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Motivation

Local hyperthemia using electromagnetic waves

Treatment of a cancerous tumour by rising locally the temperature
of the tumour.
Tool : use an electromagnetic field radio-frequencies or
micro-waves.
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Motivation

Therapeutical planning

1 Segmentation of scanners images

2 Mesh of the body

3 Electromagnetic and thermic computations + optimization of
the parameters.
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Electromagnetic computation

Mathematical model:{
(iωε + σ)E− curlH = −Jimp,

iωµH + curlE = 0.

Other features:

Unbounded domain.
Antennas : courant source terms inside the domain.
Linear isotropic material for a given frequency.
Unstructured mesh and heterogeneous media.
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Optimized Schwarz: from scalar problems to systems

Schwarz algorithms that are convergent without overlap: Lions ’90.

Approximate radiation conditions for Helmholtz: Despres, ’91.

The use of non-local operators first invocated in Hagstrom, ’88.

Approximations of non-local interface conditions for
advection-diffusion equation Charton ’91, Nataf ’95, optimized
transmission conditions Japhet ’00.

Helmholtz equations: Chevalier ’98, Gander, Magoules, Nataf ’01.

Optimized conditions for symmetric, positive definite problems
Gander ’06, time-dependent problems Gander, Halpern, Nataf ’03.

Maxwell’s equations (curl-curl) Alonso,Gerardo-Giorda ’06.

Derivation of optimized conditions for Cauchy-Riemann equations
using the equivalence with a scalar problem V.D., Gander ’06.

Systematic approach: from scalar problems to systems using Smith

factorization for Euler V.D., Nataf ’05 and Stokes V.D., Nataf, Rapin ’06 6 / 20
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Mathematical model

Scattering problem - total field
(iωG0 + G ′

0)W + Gx∂xW + Gy∂yW + Gz∂zW = 0, in Ω,

(MΓm − Gn)W = 0 on Γm,

(MΓa − Gn)(W −Winc) = 0 on Γa.

Unknown electromagnetic vector field W : W = (E,H)T .

Properties of different media :

G0 =

(
εI3 03×3

03×3 µI3

)
and G ′

0 =

(
σI3 03×3

03×3 03×3

)
.

Vector product with el , l in {x , y , z} :

Gl =

(
O3×3 Nel

N t
el

O3×3

)
with Nn =

 0 nz −ny

−nz 0 nx

ny −nx 0
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Mathematical model

Taking into account the boundary conditions :

MΓm =

(
03×3 Nn

−Nt
n 03×3

)
and MΓa = |Gn|.

Characteristic variables in direction n: w = T−1
n W (where

Gn = Gxnx + Gyny + Gznz = TnΛnT−1
n ) used to impose a

simple approximation of absorbing boundary conditions at ∂Ω
where n is the outward normal.

Characteristic variables associated with the direction ñ = (1, 0, 0)

w1 = −1
2(E2 − H3), w2 = 1

2(E3 + H2), w3 = H1,
w4 = E1, w5 = 1

2(E2 + H3), w6 = −1
2(E3 − H2)

w− = (w1,w2)
T , w0 = (w3,w4)

T , w+ = (w5,w6)
T .
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Relation to a scalar equation

Consider a simplified Maxwell system on the domain Ω = [0, 1]× R2:

No conductivity: σ = 0.

Homogeneous media (ε, µ constants) and normalization of the
variables: equivalent system with ε = µ = 1.

No source of courant: J = 0.

Maxwell system written in characteristic variables:

(iω − ∂x)w1 + 1
2∂zw3 − 1

2∂yw4 = 0
(iω − ∂x)w2 + 1

2∂yw3 + 1
2∂zw4 = 0

iωw3 + ∂zw1 + ∂yw2 − ∂zw5 − ∂yw6 = 0
iωw1 − ∂yw1 + ∂zw2 − ∂yw5 + ∂zw6 = 0

(iω + ∂x)w5 − 1
2∂zw3 − 1

2∂yw4 = 0
(iω + ∂x)w6 − 1

2∂yw3 + 1
2∂zw4 = 0

with the characteristic boundary conditions + radiation condition ⇒
well-posed problem.

w+(0, y , z) = r(y , z), w−(1, y , z) = s(y , z), (y , z) ∈ R2, 9 / 20
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Equivalence result

Let w be the characteristic variables. Any component w̃j ,
j = 1, . . . , 6, of the characteristic variables of the Maxwell system
satisfies, in the interior of Ω = [0, 1]× R2, the Helmholz equation,

−(ω2 + ∆)wj = 0, j = 1, 2, . . . , 6,

together with the boundary conditions

(∂x − iω)w̃j(0, y , z) = r̃j(y , z),
w̃j(1, y , z) = s̃j(1, y , z), (y , z) ∈ R2.

10 / 20



Introduction
One domain problem

Domain decomposition algorithm
Numerical results

Conclusions and future work

Classical Schwarz algorithm
Optimized Schwarz methods
General interface conditions

Equivalence between Schwarz algorithms

Classical Schwarz algorithm for Maxwell

Decomposition into domains: Ω1 = [0, α]× R2, Ω2 = [β, 1]× R2

iω w1,n +
∑

l=x,y ,z

Gl∂lw
1,n = 0,Ω1 iω w2,n +

∑
l=x,y ,z

Gl∂lw
2,n = 0,Ω2,

w1,n
+ = r, ∂Ω1 ∩ Ω, w2,n

− = s, ∂Ω2 ∩ Ω,

w1,n
− = w2,n−1

− , ∂Ω1 ∩ Ω2, w2,n
+ = w1,n−1

+ , ∂Ω2 ∩ Ω1,

Schwarz algorithm for Helmholtz

−(ω2 + ∆)w̃1,n
j = 0,Ω1, −(ω2 + ∆)w̃2,n

j = 0̃,Ω2,

(∂x − iω)w̃1,n
j = r̃j , ∂Ω1 ∩ Ω, w̃2,n

j = s̃1, ∂Ω2 ∩ Ω,

w̃1,n
j = w̃2,n−1

j , ∂Ω1 ∩ Ω2, (∂x − iω)w̃2,n
j = (∂x − iω)w̃1,n−1

j ,

∂Ω2 ∩ Ω1.
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Convergence rate of the algorithm

Proposition Let Ω = R3, and consider the Maxwell system in Ω
with the radiation condition

lim
r→∞

r(n× E + n× (n×H)) = 0,

where r = |x|, n = x/|x|. Let Ω be decomposed into
Ω1 := (−∞, L)× R2 and Ω2 := (0,+∞)× R2, (L ≥ 0). For any
given initial guess w1,0 ∈ (L2(Ω1))

6, w2,0 ∈ (L2(Ω2))
6, the

Schwarz algorithm applied to system converges for all Fourier
modes such that k2

y + k2
z 6= ω2. The convergence factor is

Rth =


∣∣∣∣√ω2−(k2

y +k2
z )−ω√

ω2−(k2
y +k2

z )+ω

∣∣∣∣ , for k2
y + k2

z < ω2,

e−
√

k2
y +k2

z−ω2L, for k2
y + k2

z > ω2.
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Absorbing boundary conditions for Maxwell’s equations

The exact absorbing boundary conditions for the time harmonic
Maxwell equations on the domain Ω = (0, 1)× R2:

(w++S1w−)(0, y , z) = 0, (w−+S2w+)(1, y , z) = 0, (y , z) ∈ R2,

where the operators Sl , l = 1, 2, are general, pseudodifferential
operators acting in the y and z directions.

Absorbing boundary conditions for Maxwell

Lemma If the operators Sl , l = 1, 2 have the Fourier symbol

F(Sl) =
1

(
√
|k|2 − ω2 + iω)2

[
k2
z − k2

y −2kykz

−2kykz k2
y − k2

z

]
, j = 1, 2,

then the solution of the Maxwell equations in Ω coincides with the
restriction on Ω of the solution of the Maxwell system on R3.
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Absorbing boundary conditions for Helmholtz’s equation

Absorbing boundary conditions for the Helmholtz equation in
Ω = (0, 1)× R2

(∂x − S̃1)u(0, y , z) = 0, (∂x + S̃2)u(1, y , z) = 0, (y , z) ∈ R2,

where S̃j (j = 1, 2) are general, pseudodifferential operators acting
in the y and z directions.

Absorbing boundary conditions for Helmholtz

Lemma If the operators S̃l (l = 1, 2) have the Fourier symbol

σ̃l = F(S̃l) =
√
|k|2 − ω2

then the solution of Helmholtz equation in Ω coincides with the
restriction on Ω of the solution of the Helmholtz equation on R3.
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More general interface conditions

Ω1 : [(w−+S1w+)(L, y , z)]1,n = [(w−+S1w+)(L, y , z)]2,n−1, (y , z) ∈ R2,

Ω2 : [(w++S2w−)(0, y , z)]2,n = [(w++S2w−)(0, y , z)]1,n−1, (y , z) ∈ R2.

BUT the operators Sl ,l = 1, 2, which lead to this optimal performance,
are non-local operators → the necessity of approximating operators in
the transmission conditions.

General form of the interface conditions

The operators S1 and S2 have the Fourier symbol

σl := F(Sl) = γl

[
k2
z − k2

y −2kykz

−2kykz k2
y − k2

z

]
, γl ∈ C(ky , kz) (l = 1, 2),

15 / 20



Introduction
One domain problem

Domain decomposition algorithm
Numerical results

Conclusions and future work

Classical Schwarz algorithm
Optimized Schwarz methods
General interface conditions

Equivalence between optimized methods

Different choices of transmission conditions in the optimized
Schwarz algorithm

Maxwell equations Helmholtz

Case 1: Dirichlet/Dirichlet Desprès conditions
Case 2: Optimized 1 param Optimized/Desprès
Case 3: Optimized 2 param Optimized/Optimized

Exact absorbing Exact absorbing
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Asymptotical behavior of the OSM

Five variants of the optimized Schwarz method applied to Maxwell’s
equations, when the mesh parameter h is small, and the maximum
numerical frequency is estimated by kmax = C

h , and where

Cω = min
(
k2
+ − ω2, ω2 − k2

−
)
, C̄ω = k2

+ − ω2.

Convergence rate after optimization

without overlap, L = 0
Case ρ parameters

1 1 none

2 1−
√

2C
1
4

ω√
C

√
h p =

√
CC

1
4

ω√
2
√

h

3 1−
√

2(C̄ω)
1
4√

C

√
h p =

√
C(C̄ω)

1
4√

2
√

h

4 1− C
1
8

ω

C
1
4
h

1
4 p1 = C

3
8

ω ·C
1
4

2·h
1
4

, p2 = C
1
8

ω ·C
3
4

h
3
4

5 1− (C̄ω)
1
8

C
1
4

h
1
4 p1 = (C̄ω)

3
8 ·C

1
4

2·h
1
4

, p2 = (C̄ω)
1
8 ·C

3
4

h
3
4
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Two-dimensional case: transverse electric waves

unit square decomposed into two subdomains Ω1 = (0, β)× (0, 1)
and Ω2 = (α, 1)× (0, 1), where 0 < α ≤ β < 1

tolerance fixed at ε = 10−6

Non-overlapping and overlapping optimized methods

with overlap, L = h without overlap, L = 0
h 1/16 1/32 1/64 1/128 1/16 1/32 1/64 1/128

Case 1 18 27 46 71 - - - -
Case 2 16 16 17 20 28 36 50 68
Case 3 10 12 14 16 31 40 56 81
Case 4 17 17 20 22 26 28 33 38
Case 5 10 12 14 17 41 53 63 73
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Theoretical and numerical asymptotics for overlapping and
non-overlapping optimized methods

10
−2

10
1

10
2

h

ite
ra

tio
ns

Asymptotic convergence for the overlapping algorithm: time−harmonic case

 

 
case 1
case 2
case 3
case 4
case5

O(h−1)

O(h−1/3)

O(h−1/3)

O(h−1/5)

O(h−1/5)

10
−2

10
2

h

ite
ra

tio
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Asymptotic convergence for the non−overlapping algorithm: time−harmonic case

 

 
case 2
case 3
case 4
case5

O(h−1/2)

O(h−1/2)

O(h−1/4)

O(h−1/4
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Preliminary three-dimensional results: a
bioelectromagnetism example

Propagation of a plane wave in realistic geometrical models of head
tissues: collaboration with S. Lanteri (INRIA Sophia-Antipolis)

Table: Characteristics of the tetrahedral meshes.

Mesh # tetraheda Lmin (m) Lmax (m) Lavg (m)

M1 361,848 0.00185 0.04537 0.01165
M2 1,853,832 0.00158 0.02476 0.00693
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Conclusions

derivation of all possible optimized conditions for first order Maxwell
system and optmization whenever no equivalence with scalar
algorithm was found.

validation on a simple 2d geometry and implementation in
three-dimensions.

Ongoing work

The use of optimized interface conditions with high order
discretization methods (DG methods) in collaboration with R.
Perrussel (Lab. Ampère, Lyon) and S. Lanteri (INRIA).

Promising results concerning the robustness of optimized parameters
with respect to the polynomial order (2d numerical simulations).

Future works

Optimization of the parameters in the general case by taking into
account the conductivity and application to realistic
three-dimensional bioelectromagnetism simulations.
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