Discontinuous Galerkin methods on unstructured meshes for the numerical resolution of the time-domain Maxwell equations

V. Dolean^{1,2} L. Fezoui² <u>S. Lanteri</u>² F. Rapetti^{1,2}

¹J.A. Dieudonné Mathematics Laboratory, University of Nice/Sophia Antipolis 06108 Nice Cedex, France ²INRIA, project-team CAIMAN 2004 Route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex, France

Numelec 2006, Lille, November 29th-30th/December 1st

Content

Numerical methods for the time-domain Maxwell equations

- Overview of existing methods
- Overall objectives of our work
- 2 Discontinuous Galerkin methods
 - Some generalities
 - Basic principles

3 Discontinuous Galerkin methods for the time-domain Maxwell equations

- Related woks
- \mathbb{P}_p -DGTD formulation
- Numerical results

Pealistic numerical modelling of mobile phone radiation

Closure

Numerical methods for the time-domain Maxwell equations Overview of existing methods

- FDTD: Finite Difference Time-Domain method
- Seminal work of K.S. Yee (IEEE Trans. Antennas Propag., Vol. AP-14, 1966)
- Structured (cartesian) meshes
- Second order accurate (space and time) on uniform meshes
- Advantages
 - Easy computer implementation
 - Computationally efficient (very low algorithmic complexity)
 - Mesh generation is straightforward
 - Modelization of complex sources (antennas, thin wires, etc.) is well established

• Drawbacks

- Accuracy on non-uniform discretizations
- Memory requirements for high resolution models
- Approximate discretization of boundaries (stair case representation)

Numerical methods for the time-domain Maxwell equations Overview of existing methods

- FETD: Finite Element Time-Domain method
- Often based on J.-C. Nédélec edge elements (Numer. Math, Vol. 35, 1980 and Vol. 50, 1986)
 - Unstructured meshes
 - Advantages
 - Accurate representation of complex shapes
 - Well suited to high order interpolation methods
 - Drawbacks
 - Computer implementation is less trivial
 - Unstructured mesh generation is hardly automated
 - Global mass matrix
 - Mass lumped FETD methods
 - S. Pernet, X. Ferrieres and G. Cohen IEEE Trans. Antennas Propag., Vol. 53, No. 9, 2005
 - Hexahedral meshes, high order Lagrange polynomials
 - Leap-frog time integration scheme

Numerical methods for the time-domain Maxwell equations Overview of existing methods

- FVTD: Finite Volume Time-Domain method
 - Imported from the CFD community
 - V. Shankar, W. Hall and A. Mohammadian Electromag. Vol. 10, 1990
 - J.-P. Cioni, L. Fezoui and H. Steve IMPACT Comput. Sci. Eng., Vol. 5, No. 3, 1993
 - P. Bonnet, X. Ferrieres *et al.* J. Electromag. Waves and Appl., Vol. 11, 1997
 - S. Piperno and M. Remaki and L. Fezoui SIAM J. Num. Anal., Vol. 39, No. 6, 2002.
 - Unstructured meshes
 - Uknowns are cell averages of the field components
 - Flux evaluation at cell interfaces
 - $\bullet \ \ \mbox{Upwind scheme} \ \ \rightarrow \ \mbox{numerical dissipation}$
 - Centered scheme \rightarrow numerical dispersion (on non-uniform meshes)
 - Extension to higher order accuracy: MUSCL technique

Numerical methods for the time-domain Maxwell equations Overall objectives of our work

- Numerical modelling methodology on unstructured simplicial meshes
- Accuracy
 - High-order polynomial interpolation
 - Low level of numerical dispersion on locally refined meshes
- Stability
 - Non-dissipative (long time behavior)
- Flexibility
 - Non-conforming meshes
 - *hp*-adaptivity
- Numerical efficiency
 - Locally implicit time-stepping
- Computational efficiency
 - Parallel computing platforms
 - High performance linear algebra kernels (BLAS)

Discontinuous Galerkin methods Some generalities

- Initially introduced to solve neutron transport problems (W. Reed and T. Hill, 1973)
- Became popular as a framework for solving hyperbolic or mixed hyperbolic/parabolic problems
- Recently developed for elliptic problems
- Somewhere between a finite element and a finite volume method, gathering many good features of both
- Main properties
 - Can easily deal with discontinuous coefficients and solutions
 - Can handle unstructured, non-conforming meshes
 - Yield local finite element mass matrices
 - High-order accurate methods with compact stencils
 - Naturally lead to discretization and interpolation order adaptivity
 - Amenable to efficient parallelization

Discontinuous Galerkin method Basic principles

Problem to solve

 ${\bf x}\in \Omega\subset {\pmb{R}}^d$, $t\in {\pmb{R}}^+$, $u=u({\bf x},t)\,$, $a_i=a_i({\bf x})$ scalar real functions

$$\frac{\partial u}{\partial t} + \sum_{i=1}^{d} a_i \frac{\partial u}{\partial x_i} = 0$$

Weak formulation

$$< \frac{\partial u}{\partial t}, \ v >_{\Omega} + \sum_{i=1}^{d} < a_i \frac{\partial u}{\partial x_i}, \ v >_{\Omega} = 0$$
$$v >_{\Omega} = \int_{\Omega} uvd\mathbf{x} \ , \ v \text{ being a test function}$$

< u,

Discontinuous Galerkin time-domain methods Basic principles

- Galerkin method
 - $au_h = \{K\}$ triangulation of Ω
 - $\mathbb{P}_p(K)$: polynomials of degree at most p on K

For each $K \in \tau_h$ find $u^h : u^h|_K \in \mathbb{P}_p(K)$ such that:

$$<rac{\partial u^h}{\partial t}, \; v>_{K}+\sum_{i=1}^d < a_irac{\partial u^h}{\partial x_i}, \; v>_{K}=0 \; , orall v\in \mathbb{P}_p(K)$$

Integrating by parts (setting $a|_{\mathcal{K}} \in \mathbb{P}_0(\mathcal{K})$)

$$< \frac{\partial u^{h}}{\partial x_{i}}, v >_{K} = - < u^{h}, \frac{\partial v}{\partial x_{i}} >_{K} + < u^{h}n_{i}, v >_{\partial K}$$
$$< u, v >_{\partial K} = \sum_{j=1}^{N_{f}(K)} < u, v >_{\partial K \cap \partial K_{j}}$$

Discontinuous Galerkin methods Basic principles

- Discontinous approximation: $u^h|_{K\cap K_i}$ not well defined!
- Linear algebra

$$- u^{h}|_{K}(\mathbf{x},t) = \sum_{j=1}^{p_{K}} u^{h}_{j,K}(t)\psi_{j,K}(\mathbf{x}) , \quad p_{K} = \dim(\mathbb{P}_{p}(K))$$

$$- \{\psi_{j,K}\}, j = 1, \dots, p_{K}: \text{ basis of } \mathbb{P}_{p}(K)$$

$$\mathbf{M}_{K} \frac{\partial \mathbf{U}_{K}^{h}}{\partial t} = \sum_{i=1}^{d} a_{i} \left(\mathbf{R}_{i,K}\mathbf{U}_{K}^{h} - n_{i} \sum_{j=1}^{N_{f}(K)} \mathbf{S}_{K,K_{j}}\mathbf{U}_{K}^{h}\right)$$

$$\mathbf{U}_{K}^{h} = \mathbf{U}_{K}^{h}(t) = \{u^{h}_{j,K}(t)\}, \quad j = 1, \dots, p_{K}$$

$$\mathbf{M}_{K}[l,p] = < \psi_{l,K}, \quad \psi_{p,K} >_{K}$$

$$\mathbf{R}_{i,K}[l,p] = < \frac{\partial \psi_{l,K}}{\partial x_{i}}, \quad \psi_{p,K} >_{K}$$

 $\mathbf{S}_{\mathcal{K},\mathcal{K}_{j}}[l,p] = \langle \psi_{l,\mathcal{K}}, \psi_{p,\mathcal{K}_{j}} \rangle_{\partial \mathcal{K} \cap \partial \mathcal{K}_{j}}$ Dimension of local systems: $p_{\mathcal{K}} \times p_{\mathcal{K}}$

Discontinuous Galerkin methods for the Maxwell equations $_{\mbox{\scriptsize Related works}}$

- F. Bourdel, P.A. Mazet and P. Helluy
 - Proc. 10th Inter. Conf. on Comp. Meth. in Appl. Sc. and Eng., 1992.
 - Triangular meshes, first-order upwind DG method (i.e FV method)
 - Time-domain and time-harmonic Maxwell equations
- M. Remaki and L. Fezoui, INRIA RR-3501, 1998.
 - Time-domain Maxwell equations
 - Triangular meshes, P1 interpolation, Runke-Kutta time integration (RKDG)
- J.S. Hesthaven and T. Warburton (J. Comput. Phys., Vol. 181, 2002)
 - Tetrahedral meshes, high order Lagrange polynomials, upwind flux
 - Runge-Kutta time integration
- B. Cockburn, F. Li and C.-W. Shu (J. Comput. Phys., Vol. 194, 2004)
 - Locally divergence-free RKDG formulation
- G. Cohen, X. Ferrieres and S. Pernet (J. Comput. Phys., Vol. 217, 2006)
 - Hexahedral meshes, high order Lagrange polynomials, penalized formulation
 - Leap-frog time integration scheme

Discontinuous Galerkin methods for the Maxwell equations $\mathbb{P}_{\textit{p}}\text{-}\mathsf{D}\mathsf{G}\mathsf{T}\mathsf{D}$ formulation

$$\begin{cases} \varepsilon(\mathbf{x})\frac{\partial \mathbf{E}}{\partial t} & - \nabla \times \mathbf{H} = -\mathbf{J} \\ \mu(\mathbf{x})\frac{\partial \mathbf{H}}{\partial t} & + \nabla \times \mathbf{E} = 0 \end{cases}$$

- $\mathbf{E} = \mathbf{E}(\mathbf{x}, t)$: electric field
- $\mathbf{H} = \mathbf{H}(\mathbf{x}, t)$: magnetic field
- $\varepsilon(\mathbf{x})$: electric permittivity
- $\mu(\mathbf{x})$: magnetic permeability
- $\mathbf{J} = \mathbf{J}(\mathbf{x}, t)$: electric current density
 - Conductive media: $\mathbf{J} = \sigma \mathbf{E}$
 - $\sigma(\mathbf{x})$: electric conductivity

Discontinuous Galerkin methods for the Maxwell equations \mathbb{P}_{p} -DGTD formulation

- Face: $a_{ik} = \tau_i \cap \tau_k$, $\mathcal{V}_i = \{k \text{ with } \tau_k \text{ such that } \tau_i \cap \tau_k \neq \emptyset \}$
- Centered fluxes, leap-frog time integration
- L. Fezoui and S. Piperno, INRIA research report No. 4733, 2003

Discontinuous Galerkin methods for the Maxwell equations $\mathbb{P}_{\textit{p}}\text{-}\mathsf{D}\mathsf{G}\mathsf{T}\mathsf{D}$ formulation

• Approximation space: $V_h = \{ \mathbf{V}_h \in L^2(\Omega)^3 \mid \forall i, \mathbf{V}_{h|\tau_i} \equiv \mathbf{V}_i \in \mathbb{P}_p(\tau_i)^3 \}$

$$\mathbf{E}_i^n(\mathbf{x}) = \sum_{1 \leq j \leq d_i} E_{ij}^n \vec{\varphi}_{ij}(\mathbf{x}) \text{ and } \mathbf{H}_i^{n+\frac{1}{2}}(\mathbf{x}) = \sum_{1 \leq j \leq d_i} H_{ij}^{n+\frac{1}{2}} \vec{\varphi}_{ij}(\mathbf{x})$$

•
$$\mathbb{E}_{i}^{n} = \{E_{ij}^{n}\}_{1 \le j \le d_{i}}$$
 and $\mathbb{H}_{i}^{n+\frac{1}{2}} = \{H_{ij}^{n+\frac{1}{2}}\}_{1 \le j \le d_{i}}$
• $\mathbf{M}_{i}^{\varepsilon} = \varepsilon_{i} \iiint_{\tau_{i}}^{\mathsf{T}} \vec{\varphi}_{ij} \vec{\varphi}_{ij} d\omega$ and $\mathbf{M}_{i}^{\mu} = \mu_{i} \iiint_{\tau_{i}}^{\mathsf{T}} \vec{\varphi}_{ij} \vec{\varphi}_{ij} d\omega$

$$1 \leq j \leq d_i \quad : \quad \left\{ \begin{array}{ll} \left[\mathsf{M}_i^{\varepsilon} \left(\frac{\mathbb{E}_i^{n+1} - \mathbb{E}_i^n}{\Delta t} \right) \right]_j &= -\sum_{k \in \mathcal{V}_i} \Phi_{H,ik}^{n+\frac{1}{2}} + \iiint_{\tau_i} \nabla \times \vec{\varphi}_{ij} \cdot \mathsf{H}_i^{n+\frac{1}{2}} d\omega \\ \left[\mathsf{M}_i^{\mu} \left(\frac{\mathbb{H}_i^{n+\frac{3}{2}} - \mathbb{H}_i^{n+\frac{1}{2}}}{\Delta t} \right) \right]_j &= \sum_{k \in \mathcal{V}_i} \Phi_{E,ik}^{n+1} - \iiint_{\tau_i} \nabla \times \vec{\varphi}_{ij} \cdot \mathsf{E}_i^{n+1} d\omega \end{array} \right.$$

Discontinuous Galerkin methods for the Maxwell equations \mathbb{P}_{p} -DGTD formulation

- Theoretical aspects
 - L. Fezoui, S. Lanteri, S. Lohrengel and S. Piperno M2AN, Vol. 39, No. 6, 2005
 - Stability through the conservation of a discrete electromagnetic energy

$$\mathcal{E}^{n} = \frac{1}{2} \sum_{i} \iiint_{\tau_{i}} \left({}^{\mathsf{T}}(\mathsf{E}^{n}_{i}) \varepsilon_{i} \mathsf{E}^{n}_{i} + {}^{\mathsf{T}}(\mathsf{H}^{n-\frac{1}{2}}_{i}) \mu_{i} \mathsf{H}^{n+\frac{1}{2}}_{i} \right)$$

• CFL condition (V_i and P_i : volume and perimeter of τ_i)

$$\forall i, \ \forall k \in \mathcal{V}_i \ : c_i \Delta t \left[2\alpha_i + \beta_{ik} \max\left(\sqrt{\frac{\mu_i}{\mu_k}, \frac{\varepsilon_i}{\varepsilon_k}} \right) \right] < \frac{4V_i}{P_i},$$

where α_i and β_{ik} are dimensionless coefficients, independent of h

Convergence of the fully discrete P_p-DGTD method

$$\mathcal{O}(Th^{\min(s,p)}) + \mathcal{O}(\Delta t^2)$$

for the total error in $C^0([0, T]; L^2(\Omega))$ with $s > \frac{1}{2}$ a regularity parameter

Discontinuous Galerkin methods for the Maxwell equations \mathbb{P}_{p} -DGTD formulation

- Tetrahedral meshes
- Nodal (Lagrange) basis functions
 - P₀-DGTD method
 - Centered finite volume method, 6 dof per tetrahedron
 - S. Piperno and M. Remaki and L. Fezoui SIAM J. Num. Anal., Vol. 39, No. 6, 2002.
 - \mathbb{P}_1 -DGTD method: 24 dof per tetrahedron
 - \mathbb{P}_2 -DGTD method: 60 dof per tetrahedron
 - P₃-DGTD method: 120 dof per tetrahedron
- Parallel computing aspects
 - SPMD parallelization strategy
 - Mesh partitioning (ParMeTiS)
 - Message passing programming model (MPI)
 - M. Bernacki and S. Lanteri and S. Piperno
 - J. Comp. Acoustics, Vol. 14, No. 1, 2006.

- Eigenmode in a spherical metallic cavity (R=1, F=131 MHz)
 - Mesh M1: # vertices = 14,993 , # tetrahedra = 81,920

•
$$L_{
m min}=0.0625~{
m m}$$
 , $L_{
m max}=0.2473~{
m m}~(pproxrac{\lambda}{9})$, $L_{
m avg}=0.0875~{
m m}$

Contour lines of E_X in the plane Y = 0AMD Opteron 2 GHz, Gigabit Ethernet, # procs = 4

- Eigenmode in a spherical metallic cavity (R=1, F=131 MHz)
 - Mesh M2: # vertices = 2,057 , # tetrahedra = 10,240

•
$$L_{
m min}=0.1250$$
 m , $L_{
m max}=0.3703$ m $(pproxrac{\lambda}{6})$, $L_{
m avg}=0.1678$ m

CFL=0.16 , CPU=920 sec

Contour lines of E_x in the plane Y = 0AMD Opteron 2 GHz, Gigabit Ethernet, # procs = 1

• Eigenmode in a spherical metallic cavity (R=1, F=131 MHz)

Time evolution of the L^2 norm of the error

• Eigenmode in a spherical metallic cavity (R=1, F=131 MHz)

Time evolution of the discrete electromagnetic energy

• Diffraction of a plane wave by a PEC sphere, F=300 MHz

Mesh	# vertices	# tetrahedra	L_{min} (m)	L_{max} (m)	L_{moy} (m)
M1	4,624	24,192	0.1228	0.5215	0.2648
M2	10,260	55,296	0.0942	0.4058	0.2007
M3	21,192	116,424	0.0747	0.3209	0.1560

Mesh M1

Mesh M2

Numelec 2006

- Diffraction of a plane wave by a PEC sphere, F=300 MHz
 - Mesh M1: # vertices = 4,624 , # tetrahedra = 24,192

•
$$L_{
m min}=0.1228$$
 m , $L_{
m max}=0.5215$ m $(pproxrac{\lambda}{2})$, $L_{
m avg}=0.2648$ m

Contour lines of the real part of $DFT(E_z)$ Intel Centrino dual-core 2 GHz, # procs = 2

- Diffraction of a plane wave by a PEC sphere, F=300 MHz
 - Mesh M2: # vertices = 10,260 , # tetrahedra = 55,296

•
$$L_{
m min}=0.0942$$
 m , $L_{
m max}=0.4058$ m ($pprox rac{\lambda}{2.5}$) , $L_{
m avg}=0.2007$ m

Contour lines of the real part of DFT(E_z) Intel Centrino dual-core 2 GHz, # procs = 2

- Diffraction of a plane wave by a PEC sphere, F=300 MHz
 - Mesh M2: # vertices = 21,192 , # tetrahedra = 116,424

•
$$L_{
m min}=0.0747$$
 m , $L_{
m max}=0.3209$ m $(pproxrac{\lambda}{9})$, $L_{
m avg}=0.1560$ m

Contour lines of the real part of DFT(E_z) Intel Centrino dual-core 2 GHz, # procs = 2

- Diffraction of a plane wave by a PEC sphere, F=300 MHz
 - Mesh M1: # vertices = 4,624 , # tetrahedra = 24,192

•
$$L_{
m min}=0.1228$$
 m , $L_{
m max}=0.5215$ m $(pproxrac{\lambda}{2})$, $L_{
m avg}=0.2648$ m

Discontinuous Galerkin time-domain methods Numerical results

- $\bullet\,$ Diffraction of a plane wave by an aircraft, F=1 GHz
 - Mesh M1: # vertices = 75,200 , # tetrahedra = 423,616

• $L_{
m min}=0.000601~
m m$, $L_{
m max}=0.144679~
m m~(pproxrac{\lambda}{0.5})$, $L_{
m avg}=0.041361~
m m$

Discontinuous Galerkin time-domain methods

 $\mathbb{P}_m\text{-}\mathsf{DGTD}$ formulation for the Maxwell equations

- $\bullet\,$ Diffraction of a plane wave by an aircraft, F=1 GHz
 - Mesh M1: # vertices = 75,200 , # tetrahedra = 423,616

•
$$L_{
m min}=0.000601~
m m$$
 , $L_{
m max}=0.144679~
m m~(pproxrac{\lambda}{0.5})$, $L_{
m avg}=0.041361~
m m$

 $\mathbb{P}_1\text{-}\mathsf{DGTD} \text{ method}$

 \mathbb{P}_2 -DGTD method

Contour lines of the real part of $DFT(E_z)$

- $\bullet\,$ Diffraction of a plane wave by an aircraft, F=1 GHz
 - AMD Opteron 2 GHz, Gigabit Ethernet

Method	N_p	CPU (min/max)	REAL	% CPU
\mathbb{P}_1 -DGTD	32	38 mn/38 mn	40 mn	98.5%
\mathbb{P}_2 -DGTD	32	2 h 20 mn/2 h 33 mn	2 h 35 mn	98.5%
\mathbb{P}_3 -DGTD	32	4 h 49 mn/5 h 08 mn	5 h 12 mn	99.0%

Realistic numerical modelling of mobile phone radiation

HeadExp: realistic numerical modelling of human HEAD tissues EXPosure to electromagnetic waves radiation from mobile phones

- A multi-disciplinary cooperative research action
 - From January 2003 to December 2004
 - Partners: INRIA, ENST Paris, INERIS et FT R&D
- Objectives
 - Contribute to ongoing research activities on biological effects resulting from the use of mobile phones
 - Demonstrate the benefits of using unstructured mesh Maxwell solvers for numerical dosimetric studies
 - Evaluate the thermal effects induced by the electromagnetic radiation in head tissues
- Specific activities
 - Medical image processing (segmentation of head tissues)
 - Geometrical modelling (surface and volumic mesh generation)
 - Numerical modelling (time domain Maxwell solvers, bioheat equation solver)
 - Experimental validations

Characteristics of tissues (F=1.8 GHz)

Tissue	εr	σ (S/m)	$ ho ~({\rm Kg/m^3})$	λ (mm)
Skin	43.85	1.23	1100.0	26.73
Skull	15.56	0.43	1200.0	42.25
CSF	67.20	2.92	1000.0	20.33
Brain	43.55	1.15	1050.0	25.26

Geometrical models

- Built from segmented medical images
- Collaboration with INRIA teams specialized in medical image processing and geometrical modelling
- Extraction of surfacic (triangular) meshes of the tissue interfaces using specific tools
 - Marching cubes + adaptive isotropic surface remeshing (P. Frey, 2001)
 - Delaunay refinement (J.-D. Boissonnat and S. Oudot, 2005)
 - Level-set method (J.-P. Pons, 2005)
- Generation of tetrahedral meshes using a Delaunay/Voronoi tool

Characteristics of unstructured meshes of head tissues

• Coarse mesh (M1)

• # vertices = 135,633 and # tetrahedra = 781,742

Tissue	L _{min} (mm)	L_{\max} (mm)	L_{avg} (mm)	λ (mm)
Skin	1.339	8.055	4.070	26.73
Skull	1.613	7.786	4.069	42.25
CSF	0.650	7.232	4.059	20.33
Brain	0.650	7.993	4.009	25.26

• Fine mesh (M2)

• # vertices = 889,960 and # tetrahedra = 5,230,947

Tissue	L_{\min} (mm)	L_{\max} (mm)	L_{avg} (mm)	λ (mm)
Skin	0.821	5.095	2.113	26.73
Skull	0.776	4.265	2.040	42.25
CSF	0.909	3.701	1.978	20.33
Brain	0.915	5.509	2.364	25.26

Surfacic meshes: mesh M1 (top) and mesh M2 (bottom)

Numelec 2006

Numelec 2006

• AMD Opteron 2 GHz, Gigabit Ethernet

Mesh	Method	N _p	CPU	REAL	% CPU	$S(N_p)$
M1	\mathbb{P}_0 -DGTD	32	36 mn	39 mn	92%	-
-	\mathbb{P}_1 -DGTD	32	6 h 32 mn	6 h 48 mn	95%	-
M2	₽₀-DGTD	32	2 h 46 mn	2 h 54 mn	95%	1.00
-	-	64	1 h 20 mn	1 h 25 mn	94%	2.00

Time evolution of the E_Z component

Numelec 2006

Closure

- Discontinuous Galerkin methods in summary
 - Discontinuity gives tremendous flexibility
 - Non-uniform possibly non-conforming meshes
 - Local possibly non-polynomial approximation spaces
 - hp-adaptivity
 - Space-time formulations
 - Discontinuity has a cost
 - Computational overhead (# degrees of freedom)
 - Stability criterion (locally refined meshes)
- Future works
 - Non-coformity (*h* and *m*)
 - Locally implicit time integration
 - Dispersive material models