The Relation Between Optimized Schwarz Methods for Scalar and Systems of Partial Differential Equations

Victorița Dolean and Martin Gander

University of Nice/Sophia Antipolis J.A. Dieudonné Mathematics Laboratory

July 17th, 2007

Introduction

One domain problem Domain decomposition algorithm Numerical results Conclusions and future work

Motivation References

Outline of the talk

- Introduction
 - Motivation
 - References
- One domain problem
 - Mathematical formulation
 - Relation to a scalar equation
- 3 Domain decomposition algorithm
 - Classical Schwarz algorithm
 - Optimized Schwarz methods
 - General interface conditions
 - 4 Numerical results
- 5 Conclusions and future work

Motivation References

Motivation

Local hyperthemia using electromagnetic waves

Treatment of a cancerous tumour by rising locally the temperature of the tumour.

Tool : use an electromagnetic field radio-frequencies or micro-waves.

Motivation References

Motivation

Therapeutical planning

- Segmentation of scanners images
- Ø Mesh of the body
- Selectromagnetic and thermic computations + optimization of the parameters.

Motivation References

Electromagnetic computation

Mathematical model:

$$\begin{cases} (\mathrm{i}\omega\epsilon + \sigma)\mathbf{E} - \operatorname{curl} \mathbf{H} = -\mathbf{J}_{\mathrm{imp}}, \\ \mathrm{i}\omega\mu\mathbf{H} + \operatorname{curl} \mathbf{E} = \mathbf{0}. \end{cases}$$

- Other features:
 - Unbounded domain.
 - Antennas : courant source terms inside the domain.
 - Linear isotropic material for a given frequency.
 - Unstructured mesh and heterogeneous media.

Motivation References

Optimized Schwarz: from scalar problems to systems

- Schwarz algorithms that are convergent without overlap: Lions '90.
- Approximate radiation conditions for Helmholtz: Despres, '91.
- The use of non-local operators first invocated in Hagstrom, '88.
- Approximations of non-local interface conditions for advection-diffusion equation Charton '91, Nataf '95, optimized transmission conditions Japhet '00.
- Helmholtz equations: Chevalier '98, Gander, Magoules, Nataf '01.
- Optimized conditions for symmetric, positive definite problems Gander '06, time-dependent problems Gander, Halpern, Nataf '03.
- Maxwell's equations (curl-curl) Alonso, Gerardo-Giorda '06.
- Derivation of optimized conditions for Cauchy-Riemann equations using the equivalence with a scalar problem V.D., Gander '06.

Systematic approach: from scalar problems to systems using Smith factorization for Euler V.D., Nataf '05 and Stokes V.D., Nataf, Rapin '06 6/20

Mathematical formulation Relation to a scalar equation

Mathematical model

Scattering problem - total field

$$\begin{cases} (\mathrm{i}\omega G_0 + G'_0)\mathbf{W} + G_x \partial_x \mathbf{W} + G_y \partial_y \mathbf{W} + G_z \partial_z \mathbf{W} = 0, \text{ in } \Omega, \\ (M_{\Gamma_m} - G_n)\mathbf{W} = 0 \text{ on } \Gamma_m, \\ (M_{\Gamma_a} - G_n)(\mathbf{W} - \mathbf{W}_{\mathrm{inc}}) = 0 \text{ on } \Gamma_a. \end{cases}$$

- Unknown electromagnetic vector field $\mathbf{W} : \mathbf{W} = (\mathbf{E}, \mathbf{H})^T$.
- Properties of different media :

$$G_0 = \begin{pmatrix} \epsilon I_3 & 0_{3\times 3} \\ 0_{3\times 3} & \mu I_3 \end{pmatrix} \text{ and } G'_0 = \begin{pmatrix} \sigma I_3 & 0_{3\times 3} \\ 0_{3\times 3} & 0_{3\times 3} \end{pmatrix}$$

• Vector product with \mathbf{e}_{l} , l in $\{x, y, z\}$:

$$G_{l} = \begin{pmatrix} O_{3\times3} & N_{\mathbf{e}_{l}} \\ N_{\mathbf{e}_{l}}^{t} & O_{3\times3} \end{pmatrix} \text{ with } N_{\mathbf{n}} = \begin{pmatrix} 0 & \mathbf{n}_{z} & -\mathbf{n}_{y} \\ -\mathbf{n}_{z} & 0 & \mathbf{n}_{x} \\ \mathbf{n}_{y} & -\mathbf{n}_{x} & 0 \end{pmatrix}$$

Mathematical formulation Relation to a scalar equation

Mathematical model

• Taking into account the boundary conditions :

$$M_{\Gamma_m} = \begin{pmatrix} 0_{3\times3} & N_{\mathbf{n}} \\ -N_{\mathbf{n}}^t & 0_{3\times3} \end{pmatrix} \text{ and } M_{\Gamma_a} = |G_{\mathbf{n}}|.$$

• Characteristic variables in direction **n**: $\mathbf{w} = T_{\mathbf{n}}^{-1}\mathbf{W}$ (where $G_{\mathbf{n}} = G_x n_x + G_y n_y + G_z n_z = T_{\mathbf{n}} \Lambda_{\mathbf{n}} T_{\mathbf{n}}^{-1}$) used to impose a simple approximation of absorbing boundary conditions at $\partial \Omega$ where **n** is the outward normal.

Characteristic variables associated with the direction $\widetilde{\mathbf{n}} = (1, 0, 0)$

$$\begin{split} & w_1 = -\frac{1}{2}(E_2 - H_3), \, w_2 = \frac{1}{2}(E_3 + H_2), \, w_3 = H_1, \\ & w_4 = E_1, \, w_5 = \frac{1}{2}(E_2 + H_3), \, w_6 = -\frac{1}{2}(E_3 - H_2) \\ & \mathbf{w}_- = (w_1, w_2)^T, \, \mathbf{w}_0 = (w_3, w_4)^T, \, \mathbf{w}_+ = (w_5, w_6)^T. \end{split}$$

Mathematical formulation Relation to a scalar equation

Relation to a scalar equation

Consider a simplified Maxwell system on the domain $\Omega = [0, 1] \times \mathbb{R}^2$:

- No conductivity: $\sigma = 0$.
- Homogeneous media (ε, μ constants) and normalization of the variables: equivalent system with ε = μ = 1.
- No source of courant: $\mathbf{J} = \mathbf{0}$.

Maxwell system written in characteristic variables:

$$\begin{array}{rcl} (i\omega - \partial_x)w_1 + \frac{1}{2}\partial_z w_3 - \frac{1}{2}\partial_y w_4 &=& 0\\ (i\omega - \partial_x)w_2 + \frac{1}{2}\partial_y w_3 + \frac{1}{2}\partial_z w_4 &=& 0\\ i\omega w_3 + \partial_z w_1 + \partial_y w_2 - \partial_z w_5 - \partial_y w_6 &=& 0\\ i\omega w_1 - \partial_y w_1 + \partial_z w_2 - \partial_y w_5 + \partial_z w_6 &=& 0\\ (i\omega + \partial_x)w_5 - \frac{1}{2}\partial_z w_3 - \frac{1}{2}\partial_y w_4 &=& 0\\ (i\omega + \partial_x)w_6 - \frac{1}{2}\partial_y w_3 + \frac{1}{2}\partial_z w_4 &=& 0 \end{array}$$

with the characteristic boundary conditions + radiation condition \Rightarrow well-posed problem.

$$\mathbf{w}_+(0,y,z) = \mathbf{r}(y,z), \quad \mathbf{w}_-(1,y,z) = \mathbf{s}(y,z), \quad (y,z) \in \mathbb{R}^2,$$

Mathematical formulation Relation to a scalar equation

Equivalence result

Let **w** be the characteristic variables. Any component \widetilde{w}_j , $j = 1, \ldots, 6$, of the characteristic variables of the Maxwell system satisfies, in the interior of $\Omega = [0, 1] \times \mathbb{R}^2$, the Helmholz equation,

$$-(\omega^2+\Delta)w_j=0, \quad j=1,2,\ldots,6,$$

together with the boundary conditions

$$\begin{array}{rcl} (\partial_x - i\omega) \widetilde{w}_j(0,y,z) &=& \widetilde{r}_j(y,z), \\ \widetilde{w}_j(1,y,z) &=& \widetilde{s}_j(1,y,z), (y,z) \in \mathbb{R}^2 \end{array}$$

Classical Schwarz algorithm Optimized Schwarz methods General interface conditions

Equivalence between Schwarz algorithms

Classical Schwarz algorithm for Maxwell

Decomposition into domains: $\Omega_1 = [0, \alpha] \times \mathbb{R}^2$, $\Omega_2 = [\beta, 1] \times \mathbb{R}^2$

$$\begin{split} &i\omega\,\mathbf{w}^{1,n} + \sum_{\substack{l=x,y,z\\ l=x,y,z}} \mathcal{G}_l \partial_l \mathbf{w}^{1,n} = \mathbf{0}, \Omega_1 \quad i\omega\,\mathbf{w}^{2,n} + \sum_{\substack{l=x,y,z\\ l=x,y,z}} \mathcal{G}_l \partial_l \mathbf{w}^{2,n} = \mathbf{0}, \Omega_2, \\ &\mathbf{w}^{1,n}_+ = \mathbf{r}, \, \partial\Omega_1 \cap \Omega, \\ &\mathbf{w}^{2,n}_- = \mathbf{s}, \, \partial\Omega_2 \cap \Omega, \\ &\mathbf{w}^{2,n}_- = \mathbf{w}^{2,n-1}_+, \, \partial\Omega_1 \cap \Omega_2, \end{split}$$

Schwarz algorithm for Helmholtz

$$\begin{array}{ll} -(\omega^2+\Delta)\widetilde{w}_j^{1,n}=0,\Omega_1, & -(\omega^2+\Delta)\widetilde{w}_j^{2,n}=\widetilde{0},\Omega_2, \\ (\partial_x-i\omega)\widetilde{w}_j^{1,n}=\widetilde{r}_j, \,\partial\Omega_1\cap\Omega, & \widetilde{w}_j^{2,n}=\widetilde{s}_1,\partial\Omega_2\cap\Omega, \\ \widetilde{w}_j^{1,n}=\widetilde{w}_j^{2,n-1}, \,\partial\Omega_1\cap\Omega_2, & (\partial_x-i\omega)\widetilde{w}_j^{2,n}=(\partial_x-i\omega)\widetilde{w}_j^{1,n-1}, \\ & \partial\Omega_2\cap\Omega_1. \end{array}$$

Classical Schwarz algorithm Optimized Schwarz methods General interface conditions

Convergence rate of the algorithm

Proposition Let $\Omega = \mathbb{R}^3$, and consider the Maxwell system in Ω with the radiation condition

$$\lim_{r\to\infty}r(\mathbf{n}\times\mathbf{E}+\mathbf{n}\times(\mathbf{n}\times\mathbf{H}))=0,$$

where $r = |\mathbf{x}|$, $\mathbf{n} = \mathbf{x}/|\mathbf{x}|$. Let Ω be decomposed into $\Omega_1 := (-\infty, L) \times \mathbb{R}^2$ and $\Omega_2 := (0, +\infty) \times \mathbb{R}^2$, $(L \ge 0)$. For any given initial guess $\mathbf{w}^{1,0} \in (L^2(\Omega_1))^6$, $\mathbf{w}^{2,0} \in (L^2(\Omega_2))^6$, the Schwarz algorithm applied to system converges for all Fourier modes such that $k_v^2 + k_z^2 \neq \omega^2$. The convergence factor is

$$R_{th} = \begin{cases} \left| \frac{\sqrt{\omega^2 - (k_y^2 + k_z^2) - \omega}}{\sqrt{\omega^2 - (k_y^2 + k_z^2) + \omega}} \right|, & \text{for } k_y^2 + k_z^2 < \omega^2, \\ e^{-\sqrt{k_y^2 + k_z^2 - \omega^2 L}}, & \text{for } k_y^2 + k_z^2 > \omega^2. \end{cases}$$

Classical Schwarz algorithm Optimized Schwarz methods General interface conditions

Absorbing boundary conditions for Maxwell's equations

The exact absorbing boundary conditions for the time harmonic Maxwell equations on the domain $\Omega = (0, 1) \times \mathbb{R}^2$:

 $(\mathbf{w}_++\mathcal{S}_1\mathbf{w}_-)(0,y,z)=0, \quad (\mathbf{w}_-+\mathcal{S}_2\mathbf{w}_+)(1,y,z)=0, \qquad (y,z)\in \mathbb{R}^2,$

where the operators S_l , l = 1, 2, are general, pseudodifferential operators acting in the y and z directions.

Absorbing boundary conditions for Maxwell

Lemma If the operators S_I , I = 1, 2 have the Fourier symbol

$$\mathcal{F}(S_l) = \frac{1}{(\sqrt{|k|^2 - \omega^2 + i\omega})^2} \begin{bmatrix} k_z^2 - k_y^2 & -2k_y k_z \\ -2k_y k_z & k_y^2 - k_z^2 \end{bmatrix}, \qquad j = 1, 2,$$

then the solution of the Maxwell equations in Ω coincides with the restriction on Ω of the solution of the Maxwell system on \mathbb{R}^3 .

Classical Schwarz algorithm Optimized Schwarz methods General interface conditions

Absorbing boundary conditions for Helmholtz's equation

Absorbing boundary conditions for the Helmholtz equation in $\Omega=(0,1)\times \mathbb{R}^2$

 $(\partial_x - \widetilde{\mathcal{S}}_1)\mathbf{u}(0, y, z) = 0, \quad (\partial_x + \widetilde{\mathcal{S}}_2)\mathbf{u}(1, y, z) = 0, \qquad (y, z) \in \mathbb{R}^2,$

where \widetilde{S}_j (j = 1, 2) are general, pseudodifferential operators acting in the y and z directions.

Absorbing boundary conditions for Helmholtz

Lemma If the operators $\widetilde{\mathcal{S}}_l$ (l=1,2) have the Fourier symbol

$$\widetilde{\sigma}_I = \mathcal{F}(\widetilde{\mathcal{S}}_I) = \sqrt{|k|^2 - \omega^2}$$

then the solution of Helmholtz equation in Ω coincides with the restriction on Ω of the solution of the Helmholtz equation on \mathbb{R}^3 .

Classical Schwarz algorithm Optimized Schwarz methods General interface conditions

More general interface conditions

$$\Omega_1: [(\mathbf{w}_- + \mathcal{S}_1 \mathbf{w}_+)(L, y, z)]^{1,n} = [(\mathbf{w}_- + \mathcal{S}_1 \mathbf{w}_+)(L, y, z)]^{2,n-1}, \quad (y, z) \in \mathbb{R}^2$$

$$\Omega_2: [(\mathbf{w}_+ + \mathcal{S}_2 \mathbf{w}_-)(0, y, z)]^{2,n} = [(\mathbf{w}_+ + \mathcal{S}_2 \mathbf{w}_-)(0, y, z)]^{1,n-1}, \quad (y, z) \in \mathbb{R}^2$$

BUT the operators $S_{l,l} = 1, 2$, which lead to this optimal performance, are non-local operators \rightarrow the necessity of approximating operators in the transmission conditions.

General form of the interface conditions

The operators \mathcal{S}_1 and \mathcal{S}_2 have the Fourier symbol

$$\sigma_I := \mathcal{F}(\mathcal{S}_I) = \gamma_I \begin{bmatrix} k_z^2 - k_y^2 & -2k_y k_z \\ -2k_y k_z & k_y^2 - k_z^2 \end{bmatrix}, \qquad \gamma_I \in \mathbb{C}(k_y, k_z) \quad (I = 1, 2),$$

Classical Schwarz algorithm Optimized Schwarz methods General interface conditions

Equivalence between optimized methods

Different choices of transmission conditions in the optimized Schwarz algorithm

Maxwell equations	Helmholtz
Case 1: Dirichlet/Dirichlet	Desprès conditions
Case 2: Optimized 1 param	Optimized/Desprès
Case 3: Optimized 2 param	Optimized/Optimized
Exact absorbing	Exact absorbing

Classical Schwarz algorithm Optimized Schwarz methods General interface conditions

Asymptotical behavior of the OSM

Five variants of the optimized Schwarz method applied to Maxwell's equations, when the mesh parameter *h* is small, and the maximum numerical frequency is estimated by $k_{\text{max}} = \frac{C}{h}$, and where $C_{\omega} = \min \left(k_{+}^2 - \omega^2, \omega^2 - k_{-}^2\right), \bar{C}_{\omega} = k_{+}^2 - \omega^2$.

Convergence rate after optimization

Comparison of the different methods

- Two-dimensional case: transverse electric waves
- unit square decomposed into two subdomains $\Omega_1 = (0, \beta) \times (0, 1)$ and $\Omega_2 = (\alpha, 1) \times (0, 1)$, where $0 < \alpha \le \beta < 1$
- tolerance fixed at $\varepsilon = 10^{-6}$

Non-overlapping and overlapping optimized methods

	with overlap, $L = h$			without overlap, $L = 0$				
h	1/16	1/32	1/64	1/128	1/16	1/32	1/64	1/128
Case 1	18	27	46	71	-	-	-	-
Case 2	16	16	17	20	28	36	50	68
Case 3	10	12	14	16	31	40	56	81
Case 4	17	17	20	22	26	28	33	38
Case 5	10	12	14	17	41	53	63	73

Comparison of the different methods

Theoretical and numerical asymptotics for overlapping and non-overlapping optimized methods

Asymptotic convergence for the non-overlapping algorithm: time-harmonic case

Preliminary three-dimensional results: a bioelectromagnetism example

Propagation of a plane wave in realistic geometrical models of head tissues: collaboration with S. Lanteri (INRIA Sophia-Antipolis)

Table: Characteristics of the tetrahedral meshes.

Mesh	# tetraheda	L _{min} (m)	L_{max} (m)	L _{avg} (m)
M1	361,848	0.00185	0.04537	0.01165
M2	1,853,832	0.00158	0.02476	0.00693

Conclusions

- derivation of all possible optimized conditions for first order Maxwell system and optimization whenever no equivalence with scalar algorithm was found.
- validation on a simple 2d geometry and implementation in three-dimensions.

Ongoing work

- The use of optimized interface conditions with high order discretization methods (DG methods) in collaboration with R. Perrussel (Lab. Ampère, Lyon) and S. Lanteri (INRIA).
- Promising results concerning the robustness of optimized parameters with respect to the polynomial order (2d numerical simulations).

Future works

• Optimization of the parameters in the general case by taking into account the conductivity and application to realistic three-dimensional bioelectromagnetism simulations.