Simulation of complex wave propagation problems using high order parallel finite element methods 1st French-Japanese workshop Petascale Applications, Algorithms and Programming (PAAP)

Stéphane Lanteri

INRIA, NACHOS project-team 2004 Route des Lucioles, BP 93 06902 Sophia Antipolis Cedex, France Stephane.Lanteri@inria.fr

November 1-2 2007 RIKEN Headquarter of Next-Generation Supercomputer R&D Center, Tokyo

Outline

1 INRIA Sophia Antipolis - Méditerranée

- 2 NACHOS project-team
- 3 Discontinuous Galerkin (DG) methods
- 4 Coomputational electromagnetics
 - The system of Maxwell equations
 - Discontinuous Galerkin Time-Tomain (DGTD) methods
 - Scattering of a plane wave by an aircraft
 - Intreraction of electromagnetric waves with biological tissues
 - Discontinuous Galerkin Time-Harmonic (DGHD) methods
- 5 Computational geoseismics
 - Overall objectives
 - The system of elastodynamic equations
 - Finite volume method
 - Numerical results: propagation in 2D
 - Numerical results: dynamic fault rupture

INRIA Sophia Antipolis - Méditerranée

- 530 persons, including 104 researchers, 138 PhD students, 79 engineers, technicians, administrative staff, 46 engineers, 115 post-doctoral students, invited researchers, external specialists
- 150 Foreign scientists (42 different nationalities)
- 30 research project-teams
 - Biological systems
 - Cognitive systems
 - Communicating systems
 - Numerical systems
 - Symbolic systems

INRIA Sophia Antipolis - Méditerranée

- Grid'5000 clusters
 - Cluster of IBM eServer 325
 - AMD Opteron 246, 2.0 GHz (72 dual nodes)
 - 144 cpus \times 1 core per cpu = 144 cores
 - Myrinet 2000
 - Cluster of SUN Fire X4100
 - AMD Opteron 275, 2.2 GHz (56 dual nodes)
 - 112 cpus \times 2 cores per cpu = 224 cores
 - Myrinet 2000
 - Cluster of Sun Fire X2200 M2
 - AMD Opteron 2218, 2.6 GHz (50 dual nodes)
 - 100 cpus \times 2 cores per cpu = 200 cores
 - Gigabit Ethernet
- Production cluster
 - Cluster of IBM eServer 325
 - AMD Opteron 246, 2.0 GHz (64 dual nodes)
 - 128 cpus \times 1 cores per cpu = 128 cores
 - Gigabit Ethernet

Outline

- INRIA Sophia Antipolis Méditerranée
- 2 NACHOS project-team
 - 3 Discontinuous Galerkin (DG) methods
 - 4 Coomputational electromagnetics
 - The system of Maxwell equations
 - Discontinuous Galerkin Time-Tomain (DGTD) methods
 - Scattering of a plane wave by an aircraft
 - Intreraction of electromagnetric waves with biological tissues
 - Discontinuous Galerkin Time-Harmonic (DGHD) methods
 - 5 Computational geoseismics
 - Overall objectives
 - The system of elastodynamic equations
 - Finite volume method
 - Numerical results: propagation in 2D
 - Numerical results: dynamic fault rupture

Numerical modeling and high performAnce computing for evolution problems in Complex domains and HeterogeneOuS media

- Joint team between INRIA, CNRS and University of Nice/Sophia Antipolis via the J.A. Dieudonné Mathematics Laboratory (UMR 6621)
- Official creation in July 2007
- http://www-sop.inria.fr/nachos/index.php/Main/Home

NACHOS project-team

- Permanent staff
 - Loula Fezoui [Senior research scientist, INRIA]
 - High order finite volume and finite element methods
 - Computational fluid dynamics, electromagnetics and geoseismics
 - Stéphane Lanteri [Senior research scientist, INRIA], scientific leader
 - High order finite volume and finite element methods
 - Parallel and distributed numerical computing
 - Computational fluid dynamics and electromagnetics
 - Victorita Dolean [Associate professor, University of Nice/Sophia Antipolis]
 - Domain decomposition algorithms
 - Computational fluid dynamics and electromagnetics
 - Francesca Rapetti [Associate professor, University of Nice/Sophia Antipolis]
 - High order finite element methods
 - Domain decomposition algorithms
 - Computational electromagnetics
 - Nathalie Glinsky-Olivier [Research scientist, ENPC¹]
 - High order finite volume and finite element methods
 - Computational fluid dynamics and geoseismics

¹École Nationale des Ponts et Chaussées

- Academic collaborations
 - Martin Gander (Mathematics Department, University of Geneva, Switzerland)
 - Frédéric Nataf (Jacques-Louis Lions Laboratory, University of Paris VI)
 - Luc Giraud (ENSEEIHT, Toulouse)
 - Stéphane Operto (CNRS/Géosciences Azur Laboratory, Villefranche sur Mer)
 - Ronan Perrussel (Ecole Centrale de Lyon and CNRS/Ampere Laboratory)
 - Jean Virieux (CNRS/Géosciences Azur Laboratory, Sophia Antipolis)
- Industrial collaborations
 - CEA DAM (Military application division), CESTA center
 - France Telcom R&D, IOP (Interaction of electromagnetic wave with humans) team, Joe Wiart

- Design, analysis et validation of numerical methods and high performance resolution algorithms for the computer simulation of evolution problems in complex domains and heterogeneous media
- Focus on linear systems of PDEs with variable coefficients
- Time-domain problems

$$\mathbf{x} \in \Omega \subset \mathbf{R}^d$$
, $t \in \mathbf{R}^+$: $\frac{\partial U}{\partial t} + \sum_{i=1}^d A_i(\mathbf{x}) \frac{\partial U}{\partial x_i} = S(\mathbf{x}, t)$

• Time-harmonic problems

$$\mathbf{x} \in \Omega \subset \boldsymbol{R}^d \;\;,\;\; \omega \in \boldsymbol{R}^+ \;\;:\;\; i \omega \, U + \sum_{i=1}^d A_i(\mathbf{x}) rac{\partial U}{\partial x_i} = S(\mathbf{x},\omega)$$

- The matrices $A_i(\mathbf{x})$ characterize the media
- Could be $A_i(\mathbf{x}, t)$ or $A_i(\mathbf{x}, \omega)$ as well

• Computational electromagnetics

- Maxwell equations
 - Dispersion and/or physical dissipation models for complex materials e.g biological tissues (time-domain Maxwell equations)
 - Diffraction of monochromatic waves by complex and heterogeneous objects (time-domain and time-harmonic Maxwell equations)
 - Interaction of charged particles with electromagnetic fields (time-domain Vlasov/Maxwell equations coupling)

Computational geoseismics

- Elastodynamic equations
 - Propagation of elastic waves in materials with variable geological characteristics
 - Numerical modeling of planar and non-planar faults i.e regions with known and well documented seismic activity

• Computational electromagnetics

- Maxwell equations
 - Dispersion and/or physical dissipation models for complex materials e.g biological tissues (time-domain Maxwell equations)
 - Diffraction of monochromatic waves by complex and heterogeneous objects (time-domain and time-harmonic Maxwell equations)
 - Interaction of charged particles with electromagnetic fields (time-domain Vlasov/Maxwell equations coupling)

Computational geoseismics

- Elastodynamic equations
 - Propagation of elastic waves in materials with variable geological characteristics
 - Numerical modeling of planar and non-planar faults i.e regions with known and well documented seismic activity

NACHOS project-team: scientific activities Numerical methods for linear systems of PDEs with variable coefficients

- Accuracy
 - High order discontinuous Galerkin (DG) methods on simplex meshes
 - Conforming and non-conforming *hp*-adaptivity
 - Numerical treatment of complex material models

• Numerical efficiency

- Hybrid explicit/implicit time integration strategies
- Domain decomposition algorithms
 - Parallel linear system solvers or parallel preconditioning methods
 - Algorithms that couple different discretization methods working on different mesh types
 - Algorithms that couple different physical models

• Computational efficiency

- Parallelization strategies for unstructured mesh based numerical methods
- Load balancing issues for adaptive DG methods
- Hierachical SPMD parallel programming model

Outline

- INRIA Sophia Antipolis Méditerranée
- 2 NACHOS project-team

Oiscontinuous Galerkin (DG) methods

- 4 Coomputational electromagnetics
 - The system of Maxwell equations
 - Discontinuous Galerkin Time-Tomain (DGTD) methods
 - Scattering of a plane wave by an aircraft
 - Intreraction of electromagnetric waves with biological tissues
 - Discontinuous Galerkin Time-Harmonic (DGHD) methods
- 5 Computational geoseismics
 - Overall objectives
 - The system of elastodynamic equations
 - Finite volume method
 - Numerical results: propagation in 2D
 - Numerical results: dynamic fault rupture

Discontinuous Galerkin (DG) methods

- Can easily deal with discontinuous coefficients and solutions
- Can handle unstructured, non-conforming meshes
- Yield local finite element mass matrices
- High order accurate methods with compact stencils
- Naturally lead to discretization (h-) and interpolation order (p-) adaptivity
- Amenable to efficient parallelization

Discontinuous Galerkin (DG) methods

- Can easily deal with discontinuous coefficients and solutions
- Can handle unstructured, non-conforming meshes
- Yield local finite element mass matrices
- High order accurate methods with compact stencils
- Naturally lead to discretization (h-) and interpolation order (p-) adaptivity
- Amenable to efficient parallelization

Discontinuous Galerkin (DG) methods Basic formulation

Problem to solve

 $\mathbf{x}\in\Omega\subset {I\!\!R}^d$, $t\in {I\!\!R}^+$, $u=u(\mathbf{x},t)\,$, $a_i=a_i(\mathbf{x})$ scalar real functions

$$\frac{\partial u}{\partial t} + \sum_{i=1}^{d} a_i \frac{\partial u}{\partial x_i} = 0$$
(1)

Weak formulation

$$< \frac{\partial u}{\partial t}, \ v >_{\Omega} + \sum_{i=1}^{d} < a_i \frac{\partial u}{\partial x_i}, \ v >_{\Omega} = 0$$
 (2)

$$< u$$
 , $v >_{\Omega} = \int_{\Omega} uv d{f x}$, v being a *test function*

r

Discontinuous Galerkin (DG) methods Basic formulation

- Galerkin method
 - $au_h = \{K\}$ triangulation of Ω
 - $P^m(K)$: polynomials of degree at most m on K

For each $K \in \tau_h$ find $u^h : u^h|_K \in P^m(K)$ such that:

$$< \frac{\partial u^h}{\partial t}, \ v >_{\mathcal{K}} + \sum_{i=1}^d < a_i \frac{\partial u^h}{\partial x_i}, \ v >_{\mathcal{K}} = 0 \ , \forall v \in P^m(\mathcal{K})$$
 (3)

Integrating by parts (setting $a|_{\mathcal{K}} \in P^0(\mathcal{K})$)

$$< \frac{\partial u^{h}}{\partial x_{i}}, v >_{K} = - < u^{h}, \frac{\partial v}{\partial x_{i}} >_{K} + < u^{h}n_{i}, v >_{\partial K}$$
$$< u, v >_{\partial K} = \sum_{j=1}^{N_{f}(K)} < u, v >_{\partial K \cap \partial K_{j}}$$

Discontinuous Galerkin (DG) methods Basic formulation

- Discontinous approximation: $u^h|_{K \cap K_j}$ not well defined!
 - $\Rightarrow \text{Centered approximation: } u^h(\hat{\mathbf{x}}) = \frac{u^h|_{\mathcal{K}}(\hat{\mathbf{x}}) + u^h|_{\mathcal{K}_j}(\hat{\mathbf{x}})}{2} \ , \ \forall \hat{\mathbf{x}} \in \mathcal{K} \cap \mathcal{K}_j$
- Linear algebra

$$- u^h|_{\mathcal{K}}(\mathbf{x},t) = \sum_{j=1}^{m_{\mathcal{K}}} u^h_{j,\mathcal{K}}(t)\psi_{j,\mathcal{K}}(\mathbf{x}) , \quad m_{\mathcal{K}} = \dim(P^m(\mathcal{K}))$$

-
$$\{\psi_{j,K}\}, j = 1, \dots, m_K$$
: basis of $P^m(K)$

$$\mathbf{M}_{K} \frac{\partial \mathbf{U}_{K}^{h}}{\partial t} = \sum_{i=1}^{d} a_{i} \left(\mathbf{R}_{i,K} \mathbf{U}_{K}^{h} - n_{i} \sum_{j=1}^{N_{f}(K)} \mathbf{S}_{K,K_{j}} \mathbf{U}_{K}^{h} \right)$$
$$\mathbf{U}_{K}^{h} = \mathbf{U}_{K}^{h}(t) = \{ u_{j,K}^{h}(t) \}, \quad j = 1, \dots, m_{K}$$
$$\mathbf{M}_{K}[l, m] = \langle \psi_{l,K}, \psi_{m,K} \rangle_{K}$$
$$\mathbf{R}_{i,K}[l, m] = \langle \frac{\partial \psi_{l,K}}{\partial x_{i}}, \psi_{m,K} \rangle_{K}$$
$$\mathbf{S}_{K,K_{j}}[l, m] = \langle \psi_{l,K}, \psi_{m,K_{j}} \rangle_{\partial K \cap \partial K_{j}}$$
Dimension of local systems: $m_{K} \times m_{K}$

Discontinuous Galerkin (DG) methods

- Arguments for flexibility
 - Type of approximation (polynomial, trigonometric, etc.)
 - *p*-adaptivity (approximation is purely local)
 - h-adaptivity (conforming or non-conforming grid refinement)
 - Time integration scheme
- Computational aspects
 - Increased number of degrees of freedom (with regards to continuous finite element methods)
 - Extensive use of BLAS 2 operations

Outline

- INRIA Sophia Antipolis Méditerranée
- 2 NACHOS project-team
- 3 Discontinuous Galerkin (DG) methods

4 Coomputational electromagnetics

- The system of Maxwell equations
- Discontinuous Galerkin Time-Tomain (DGTD) methods
- Scattering of a plane wave by an aircraft
- Intreraction of electromagnetric waves with biological tissues
- Discontinuous Galerkin Time-Harmonic (DGHD) methods

Computational geoseismics

- Overall objectives
- The system of elastodynamic equations
- Finite volume method
- Numerical results: propagation in 2D
- Numerical results: dynamic fault rupture

The system of Maxwell equations

$$\ln \ \Omega \subset \mathbb{R}^3 : \begin{cases} \varepsilon(\mathbf{x})\mathcal{F}(\mathbf{E}) & - \nabla \times \mathbf{H} = -\mathbf{J} \\ \mu(\mathbf{x})\mathcal{F}(\mathbf{H}) & + \nabla \times \mathbf{E} = 0 \end{cases}$$

• Time-domain formulation

•
$$\mathbf{E} = \mathbf{E}(\mathbf{x}, t), \mathbf{H} = \mathbf{H}(\mathbf{x}, t) \text{ and } \mathbf{J} = \mathbf{J}(\mathbf{x}, t)$$

• $\mathcal{F}(\mathbf{E}) = \frac{\partial \mathbf{E}}{\partial t}$ and $\mathcal{F}(\mathbf{H}) = \frac{\partial \mathbf{H}}{\partial t}$

• Time-harmonic formulation

•
$$\mathbf{E} = \mathbf{E}(\mathbf{x}, \omega), \ \mathbf{H} = \mathbf{H}(\mathbf{x}, \omega) \ \text{and} \ \mathbf{J} = \mathbf{J}(\mathbf{x}, \omega)$$

- $\mathcal{F}(\mathbf{E}) = i\omega \mathbf{E}$ and $\mathcal{F}(\mathbf{H}) = i\omega \mathbf{H}$
- Conductive media: $\mathbf{J} = \sigma(\mathbf{x})\mathbf{E}$ with electric conductivity $\sigma(\mathbf{x})$
- Boundary conditions
 - Perfect electric conductor condition: $\vec{n} \times \mathbf{E} = 0$
 - Silver-Müller (first order absorbing boundary) condition:

$$\vec{n} \times \mathbf{E} - \vec{n} \times (\mathbf{H} \times \vec{n}) = (\vec{n} \times \mathbf{E}^{\mathrm{inc}} - \vec{n} \times (\mathbf{H}^{\mathrm{inc}} \times \vec{n}))$$

- Unstructured tetrahedral meshes
- Based on \mathbb{P}_p nodal (Lagrange) interpolation
 - \mathbb{P}_0 -DGTD method: 6 dof per tetrahedron (FVTD method)
 - \mathbb{P}_1 -DGTD method: 24 dof per tetrahedron
 - \mathbb{P}_2 -DGTD method: 60 dof per tetrahedron
 - etc.
- Centered fluxes for the calculation of jump terms at cell boundaries
- Leap-frog time integration
- Theoretical aspects
 - L. Fezoui, S. Lanteri, S. Lohrengel and S. Piperno M2AN, Vol. 39, No. 6, 2005
 - Conditional stability (conservation of a discrete electromagnetic energy)
 - Convergence: $\mathcal{O}(Th^{\min(s,p)}) + \mathcal{O}(\Delta t^2)$
- Computational aspects: SPMD parallelization strategy
 - Mesh partitioning (ParMeTiS) + message passing model (MPI)
 - M. Bernacki, S. Lanteri and S. Piperno Appl. Math. Model., Vol. 30, No. 8, 2006.

Scattering of a plane wave by an aircraft

- Monochromatic wave, F=1 GHz
 - Mesh M1: # vertices = 75,200 , # tetrahedra = 423,616

• $L_{
m min}=0.000601~{
m m}$, $L_{
m max}=0.144679~{
m m}~(pproxrac{\lambda}{0.5})$, $L_{
m avg}=0.041361~{
m m}$

Scattering of a plane wave by an aircraft

- Monochromatic wave, F=1 GHz
 - Mesh M1: # vertices = 75,200 , # tetrahedra = 423,616

•
$$L_{
m min}=0.000601~
m m$$
 , $L_{
m max}=0.144679~
m m~(pproxrac{\lambda}{0.5})$, $L_{
m avg}=0.041361~
m m$

 $\mathbb{P}_1\text{-}\mathsf{DGTD} \text{ method}$

 \mathbb{P}_2 -DGTD method

Contour lines of the real part of $DFT(E_z)$

Scattering of a plane wave by an aircraft

Performance results

• AMD Opteron/2 GHz, Gigabit Ethernet

Method	N _p	CPU (min/max)	REAL	% CPU
\mathbb{P}_1 -DGTD	32	38 mn/38 mn	40 mn	98.5%
\mathbb{P}_2 -DGTD	32	2 h 20 mn/2 h 33 mn	2 h 35 mn	98.5%
₽ ₃ -DGTD	32	4 h 49 mn/5 h 08 mn	5 h 12 mn	99.0%

Intreraction of electromagnetric waves with biological tissues

- A multi-disciplinary cooperative research action
 - Medical image processing, geometrical modeling and numerical modeling
- Objectives
 - Contribute to ongoing research activities on biological effects resulting from the use of mobile phones
 - Demonstrate the benefits of using unstructured mesh Maxwell solvers for numerical dosimetric studies
 - Evaluate the thermal effects induced by the electromagnetic radiation in head tissues
- Specific activities
 - Medical image processing (segmentation of head tissues)
 - Geometric modeling (surface and volumic mesh generation)
 - Numerical modeling (time domain Maxwell solvers, bioheat equation solver)
 - Experimental validations

Intreraction of electromagnetric waves with biological tissues

- Geometric models
 - Built from segmented medical images
 - Extraction of surfacic (triangular) meshes of the tissue interfaces using specific tools
 - Marching cubes + adaptive isotropic surface remeshing (P. Frey, 2001)
 - Delaunay refinement (J.-D. Boissonnat and S. Oudot, 2005)
 - Level-set method (J.-P. Pons, 2005)
 - Generation of tetrahedral meshes using a Delaunay/Voronoi tool

Intreraction of electromagnetric waves with biological tissues

Characteristics of tissues (F=1800 MHz) Wavelength λ in air: 166.66 mm

Tissue	εr	σ (S/m)	$ ho~({\sf Kg}/{ m m}^3)$	λ (mm)
Skin	43.85	1.23	1100.0	26.73
Skull	15.56	0.43	1200.0	42.25
CSF	67.20	2.92	1000.0	20.33
Brain	43.55	1.15	1050.0	25.26

Intreraction of electromagnetric waves with biological tissues

Characteristics of unstructured meshes of head tissues

• Coarse mesh (M1)

• # vertices = 135,633 and # tetrahedra = 781,742

Tissue	L _{min} (mm)	L _{max} (mm)	L _{moy} (mm)	λ (mm)
Skin	1.339	8.055	4.070	26.73
Skull	1.613	7.786	4.069	42.25
CSF	0.650	7.232	4.059	20.33
Brain	0.650	7.993	4.009	25.26

• Fine mesh (M2)

• # vertices = 889,960 and # tetrahedra = 5,230,947

Tissue	L _{min} (mm)	L _{max} (mm)	L _{moy} (mm)	λ (mm)
Skin	0.821	5.095	2.113	26.73
Skull	0.776	4.265	2.040	42.25
CSF	0.909	3.701	1.978	20.33
Brain	0.915	5.509	2.364	25.26

Intreraction of electromagnetric waves with biological tissues

HeadExp collaborative research action

 ${\sf Head} + {\sf simplified} \ {\sf telephone} \ {\sf model}$

29 / 62

Intreraction of electromagnetric waves with biological tissues

Characteristics of unstructured meshes Head tissues + telephone + free space

- Coarse mesh (M1)
 - # vertices = 311,259 and # tetrahedra = 1,862,136
 - Time step: 0.653 psec (\mathbb{P}_0 -DGTD method) and 0.019 psec (\mathbb{P}_1 -DGTD method)

L _{min} (mm)	L _{max} (mm)	L _{moy} (mm)
0.650	8.055	4.064

- Fine mesh (M2)
 - # vertices = 1,308,842 and # tetrahedra = 7,894,172
 - Time step: 0.663 psec (\mathbb{P}_0 -DGTD method)

L _{min} (mm)	L _{max} (mm)	Lmoy (mm)
0.776	5.509	2.132

Intreraction of electromagnetric waves with biological tissues

SAR (Specific Absorption Rate) : $\frac{\sigma |\mathbf{E}|^2}{\rho}$ SAR/SARmax (log scale)

Intreraction of electromagnetric waves with biological tissues

HeadExp collaborative research action

Intreraction of electromagnetric waves with biological tissues

Electric field amplitude |**E**| (log sacle)

Mesh M1, ℙ0-DGTD method

Mesh M2, \mathbb{P}_0 -DGTD method

Mesh M1, \mathbb{P}_1 -DGTD method

Intreraction of electromagnetric waves with biological tissues

Mesh	Method	Local SAR (W/Kg)	SAR_{1g} (W/Kg)	SAR_{10g} (W/Kg)
M1	\mathbb{P}_0 -DGTD	104.3	37.7	19.5
-	\mathbb{P}_1 -DGTD	23.8	15.0	9.1
M2	\mathbb{P}_0 -DGTD	309.9	53.8	22.4

Normalized peak SAR values

Mesh	Mehod	N _p	CPU	REAL	% CPU	$S(N_p)$
M1	\mathbb{P}_0 -DGTD	32	36 mn	39 mn	92%	-
-	\mathbb{P}_1 -DGTD	32	6 h 32 mn	6 h 48 mn	95%	-
M2	\mathbb{P}_0 -DGTD	32	2 h 46 mn	2 h 54 mn	95%	1.00
-	-	64	1 h 20 mn	1 h 25 mn	94%	2.00

Cluster of AMD Opteron/2.0 GHz nodes, Gigabit Ethernet

Intreraction of electromagnetric waves with biological tissues

Future works

- In collaboration with France Telcom R&D, IOP (Interaction of electromagnetic wave with humans) team, Joe Wiart
 - High order \mathbb{P}_{ρ} -DGTD methods on locally refined, non-conforming tetrahedral meshes
 - Numerical treatment of dispersive material models with DGTD methods
 - Application to full body exposure
- Generalization to other applications (medical domain)

Intreraction of electromagnetric waves with biological tissues

Full body exposure to a plane wave (# vertices = 899,872 and # tetrahedra = 5,335,521)

Intreraction of electromagnetric waves with biological tissues

Full body exposure to a plane wave (# vertices = 899,872 and # tetrahedra = 5,335,521)

F=2140 MHz, \mathbb{P}_1 -DGTD method: $\varepsilon_r = 1$ (left) and $\varepsilon_r = 2$ (right)

Discontinuous Galerkin time-harmonic methods \mathbb{P}_{p} -DGTH formulation

- Unstructured triangular (2D)/tetrahedral (3D) meshes
- Based on \mathbb{P}_p nodal (Lagrange) interpolation
 - Implementation in the 3D case
 - \mathbb{P}_0 -DGTD method: 6 dof per tetrahedron
 - \mathbb{P}_1 -DGTD method: 24 dof per tetrahedron
- Centered or upwind fluxes for the calculation of jump terms at cell boundaries
- Theoretical aspects
 - H. Fol (PhD thesis, december 2006)
 - V. Dolean, H. Fol, S. Lanteri and R. Perrussel (submitted, 2007)
 - Well-posedness (invertibility) of the discrete system
- Computational aspects: SPMD parallelization strategy
 - Mesh partitioning (ParMeTiS) + message passing model (MPI)
 - Iterative and direct linear system solvers
 - Domain decomposition solver (hybrid iterative/direct)

Discontinuous Galerkin time-harmonic methods \mathbb{P}_{p} -DGTH formulation

• Numerical convergence in the 2D case (triangular meshes)

- Time-harmonic Maxwell system: $\mathcal{L}\mathbf{W} = i\omega\mathbf{G}_0\mathbf{W} + \mathbf{G}_x\partial_x\mathbf{W} + \mathbf{G}_y\partial_y\mathbf{W} + \mathbf{G}_z\partial_z\mathbf{W}$
- Schwarz algorithm: $\Omega = \bigcup_{j=1}^{m} \Omega_j$, $\mathbf{W}^j = \mathbf{W}|_{\Omega_j}$ $\begin{cases}
 \mathcal{L}\mathbf{W}^{j,p+1} = \mathbf{f}^j \text{ in } \Omega_j \\
 \mathbf{G}^-_{\vec{n}_{jl}}\mathbf{W}^{j,p+1} = \mathbf{G}^-_{\vec{n}_{jl}}\mathbf{W}^{l,p} \text{ on } \Gamma_{jl} = \partial\Omega_j \cap \bar{\Omega}_l \\
 \mathbf{G}^-_{\vec{n}}\mathbf{W}^{j,p+1} = \mathbf{G}^-_{\vec{n}}\mathbf{W}_{\text{inc}} \text{ on } \Omega \cap \Omega_j
 \end{cases}$

Domain decomposition solver

- Schwarz algorithm: convergence analysis
 - Two dimensional case
 - Two subdomain case: $\Omega_1 =] \infty, b[imes \mathbb{R}$ and $\Omega_2 =]a, +\infty[imes \mathbb{R}$ with $a \leq b$
 - Fourier analysis

$$\widehat{\mathsf{E}}^{j,p}(x,k) = (\mathcal{F}_y \mathsf{E}^{j,p})(x,k) = \int_{\mathbb{R}} e^{-iky} \mathsf{E}^{j,p}(x,y) \, dy$$

with $\mathbf{E}^{j,p}=\mathbf{U}^{j,p}-\mathbf{U}_{\mid\Omega_{j}}$ and $\mathbf{U}=\mathbf{T}^{-1}\mathbf{W}$

Convergence rate

$$\rho(\mathbf{k}, \delta) = \left| \left(\frac{\sqrt{k^2 - \omega^2} - \mathrm{i}\omega}{\sqrt{k^2 - \omega^2} + \mathrm{i}\omega} \right) e^{-\delta\sqrt{k^2 - \omega^2}} \right|$$

with $\delta = b - a$

• Convergence of the Schwarz algorithm: $\forall \ k \in \mathbb{R}, \
ho(k, \delta) < 1$

$$\rho(k,\delta) = \begin{cases} \left| \frac{\sqrt{\omega^2 - k^2} - \omega}{\sqrt{\omega^2 - k^2} + \omega} \right| & \text{si } |k| < \omega \text{ (propagative modes)} \\ e^{-\delta\sqrt{k^2 - \omega^2}} & \text{si } |k| \ge \omega \text{ (evanescent modes)} \end{cases}$$

Domain decomposition solver

• Schwarz algorithm: convergence analysis

Domain decomposition solver

- Schwarz algorithm: algorithmic aspects
 - Global system (two-sudomain case)

$$\begin{pmatrix} A_1 & 0 & R_1 & 0 \\ 0 & A_2 & 0 & R_2 \\ 0 & -B_2 & \mathsf{Id} & 0 \\ -B_1 & 0 & 0 & \mathsf{Id} \end{pmatrix} \begin{pmatrix} \mathbf{W}_h^1 \\ \mathbf{W}_h^2 \\ \lambda_h^1 \\ \lambda_h^2 \end{pmatrix} = \begin{pmatrix} \mathbf{f}_h^1 \\ \mathbf{f}_h^2 \\ \mathbf{0} \\ \mathbf{0} \end{pmatrix}$$

• Interface system:
$$\mathcal{T}_h \lambda_h = \mathbf{g}_h$$

$$\mathcal{T}_{h} = \begin{pmatrix} \mathsf{Id} & B_{2}A_{2}^{-1}R_{2} \\ \\ B_{1}A_{1}^{-1}R_{1} & \mathsf{Id} \end{pmatrix} \text{ and } \mathbf{g}_{h} = \begin{pmatrix} B_{2}A_{2}^{-1}F^{2} \\ \\ B_{1}A_{1}^{-1}F^{1} \end{pmatrix}$$

• Schwarz iteration
$$\Leftrightarrow \lambda_h^{p+1} = (\mathsf{Id} - \mathcal{T}_h)\lambda_h^p + \mathsf{d}_h$$

• Accelerated iteration: Krylov method

Domain decomposition solver

- Schwarz algorithm: numerical and parallel performances
 - Diffraction of a plane wave (F=1800 MHz)
 - Model (artificial) problem

Tissue	εr	σ (S/m)	$ ho ~({\rm Kg/m^3})$	λ (mm)
Skin	4.0	0.0	1100.0	26.73
Skull	1.5	0.0	1200.0	42.25
CSF	6.5	0.0	1000.0	20.33
Brain	4.0	0.0	1050.0	25.26

• Characteristics of the tetrahedral meshes (no telephone model)

Mesh	# vertices	# tetrahedra	L _{min} (mm)	L _{max} (mm)	Lavg (mm)
M1	60,590	361,848	1.85	45.37	11.65
M2	309,599	1,853,832	1.15	24.76	6.93

Domain decomposition solver

46 / 62

- Interface system
 - BiCGstab(ℓ) (G.L.G. Sleijpen and D.R. Fokkema, ETNA, Vol.1, 1993)
 - No preconditioner, $\ell = 6$
- Local systems
 - MUMPS multifrontal sparse solver (P.R. Amestoy, I.S. Duff and J.-Y. L'Excellent Comput. Meth. App. Mech. Engng., Vol 184, 2000)
 - L and U factors in 32 bit accuracy

- Cluster of AMD Opteron/2.6 GHz nodes, Gigabit Ethernet/Myrinet
 - DG- \mathbb{P}_1 -c: DGTH method with centered flux
 - \bullet DG- $\mathbb{P}_1\text{-u:}$ DGTH method with upwind flux

Mesh	Method	Strategy	Ns	# it	CPU (min/max)	REAL
M1	$DG-P_1-c$	DD-itref	96	47	346 sec/466 sec	714 sec
-	-	-	-	-	524 sec/715 sec	717 sec
-	$DG-P_1-u$	DD-itref	96	47	347 sec/547 sec	765 sec
-	-	-	-	-	636 sec/685 sec	686 sec
M2	DG-₽₀-c	DD-itref	48	27	545 sec/770 sec	1350 sec
-	-	-	96	33	228 sec/322 sec	428 sec
-	-	-	-	-	415 sec/416 sec	417 sec

Mesh	Method	Ns	CPU (min/max)	RAM (min/max)	# dof
M1	$DG ext{-}\mathbb{P}_1 ext{-}c$	96	64 sec/125 sec	640 MB/852 MB	8,684,352
-	$DG ext{-}\mathbb{P}_1 ext{-}u$	96	80 sec/134 sec	633 MB/866 MB	-
M2	DG-₽ ₀ -c	48	234 sec/374 sec	1432 MB/1836 MB	11,122,992
-	-	96	53 sec/ 98 sec	519 MB/ 684 MB	-

- Future works
 - Schwarz algorithms based on optimized interface conditions
 - Extension to time-domain problems time integrated using implicit schemes
 - Algebraic preconditioning of the interface system (in collaboration with Luc Giraud and Azzam Haidar, Parallel Algorithms and Optimization Group, ENSEEIHT, Toulouse)

Outline

- INRIA Sophia Antipolis Méditerranée
- 2 NACHOS project-team
- 3 Discontinuous Galerkin (DG) methods
- 4 Coomputational electromagnetics
 - The system of Maxwell equations
 - Discontinuous Galerkin Time-Tomain (DGTD) methods
 - Scattering of a plane wave by an aircraft
 - Intreraction of electromagnetric waves with biological tissues
 - Discontinuous Galerkin Time-Harmonic (DGHD) methods

5 Computational geoseismics

- Overall objectives
- The system of elastodynamic equations
- Finite volume method
- Numerical results: propagation in 2D
- Numerical results: dynamic fault rupture

- Development of high order DG methods on triangular (2D case) and tetrahedral (3D case) meshes for dynamic fault rupture
- Comparison with state of the art numerical methods (finite difference methods on cartesian meshes, boundary element method)
- Collaborations
 - Jean Virieux (University of Nice/Sophia Antipolis and GéoSciences Azur Laboratory)
 - Victor Manuel Cruz-Atienza (Department of Geological Sciences San Diego State University)

The system of elastodynamic equations

Velocity/stress formulation

$$\begin{array}{rcl} \ln \ \Omega \subset \mathbb{R}^3 \ : & \left\{ \begin{array}{rcl} \rho(\mathbf{x}) \frac{\partial \mathbf{v}}{\partial t} & = & \overrightarrow{\operatorname{div} \underline{\sigma}} = \mathbf{0} \\ \\ \frac{\partial \underline{\sigma}}{\partial t} & = & \lambda(\mathbf{x})(\operatorname{div} \mathbf{v}) \operatorname{Id} + \mu(\mathbf{x}) \left[\nabla \mathbf{v} + {}^t \left(\nabla \mathbf{v} \right) \right] \end{array} \right. \end{array}$$

with:

$$\underline{\sigma} = \begin{pmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{xy} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{xz} & \sigma_{yz} & \sigma_{zz} \end{pmatrix} \text{ and } \mathbf{v} = \begin{pmatrix} v_x \\ v_y \\ v_z \end{pmatrix}$$

Boundary conditions

- Artificial boundary: first order absorbing boundary condition
- Free surface: <u>σ</u> = 0
- Dynamic fault: ${}^{t}\mathbf{n} \underline{\sigma} \mathbf{t} = g(t)$

Finite volume method

- Unstructured triangular (2D) and tetrahedral (3D) meshes
- \mathbb{P}_0 -DGTD method
 - 2D case: 5 dof per traingle
 - 3D case: 9 dof per tetrahedron
- Centered fluxes for the calculation of jump terms at cell boundaries
- Leap-frog time integration
- N. Glinsky-Olivier, M. Ben Jemaa, J. Virieux and S. Piperno 2D seismic wave propagation by a finite volume method 68th EAGE Conference & Exhibition, Vienna, Austria, 2006
- Computational aspects: SPMD parallelization strategy
 - Mesh partitioning (ParMeTiS) + message passing model (MPI)

Numerical results: propagation

Seismic wave propagation: corner edge

Numerical results: propagation in 2D

Seismic wave propagation: complex topography

- Simulation of the spontaneous dynamic fault rupture
- Slip-weakning law
- Boundary conditions on the fault are deduced from an analysis of the total discrete energy

 M. Benjemaa, N. Glinsky-Olivier, V.M. Cruz-Atienza, J. Virieux and S. Piperno
 Dynamic non-planar crack rupture by a finite volume method Geophys. J. Int., Vol. 171, pp. 271-285, 2007

Numerical results: dynamic fault rupture Propagation of a dynamic fault in 2D

Rupture is 14.3 Km long with a 1 Km long nucleation zone Contour lines of v_x (4 sec after rupture initiation)

Numerical results: dynamic fault rupture Propagation of a dynamic fault in 3D

Parabolic fault geometry

Numerical results: dynamic fault rupture

Propagation of a dynamic fault in 3D

59 / 62

Numerical results: dynamic fault rupture Propagation of a dynamic fault in 3D

• Future works

- High order \mathbb{P}_{p} -DG methods on tetrahedral meshes
- *p*-adaptivity
- Numerical treatment of viscoelastic material models with DG methods
- Application to large-scale simulations of earthquake rupture process and generated ground motion

- Our contributions are before all concerned with methodological aspects
 - High-order discretization methods on unstructured meshes
 - Numerical treatment of complex material models
 - Parallel resolution algorithms
- Collaborations with physicists in related application domains are essential to our activities

Thank you for your attention!

- Our contributions are before all concerned with methodological aspects
 - High-order discretization methods on unstructured meshes
 - Numerical treatment of complex material models
 - Parallel resolution algorithms
- Collaborations with physicists in related application domains are essential to our activities

Thank you for your attention!