Vol. 102, 1993

Parallelization strategy for clusters of CPUs

Domain partitioning + message passing programming (MPI)

Computing platform

HPC resource mad available by GENCI (Grand Equipement National de Calcul Intensif) Allocation 2010-t2010065004

Hybrid CPU-GPU cluster of the CCRT (Centre de Calcul Recherche et Technologie) in Bruyères-le-Châtel, France

1068 Intel CPU nodes with two quad-core Intel Xeon X5570 Nehalem processors operating at 2.93 GHz each

48 Teslas S1070 GPU systems with four GT200 GPUs and two PCI Express-2 buses each

The network is a non-blocking, symmetric, full duplex Voltaire InfiniBand double data rate organized as a fat tree

The original DGTD software is developed in Fortran 90

Simulations are performed in single precision arithmetic

Model test problem and configurations

Propagation of a standing wave in a perfectly conducting unitary cubic cavity

Regular uniform tetrahedral meshes respectively containing 3,072,000 elements for the DGTD- \mathbb{P}_1 and DGTD- \mathbb{P}_2 methods, 1,296,000 elements for the DGTD- \mathbb{P}_3 method and 750,000 elements for the DGTD- \mathbb{P}_4 method

Boxwise domain decompositions with optimal computational load balance

Timings for 1000 iterations and up to 128 GPUs

Weak scalability: timings

S. Lanteri (INRIA, NACHOS project-team)

Weak scalability: GFlops rates

S. Lanteri (INRIA, NACHOS project-team)

Model test problem and congiurations

Propagation of a standing wave in a perfectly conducting unitary cubic cavity

Regular uniform tetrahedral meshes respectively containing 3,072,000 elements for the DGTD- \mathbb{P}_1 and DGTD- \mathbb{P}_2 methods, 1,296,000 elements for the DGTD- \mathbb{P}_3 method and 750,000 elements for the DGTD- \mathbb{P}_4 method

Boxwise domain decomposition with optimal computational load balance

Timings for 1000 iterations and up to 128 GPUs

Computational performances								
	# GPU	DGTD-₽ ₁	DGTD-ℙ₂	DGTD- \mathbb{P}_3	DGTD- \mathbb{P}_4			
	1	63 GFlops	92 GFlops	106 GFlops	94 GFlops			
	128	8072 GFlops	11844 GFlops	13676 GFlops	12009 GFlops			

Strong scalability

Head tissues exposure to mobile phone radiation

- Mesh: # elements = 7,894,172
- Total # dof is 189,45,8688 (DGTD- \mathbb{P}_1 method) and 473,646,720 (DGTD- \mathbb{P}_2 method)
- Time on 128 CPU cores: 2786 sec (DGTD- \mathbb{P}_1 method) and 6057 sec (DGTD- \mathbb{P}_2 method)

# GPU		DGTD- \mathbb{P}_1			DGTD-₽ ₂	
	Time	GFlops	Speedup	Time	GFlops	Speedup
32	162 sec	146	-	816 sec	2370	-
64	97 sec	2470	1.7	416 sec	4657	2.0
128	69 sec	3469	2.4	257 sec	7522	3.2

- Mesh: # elements = 5,536,852
- Total # dof is 132,884,448 (DGTD- \mathbb{P}_1 method) and 332,211,120 (DGTD- \mathbb{P}_2 method)
- Time on 64 CPU cores for the DGTD- \mathbb{P}_1 method: 7 h 10 mn

# C	àPU	DGTD-ℙ ₁		DGTD-₽₂			
		Time	GFlops	Speedup	Time	GFlops	Speedup
6	64	12 mn	2762	-	59 mn	4525	-
1:	28	7 mn	4643	1.7	30 mn	8865	1.95

- Mesh: # elements = 5,536,852
- Total # dof is 132,884,448 (DGTD- \mathbb{P}_1 method) and 332,211,120 (DGTD- \mathbb{P}_2 method)
- Time on 64 CPU cores for the DGTD- \mathbb{P}_1 method: 7 h 10 mn

# GPU	DGTD-₽ ₁		DGTD-₽ ₂			
	Time	GFlops	Speedup	Time	GFlops	Speedup
64	12 mn	2762	-	59 mn	4525	-
128	7 mn	4643	1.7	30 mn	8865	1.95