Realistic numerical modelling of head tissues exposure to electromagnetic waves from mobile phones

O. Clatz¹ S. Lanteri² S. Oudot³ J.P Pons⁴ S. Piperno⁵ G. Scarella² J. Wiart⁶

¹INRIA, project-team EPIDAURE
 ²INRIA, project-team CAIMAN
 ³INRIA, project-team GÉOMETRICA
 ⁴INRIA, project-team ODYSSÉE
 ⁵INRIA/CERMICS, project-team CAIMAN

2004 Route des Lucioles, BP 93 06902 Sophia Antipolis Cedex, France

⁶France Telecom R&D, IOP team, 38-40 rue du General Leclerc 92794 Issy-Les-Moulineaux Cedex 9, France

Symposium Telius, STIC et Santé HP European Technical Center, Sophia Antipolis, June 12th 2006 Electromagnetic waves and humans

- 2 Exposure to mobile phone radiation
- Output State St
- 4 HeadExp collaborative research action
- **5** Ongoing and future works

ElectroMagnetic (EM) waves and humans

- EM waves are increasingly present in our daily environment
 - Natural sources (earth magnetic field, etc.)
 - Manmade sources
 - Domestic appliances: TV, radio, microwave ovens, hairdryers, fridges, etc.
 - Technological devices: mobile phones, Wi-Fi, etc.
- Electromagnetic fields
 - An EM field is characterized by its frequency (Hz, MHz, GHz)
 - Ionising radiation
 - Upper part of the frequency spectrum
 - Can induce changes at the molecular level
 - x-rays and gamma rays
 - Non-ionising radiation
 - Lower part of the frequency spectrum
 - Static and power frequency fields, radiofrequencies, microwaves and infrared radiation

ElectroMagnetic (EM) waves and humans

S. Lanteri (INRIA, project-team CAIMAN)

4 / 3<u>3</u>

ElectroMagnetic (EM) waves and humans

- Effects of radiofrequencies (RF) and microwaves (MW) on humans
 - Energy from RF and MW is absorbed into the body

SAR (Specific Absorption Rate) : $\frac{\sigma |\mathbf{E}|^2}{\rho}$

- E: electric field
- σ : tissue conductivity
- ρ : tissue density
- Energy is converted to heat
- Energy is dissipated by the body's normal thermoregulatory process
- No evidence that exposure to RF and MW is harmful
- Guidelines have been produced by a number of bodies around the world
 - National Radiological Protection Board (NRPB)
 - International Commission for Non-Ionising Radiation Protection (ICNIRP)

Exposure to mobile phone radiation

- Health issues related to hand-held mobile phones
 - J.E. Moulder, K.R. Foster, L.S. Erdreich, J.P. McNamee: Mobile phones, mobile phone base stations, and cancer: a review. Int. J. Rad. Biol., 2005.
 - 2000-2001 review by the Royal Society of Canada
 - 2000 report of the UK Independent Expert Group on Mobile Phones (the "Stewart Commission")
 - Human exposure to radio frequency and microwave radiation from portable and mobile telephones and other wireless communication devices. A COMAR¹ technical information statement. IEEE Eng. Med. Biol., 2001.
 - 2001 review from the World Health Organization
 - 2001 review from American Cancer Society
 - 2002 report from the Health Council of the Netherlands
 - Reviews from the UK NRPB in 2003-2005
- FAQs by J. Moulder on health and safety issues related to EM fields http://www.mcw.edu/gcrc/cop/cell-phone-health-FAQ/toc.html

¹IEEE Committee on Man and Radiation

• Health issues related to hand-held mobile phones

- Rapport Zmirou, Direction Générale de la Santé, 2001 http://www.sante.gouv.fr/htm/dossiers/telephon_mobil/rapport_zmirou.htm
- Etude INERIS (Institut National de l'Environnement industriel et des RISques) bibliographique sur la problématique fréquences et santé http://www.art-telecom.fr/publications/index-etud-ineris.htm
- Rapport de l'OPECST (Office Parlementaire d'Evaluation des Choix Scientifiques et Technologiques du Sénat) n 52, 2002-2003 http://www.senat.fr/rap/r02-052/r02-052.html
- Rapport de l'AFSSE (Agence Française de Sécurité Sanitaire de l'Environnement et du Travail), 2005 http://www.afsse.fr/documents/rapport_telephonie_mobile_2005.pdf

Exposure to mobile phone radiation

- Health issues related to hand-held mobile phones
 - Biological effects versus sanitary effects
 - Biological effects: physiological, biochemical or behavioral changes induced in a body, tissue or cell by an external source
 - A biological effect does not necessarily represent a risk for human health
 - Sanitary effects: consequences of biological effects that change the normal behavior of a body
 - Thermal effects versus non-thermal effects
 - A thermal effect results from a local or systemic heatinc of a tissue
 - Thermal effects are relatively well known
 - Ongoing studies are concerned with non-thermal effects

Exposure to mobile phone radiation

- Health issues related to hand-held mobile phones
 - Epidemiological studies
 - Possible links with various cancers
 - Experimental studies
 - Dosimetry of animal exposure
 - In vivo and in vitro studies
 - Computer simulation studies
 - Numerical dosimetry of EM fields
 - Evaluation of temperature elevation in tissues

- Numerical dosimetry in biological tissues can be used for:
 - compliance testing,
 - understanding the underlying physical mechanisms,
 - planning purposes and design objectives (medical applications).
- Numerical modelling aims at providing:
 - the dosimetry of the electromagnetic radiation (SAR distribution),
 - the temperature elevation of tissues,
 - optimization of the treatment (electrode shape design, antenna configuration, etc.).
- Numerical modelling requires geometrical models:
 - built from medical images,
 - must describe several tissues (e.g muscle, blood, bone, etc.),
 - should be suited to localized discretization strategies.

Mathematical modeling: the system of Maxwell's equations

$$\begin{cases} \varepsilon(\mathbf{x})\frac{\partial \mathbf{E}}{\partial t} & - \nabla \times \mathbf{H} = -\mathbf{J} \\ \mu(\mathbf{x})\frac{\partial \mathbf{H}}{\partial t} & + \nabla \times \mathbf{E} = 0 \end{cases}$$

- $\mathbf{E} = \mathbf{E}(\mathbf{x}, t)$: electric field
- $\mathbf{H} = \mathbf{H}(\mathbf{x}, t)$: magnetic field
- $\varepsilon(\mathbf{x})$: electric permittivity
- $\mu(\mathbf{x})$: magnetic permeability
- $\mathbf{J} = \mathbf{J}(\mathbf{x}, t)$: electric current density
 - Conductive media: $\mathbf{J} = \sigma \mathbf{E}$
 - $\sigma(\mathbf{x})$: electric conductivity

Numerical methods on uniform, cartesian grids

- FDM: Finite Difference Methods
- Advantages
 - Easy computer implementation
 - Computationally efficient (very low algorithmic complexity)
 - Mesh generation is straightforward (medical images are voxel based)
 - Modelization of complex sources (antennas, thin wires, etc.) is well established
- Drawbacks
 - Accuracy on non-uniform discretizations
 - Memory requirements for high resolution models
 - Approximate discretization of boundaries (stair case representation)
- Numerical dosymetry analysis of mobile phones radiation most often relies on the FDTD method
 - P. Bernardi et al. (U. La Sapienza, Roma, Italy)
 - O.P. Gandhi et al. (U. of Utah, USA)
 - J. Wiart et al. (FTR&D, France)
 - etc.

Numerical methods on non-uniform grids

- FEM: Finite Element Methods
- FVM: Finite Volume Methods
- Advantages
 - Accurate representation of surfaces (e.g interfaces between tissues)
 - Amenable to local refinment strategies
 - Well suited to high order interpolation methods
 - Flexibility with regards to heterogeneity (e.g discontinuous Galerkin methods)

• Drawbacks

- Computer implementation is less trivial
- Computing time
- Unstructured mesh generation is hardly automated
- Continuous finite element solvers are implicit (mass matrix)
- Related works
 - P. Wainwright and P. Dimbylow (Health Protection Agency, UK)
 - FEKO commercial software, hybrid Mom/FEM (South Africa)

- ε , σ and ρ are varying from one tissue to the other
- They also depend on the frequency of the signal
- $\bullet\,$ Discontinuities of E and H occur at interfaces between different tissues

Discontinuous Galerkin methods

- Initially introduced to solve neutron transport problems (Reed and Hill, 1973)
- Became popular as a framework for solving hyperbolic or mixed hyperbolic/parabolic problems
- Recently developed for elliptic problems
- Somewhere between a finite element and a finite volume method, gathering many good features of both
- Main properties
 - · Can easily deal with discontinuous coefficients and solutions
 - Can handle unstructured, non-conforming meshes
 - Yield local finite element mass matrices
 - High-order accurate methods with compact stencils
 - Naturally adapted to *p*-adaptivity
 - Amenable to efficient parallelization

\mathbb{P}_k -DGTD formulation for Maxwell equations

- Tetrahedral meshes
- Centered fluxes, leap-frog time integration
- Bernacki, Fezoui, Lanteri and Piperno, J. Comput. Acoust. 2006

\mathbb{P}_k -DGTD formulation for Maxwell equations

$$\mathbf{E}_i^n(\mathbf{x}) = \sum_{1 \leq j \leq d_i} E_{ij}^n \vec{\varphi}_{ij}(\mathbf{x}) \text{ and } \mathbf{H}_i^{n+\frac{1}{2}}(\mathbf{x}) = \sum_{1 \leq j \leq d_i} H_{ij}^{n+\frac{1}{2}} \vec{\varphi}_{ij}(\mathbf{x})$$

• $\mathbb{E}_{i}^{n} = \{E_{ij}^{n}\}_{1 \le j \le d_{i}}$ and $\mathbb{H}_{i}^{n+\frac{1}{2}} = \{H_{ij}^{n+\frac{1}{2}}\}_{1 \le j \le d_{i}}$ • $M_{i}^{\varepsilon} = \varepsilon_{i} \iiint_{\tau_{i}}^{\mathsf{T}} \vec{\varphi}_{ij} \vec{\varphi}_{ij} d\omega$ and $M_{i}^{\mu} = \mu_{i} \iiint_{\tau_{i}}^{\mathsf{T}} \vec{\varphi}_{ij} \vec{\varphi}_{ij} d\omega$

$$1 \leq j \leq d_i \quad : \quad \begin{cases} \left[M_i^{\varepsilon} \frac{\mathbb{E}_i^{n+1} - \mathbb{E}_i^n}{\Delta t} \right]_j &= -\sum_{k \in \mathcal{V}_i} \Phi_{H,ik}^{n+\frac{1}{2}} + \iiint_{\tau_i} \int \nabla \times \vec{\varphi}_{ij} \cdot \mathbf{H}_i^{n+\frac{1}{2}} d\omega \\ \left[M_i^{\mu} \frac{\mathbb{H}_i^{n+\frac{3}{2}} - \mathbb{H}_i^{n+\frac{1}{2}}}{\Delta t} \right]_j &= \sum_{k \in \mathcal{V}_i} \Phi_{E,ik}^{n+1} - \iiint_{\tau_i} \nabla \times \vec{\varphi}_{ij} \cdot \mathbf{E}_i^{n+1} d\omega \end{cases}$$

Computer implementation aspects

- Unstructured tetrahedral meshes
- \mathbb{P}_0 -DGTD: finite volume solver
 - 6 dof per tetrahedron
 - CFL=1
- \mathbb{P}_1 -DGTD: DG based on linear interpolation
 - Nodal (Lagrange) basis functions
 - 24 dof per tetrahedron
 - CFL= $\frac{1}{3}$
- SPMD parallelization strategy
 - Mesh partitioning (ParMeTiS)
 - Message passing programming model (MPI)

HeadExp realistic numerical modelling of human HEAD tissues EXPosure to electromagnetic waves radiation from mobile phones

- A multi-disciplinary cooperative research action
 - From January 2003 to December 2004
 - Partners: INRIA (CAIMAN, EPIDAURE, GAMMA, ODYSSÉE, ONDES), ENST Paris, INERIS et FT R&D
- Objectives
 - Contribute to ongoing research activities on biological effects resulting from the use of mobile phones
 - Demonstrate the benefits of using unstructured mesh Maxwell solvers for numerical dosimetric studies
 - Evaluate the thermal effects induced by the electromagnetic radiation in head tissues
- Specific activities
 - Medical image processing (segmentation of head tissues)
 - Geometrical modelling (surface and volumic mesh generation)
 - Numerical modelling (time domain Maxwell solvers, bioheat equation solver)
 - Experimental validations

Characteristics of tissues (F=1800 MHz)

Tissue	εr	σ (S/m)	$ ho ~({\rm Kg/m^3})$	λ (mm)
Skin	43.85	1.23	1100.0	26.73
Skull	15.56	0.43	1200.0	42.25
CSF	67.20	2.92	1000.0	20.33
Brain	43.55	1.15	1050.0	25.26

Geometrical models

- Built from segmented medical images
- Collaboration with INRIA teams specialized in medical image processing and geometrical modelling
- Extraction of surfacic (triangular) meshes of the tissue interfaces using specific tools
 - Marching cubes + adaptive isotropic surface remeshing (P. Frey, 2001)
 - Delaunay refinement (J.-D. Boissonnat and S. Oudot, 2005)
 - Level-set method (J.-P. Pons, 2005)
- Generation of tetrahedral meshes using a Delaunay/Voronoi tool

Characteristics of unstructured meshes of head tissues

• Coarse mesh (M1)

• # vertices: 135,633 and # tetrahedra: 781,742

Tissue	L _{min} (mm)	L _{max} (mm)	Lmoy (mm)	λ (mm)
Skin	1.339	8.055	4.070	26.73
Skull	1.613	7.786	4.069	42.25
CSF	0.650	7.232	4.059	20.33
Brain	0.650	7.993	4.009	25.26

• Fine mesh (M2)

• # vertices: 889,960 and # tetrahedra: 5,230,947

Tissue	L _{min} (mm)	L _{max} (mm)	L _{moy} (mm)	λ (mm)
Skin	0.821	5.095	2.113	26.73
Skull	0.776	4.265	2.040	42.25
CSF	0.909	3.701	1.978	20.33
Brain	0.915	5.509	2.364	25.26

Surfacic meshes (mesh M1)

Surfacic meshes (mesh M2)

 ${\sf Head} + {\sf simplified} \ {\sf telephone} \ {\sf model}$

Characteristics of unstructured meshes Head tissues + telephone + freespace

- Coarse mesh (M1)
 - # vertices: 311,259 and # tetrahedra: 1,862,136
 - Time step: 0.653 psec (\mathbb{P}_0 -DGTD method) and 0.019 psec (\mathbb{P}_1 -DGTD method)

L _{min} (mm)	L _{max} (mm)	L _{moy} (mm)	
0.650	8.055	4.064	

- Fine mesh (M2)
 - # vertices: 1,308,842 and # tetrahedra: 7,894,172
 - Time step: 0.663 psec (P₀-DGTD method)

L _{min} (mm)	L _{max} (mm)	L _{moy} (mm)	
0.776	5.509	2.132	

SAR (Specific Absorption Rate) : $\frac{\sigma |\mathbf{E}|^2}{\rho}$ SAR/SARmax (log scale)

Mesh M1, \mathbb{P}_0 -DGTD method

Mesh M2, ₽0-DGTD method

Mesh M1, \mathbb{P}_1 -DGTD method

SAR (Specific Absorption Rate) : $\frac{\sigma |\mathbf{E}|^2}{\rho}$ SAR/SARmax (log scale)

Mesh M1, \mathbb{P}_0 -DGTD method

Mesh M2, P0-DGTD method

Mesh M1, \mathbb{P}_1 -DGTD method

Electric field amplitude |**E**| (log sacle)

Mesh M1, \mathbb{P}_0 -DGTD method

Mesh M2, \mathbb{P}_0 -DGTD method

Mesh M1, \mathbb{P}_1 -DGTD method

Mesh	Method	Local SAR (W/Kg)	SAR $_{1g}$ (W/Kg)	SAR_{10g} (W/Kg)
M1	\mathbb{P}_0 -DGTD	104.3	37.7	19.5
-	\mathbb{P}_1 -DGTD	23.8	15.0	9.1
M2	\mathbb{P}_0 -DGTD	309.9	53.8	22.4

Normalized peak SAR values

Mesh	Mehod	N _p	CPU	REAL	% CPU	$S(N_p)$
M1	\mathbb{P}_0 -DGTD	32	36 mn	39 mn	92%	-
-	\mathbb{P}_1 -DGTD	32	6 h 32 mn	6 h 48 mn	95%	-
M2	\mathbb{P}_0 -DGTD	32	2 h 46 mn	2 h 54 mn	95%	1.00
-	-	64	1 h 20 mn	1 h 25 mn	94%	2.00

Cluster of AMD Opteron/2.0 GHz nodes, Gigabit Ethernet

Ongoing and future works

• Temperature elevations in tissues

$$\rho C \frac{\partial T}{\partial t} = \nabla (\kappa \nabla T) - \beta (T - T_a) + Q_m + Q_{ext}$$

- External source term: $Q_{ext}(\mathbf{x}, t) = \rho(\mathbf{x}, t) SAR(\mathbf{x}, t)$
- Geometrical modelling
 - Local refinement strategies
 - Simultaneous extraction of surfacic meshes for several tissue interfaces
 - Non-conforming tetrahedral meshes
- Numerical modelling
 - High-order \mathbb{P}_k -DGTD methods
 - k-adaptivity

THANK YOU FOR YOUR ATTENTION!

Ongoing and future works

• Temperature elevations in tissues

$$\rho C \frac{\partial T}{\partial t} = \nabla (\kappa \nabla T) - \beta (T - T_a) + Q_m + Q_{ext}$$

- External source term: $Q_{ext}(\mathbf{x},t) = \rho(\mathbf{x},t) SAR(\mathbf{x},t)$
- Geometrical modelling
 - Local refinement strategies
 - Simultaneous extraction of surfacic meshes for several tissue interfaces
 - Non-conforming tetrahedral meshes
- Numerical modelling
 - High-order \mathbb{P}_k -DGTD methods
 - k-adaptivity

THANK YOU FOR YOUR ATTENTION!