Efficient Time Integration Strategies for High Order Discontinuous Galerkin Time Domain Methods

A. Catella¹ V. Dolean^{1,2} L. Fezoui¹ S. Lanteri¹

²University of Nice-Sophia Antipolis J.A. Dieudonné Mathematics Laboratory, UMR CNRS 6621, 06108 Nice Cedex, France ¹INRIA, NACHOS project-team 2004 Route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex, France

ACES Conference The Annual Review of Progress in Applied Computational Electromagnetics March 30 - April 4, 2008, Niagara Falls, Canada

Content

- Context, motivations and objectives of the study
- 2 DG- \mathbb{P}_p method for Maxwell equations
- 3 Explicit DGTD- \mathbb{P}_p method
- 4 Implicit DGTD- \mathbb{P}_p method
 - Formulation and properties
 - Numerical results
- 5 Hybrid explicit/implicit DGTD- \mathbb{P}_{p} method
 - Formulation and properties
 - Numerical results: 2D case
 - Numerical results: 3D case

Closure

Outline

Context, motivations and objectives of the study

- 2 DG- \mathbb{P}_p method for Maxwell equations
- 3 Explicit DGTD- \mathbb{P}_p method
- 4 Implicit DGTD- \mathbb{P}_p method
 - Formulation and properties
 - Numerical results
- 5 Hybrid explicit/implicit DGTD-P_p method
 - Formulation and properties
 - Numerical results: 2D case
 - Numerical results: 3D case

Closure

- Time-domain electromagnetic wave propagation
- Irregularly shaped geometries
 - Unstructured, locally refined, triangular (2D)/tetrahedral (3D) meshes
- Numerical ingredients (starting point of this study)
 - Discontinuous Galerkin time-domain (DGTD) methods
 - Nodal (Lagrange type) polynomial interpolation
 - Explicit time integration

Context and motivations

- \bullet Scattering of a plane wave by an aircraft, F=1 GHz
 - Mesh: # vertices = 153,821 , # tetrahedra = 883,374
 - $L_{\rm min} = 0.000601 \ {
 m m}$, $L_{\rm max} = 0.121290 \ {
 m m} \ (pprox rac{\lambda}{2.5})$, $L_{
 m avg} = 0.039892 \ {
 m m}$
 - $\Delta t_{min} = 0.24$ picosec and $\Delta t_{max} = 40.50$ picosec

- Possible routes to overcome grid-induced stiffness
 - Local time-step strategies with explicit time integration
 - Locally implicit (hybrid explicit/implicit) time integration
- Overall objectives of this study
 - Investigate strengthes and weaknesses of implicit and hybrid explicit/implicit DGTD methods
 - Theoretical and numerical aspects (stability, convergence, etc.)
 - Computational aspects
 - Linear system solvers
 - Parallel computing

Implicit and hybrid explicit/implicit time-domain methods

- Several works on ADI-FDTD
 - T. Namiki, IEEE Trans. Microwave Theory Tech., 2000
 - F. Zheng and Z. Chen, IEEE Trans. Microwave Theory Tech., 2001
 - Numerical dispersion analysis
 - S.G. Garcia and T.W. Lee and S.C. Hagness IEEE Trans. Antennas and Wir. Propag. Lett., 2002
 - Accuracy analysis
- Hybrid explicit/implicit method
 - Explicit FDTD + Implicit FETD (triangular meshes)
 - T.R. Rylander, A. Bondeson, Comput. Phys. Commun., 2000
 - T.R. Rylander, A. Bondeson, J. Comput. Phys. 2002
 - T. Halleröd, T.R. Rylander, J. Comput. Phys. 2008
- Implicit DGTD method in 2D
 - A. Catella, V. Dolean and S. Lanteri IEEE. Trans. Magn., to appear. Also INRIA RR-6110, 2007

Outline

Context, motivations and objectives of the study

2 DG- \mathbb{P}_p method for Maxwell equations

- Explicit DGTD-P_p method
- 4 Implicit DGTD- \mathbb{P}_p method
 - Formulation and properties
 - Numerical results
- 5 Hybrid explicit/implicit DGTD-P_p method
 - Formulation and properties
 - Numerical results: 2D case
 - Numerical results: 3D case

Closure

DG- \mathbb{P}_p method for Maxwell equations

• Time-domain Maxwell's equations

$$\varepsilon \partial_t \mathbf{E} - \nabla \times \mathbf{H} = 0$$
 and $\mu \partial_t \mathbf{H} + \nabla \times \mathbf{E} = 0$

• Boundary conditions: $\partial \Omega = \Gamma_a \cup \Gamma_m$

$$\begin{cases} \mathbf{n} \times \mathbf{E} = 0 \text{ on } \Gamma_m \\ \mathbf{n} \times \mathbf{E} - \sqrt{\frac{\mu}{\varepsilon}} \mathbf{n} \times (\mathbf{H} \times \mathbf{n}) = \mathbf{n} \times \mathbf{E}_{\text{inc}} - \sqrt{\frac{\mu}{\varepsilon}} \mathbf{n} \times (\mathbf{H}_{\text{inc}} \times \mathbf{n}) \text{ on } \Gamma_a \end{cases}$$

• Triangulation of Ω : $\overline{\Omega_h} \equiv \mathcal{T}_h = \bigcup_{\tau_i \in \mathcal{T}_h} \overline{\tau}_i$

• Approximation space: $V_h = \{ \mathbf{V}_h \in L^2(\Omega)^3 \mid \forall i, \mathbf{V}_{h|\tau_i} \equiv \mathbf{V}_i \in \mathbb{P}_p(\tau_i)^3 \}$

• Variational formulation: $\forall ec{arphi} \in \mathcal{P}_i = \mathsf{Span}(ec{arphi}_{ij} \ , \ 1 \leq j \leq d_i)$

$$\begin{cases} \iiint \vec{\varphi} \cdot \varepsilon_i \partial_t \mathbf{E} d\omega = -\iint_{\partial \tau_i} \vec{\varphi} \cdot (\mathbf{H} \times \vec{n}) d\sigma + \iiint_{\tau_i} \nabla \times \vec{\varphi} \cdot \mathbf{H} d\omega \\ \iiint \vec{\varphi} \cdot \mu_i \partial_t \mathbf{H} d\omega = \iint_{\partial \tau_i} \vec{\varphi} \cdot (\mathbf{E} \times \vec{n}) d\sigma - \iiint_{\tau_i} \nabla \times \vec{\varphi} \cdot \mathbf{E} d\omega \end{cases}$$

DG- \mathbb{P}_p method for Maxwell equations Discretization in space

• Approximate fields: $\forall i$, $\mathbf{E}_{h|\tau_i} \equiv \mathbf{E}_i$ and $\mathbf{H}_{h|\tau_i} \equiv \mathbf{H}_i$

• Integral over
$$\partial \tau_i$$
: $\mathbf{E}_{|_{a_{ik}}} = \frac{\mathbf{E}_i + \mathbf{E}_k}{2}$ and $\mathbf{H}_{|_{a_{ik}}} = \frac{\mathbf{H}_i + \mathbf{H}_k}{2}$

• Assume $\Gamma_a = \emptyset$ (for the presentation only) and on Γ_m : $\mathbf{E}_{k|_{a_{ik}}} = -\mathbf{E}_{i|_{a_{ik}}}$ and $\mathbf{H}_{k|_{a_{ik}}} = \mathbf{H}_{i|_{a_{ik}}}$

$$\left(\begin{array}{ccc} \displaystyle \iiint_{\tau_i} \vec{\varphi} \cdot \varepsilon_i \partial_t \mathbf{E}_i d\omega &= \displaystyle \frac{1}{2} \displaystyle \iiint_{\tau_i} (\nabla \times \vec{\varphi} \cdot \mathbf{H}_i + \nabla \times \mathbf{H}_i \cdot \vec{\varphi}) d\omega \\ &- \displaystyle \frac{1}{2} \sum_{k \in \mathcal{V}_i} \displaystyle \iint_{a_{ik}} \vec{\varphi} \cdot (\mathbf{H}_k \times \vec{n}_{ik}) d\sigma \\ \displaystyle \iiint_{\tau_i} \vec{\varphi} \cdot \mu_i \partial_t \mathbf{H}_i d\omega &= \displaystyle -\frac{1}{2} \displaystyle \iiint_{\tau_i} (\nabla \times \vec{\varphi} \cdot \mathbf{E}_i + \nabla \times \mathbf{E}_i \cdot \vec{\varphi}) d\omega \\ &+ \displaystyle \frac{1}{2} \sum_{k \in \mathcal{V}_i} \displaystyle \iint_{a_{ik}} \vec{\varphi} \cdot (\mathbf{E}_k \times \vec{n}_{ik}) d\sigma \end{array} \right.$$

DG- \mathbb{P}_p method for Maxwell equations Discretization in space

Local projections

$$\mathsf{E}_i(\mathsf{x}) = \sum_{1 \leq j \leq d_i} E_{ij} \vec{\varphi}_{ij}(\mathsf{x}) \text{ and } \mathsf{H}_i(\mathsf{x}) = \sum_{1 \leq j \leq d_i} H_{ij} \vec{\varphi}_{ij}(\mathsf{x})$$

• Vector representation of local fields

$$\mathbb{E}_i = \{E_{ij}\}_{1 \leq j \leq d_i}$$
 and $\mathbb{H}_i = \{H_{ij}\}_{1 \leq j \leq d_i}$

• For
$$1 \leq j, l \leq d_i$$
:
• $(\mathbf{M}_i^{\varepsilon})_{jl} = \varepsilon_i \iiint_{\tau_i}^{\mathsf{T}} \vec{\varphi}_{ij} \vec{\varphi}_{jl} d\omega$ and $(\mathbf{M}_i^{\mu})_{jl} = \mu_i \iiint_{\tau_i}^{\mathsf{T}} \vec{\varphi}_{ij} \vec{\varphi}_{jl} d\omega$
• $(\mathbf{K}_i)_{jl} = \frac{1}{2} \iiint_{\tau_i}^{\mathsf{T}} ({}^{\mathsf{T}} \vec{\varphi}_{ij} \nabla \times \vec{\varphi}_{il} + {}^{\mathsf{T}} \vec{\varphi}_{il} \nabla \times \vec{\varphi}_{ij}) d\omega$

• For $1 \le j \le d_i$ and $1 \le l \le d_k$ • $(\mathbf{S}_{ik})_{jl} = \frac{1}{2} \iint_{a_{jk}} {}^{\mathsf{T}} \vec{\varphi}_{ij} (\vec{\varphi}_{kl} \times \vec{n}_{ij}) d\sigma$

DG- \mathbb{P}_p method for Maxwell equations Discretization in space

• Local EDO systems

$$\forall \tau_i : \begin{cases} \mathsf{M}_i^{\varepsilon} \frac{d\mathbb{E}_i}{dt} = \mathsf{K}_i \mathbb{H}_i - \sum_{k \in \mathcal{V}_i} \mathsf{S}_{ik} \mathbb{H}_k \\ \mathsf{M}_i^{\mu} \frac{d\mathbb{H}_i}{dt} = -\mathsf{K}_i \mathbb{E}_i + \sum_{k \in \mathcal{V}_i} \mathsf{S}_{ik} \mathbb{E}_k \end{cases}$$

• Global EDO systems with
$$d = \sum_{i} d_{i}$$

 $\mathbf{M}^{\varepsilon} \frac{d\mathbb{E}}{dt} = \mathbf{F}\mathbb{H}$ and $\mathbf{M}^{\mu} \frac{d\mathbb{H}}{dt} = -^{\mathsf{T}}\mathbf{F}\mathbb{E}$

- $\mathbf{F} = \mathbf{K} \mathbf{A} \mathbf{B}$
- \mathbf{M}^{ε} are \mathbf{M}^{μ} block diagonal symmetric definite positive matrices
- **K** is a $d \times d$ block diagonal symmetric matrix
- A is a $d \times d$ block sparse symmetric matrix (internal faces)
- **B** is a $d \times d$ block sparse skew symmetric matrix (metallic faces)

Outline

- Context, motivations and objectives of the study
- DG-P_p method for Maxwell equations

3 Explicit DGTD- \mathbb{P}_p method

- 4 Implicit DGTD- \mathbb{P}_p method
 - Formulation and properties
 - Numerical results
- 5 Hybrid explicit/implicit DGTD-P_p method
 - Formulation and properties
 - Numerical results: 2D case
 - Numerical results: 3D case

Closure

- L. Fezoui, S. Lanteri, S. Lohrengel and S. Piperno ESAIM: M2AN, Vol. 39, No. 6, 2005
 - Tetrahedral meshes, high order Lagrange polynomials
 - Leap-Frog time integration scheme, centered fluxes

$$\begin{cases} \mathsf{M}^{\varepsilon} \frac{\mathbb{E}^{n+1} - \mathbb{E}^{n}}{\Delta t} &= \mathsf{F} \mathbb{H}^{n+\frac{1}{2}} \\ \mathsf{M}^{\mu} \frac{\mathbb{H}^{n+\frac{1}{2}} - \mathbb{H}^{n-\frac{1}{2}}}{\Delta t} &= -^{\mathsf{T}} \mathsf{F} \mathbb{E}^{n+1} \end{cases}$$

Outline

- Context, motivations and objectives of the study
- 2 DG- \mathbb{P}_p method for Maxwell equations
- 3 Explicit DGTD-P_p method
- 4 Implicit DGTD- \mathbb{P}_p method
 - Formulation and properties
 - Numerical results
- 5 Hybrid explicit/implicit DGTD-ℙ_p method
 - Formulation and properties
 - Numerical results: 2D case
 - Numerical results: 3D case
 - Closure

Implicit DGTD- \mathbb{P}_p method

- A. Catella, V. Dolean and S. Lanteri IEEE. Trans. Magn., to appear. Also INRIA RR-6110, 2007
 - Triangular meshes, high order Lagrange polynomials
 - Crank-Nicolson time integration scheme, centered fluxes

$$\begin{cases} \mathbf{M}^{\varepsilon} \frac{\mathbb{E}^{n+1} - \mathbb{E}^{n}}{\Delta t} &= \mathbf{F} \frac{\mathbb{H}^{n+1} + \mathbb{H}^{n}}{2} \\ \mathbf{M}^{\mu} \frac{\mathbb{H}^{n+1} - \mathbb{H}^{n}}{\Delta t} &= -^{\mathsf{T}} \mathbf{F} \frac{\mathbb{E}^{n+1} + \mathbb{E}^{n}}{2} \end{cases}$$

- Properties of the fully discrete scheme
 - Unconditional stability $\mathcal{E}_{h}^{n} = \mathbb{T}\mathbb{E}^{n} \mathbf{M}^{\varepsilon} \mathbb{E}^{n} + \mathbb{T}\mathbb{H}^{n} \mathbf{M}^{\mu} \mathbb{H}^{n}$ is exactly conserved (when $\Gamma_{a} = \emptyset$)
 - Convergence: deduced from the study for the explicit DGTD- \mathbb{P}_{p} method $\mathcal{O}(Th^{\min(s,p)}) + \mathcal{O}(\Delta t^{2})$
 - Invertibility of the associated linear system

• Two-dimensional Maxwell's equation (TM)

$$\begin{cases} \mu \frac{\partial H_x}{\partial t} + \frac{\partial E_z}{\partial y} = 0\\ \mu \frac{\partial H_y}{\partial t} - \frac{\partial E_z}{\partial x} = 0\\ \varepsilon \frac{\partial E_z}{\partial t} - \frac{\partial H_y}{\partial x} + \frac{\partial H_x}{\partial y} = 0 \end{cases}$$

- Implicit DGTD- \mathbb{P}_p method
 - Triangular mesh
 - Sparse block matrix, $3n_p \times 3n_p$ (with $n_p = ((p+1)(p+2))/2)$
 - MUMPS multifrontal sparse matrix solver (P.R. Amestoy, I.S. Duff and J.-Y. L'Excellent, CMAME, Vol. 184, 2000)
 - LU factors computed before entering the time stepping loop

Numerical results

Eigenmode in a metallic cavity

Numerical results Eigenmode in a metallic cavity

0.1 0.128 Explicit DGTD-P1 - CFL=0.3 Exact Implicit DGTD-P1 - CFL=1.0 ------Explicit DGTD-P1 - CFL=0.3 Implicit DGTD-P1 - CFL=1.5 ······ Implicit DGTD-P1 - CFL=1.0 Implicit DGTD-P1 - CFL=1.5 0.127 0.01 0.126 0.125 0.001 0.124 0.123 1e-04 0.122 à 5e-09 1e-08 1.5e-08 2e-08 2.5e-08 4.5e-08 0 5e-09 4.5e-08 5e-08 20-09 2 50.09 40.09 1e-08 1.5e-08 2e-08 2.50.09 3e-08 3.5e-08

DGTD- \mathbb{P}_1 method: time evolutions of the L2 error (left) and discrete energy (right) Uniform mesh

Numerical results

Eigenmode in a metallic cavity

 $\mathsf{DGTD}\text{-}\mathbb{P}_1$ method: time evolutions of the L2 error (left) and discrete energy (right) Non-uniform mesh

Computing times (AMD Opteron 2 GHz based workstation)

Time integration	Method	$CFL-\mathbb{P}_p$	CPU time
Explicit	$DGTD-\mathbb{P}_1$	0.3	15 sec
Implicit	-	1.0	44 sec
-	-	1.5	30 sec

Uniform mesh

Time integration	Method	CFL - \mathbb{P}_p	CPU time
Explicit	$DGTD-\mathbb{P}_1$	0.3	443 sec
Implicit	-	12.0	133 sec
-	-	24.0	67 sec
Explicit	$DGTD-\mathbb{P}_2$	0.2	2057 sec
Implicit	-	2.0	1923 sec
-	-	4.0	938 sec
-	-	6.0	620 sec

Non-uniform mesh

Outline

- 1 Context, motivations and objectives of the study
- 2 DG- \mathbb{P}_p method for Maxwell equations
- 3 Explicit DGTD- \mathbb{P}_p method
- 4 Implicit DGTD- \mathbb{P}_p method
 - Formulation and properties
 - Numerical results
- 5 Hybrid explicit/implicit DGTD- \mathbb{P}_p method
 - Formulation and properties
 - Numerical results: 2D case
 - Numerical results: 3D case

Closure

Hybrid explicit/implicit DGTD- \mathbb{P}_p method

- S. Piperno, ESAIM: M2AN, Vol. 40, No. 5, 2006
 - Explict scheme: Verlet method (i.e. three-step Leap-Frog method with **E** and **H** computed at the same time stations)
 - Implicit scheme: Crank-Nicolson scheme
- Partitioning of the mesh elements (triangles/tetrahedra) into two subsets
 - \mathcal{S}^e : coarsest elements, treated explicitly
 - \mathcal{S}^i : smallest elements, treated implicitly

$$\begin{split} \mathbb{E} &= \left(\begin{array}{c} \mathbb{E}_{e} \\ \mathbb{E}_{i} \end{array} \right) \quad , \quad \mathbb{H} = \left(\begin{array}{c} \mathbb{H}_{e} \\ \mathbb{H}_{i} \end{array} \right) \\ \mathbf{M}^{\varepsilon} &= \left(\begin{array}{c} \mathbf{M}_{e}^{\varepsilon} & \mathbf{O} \\ \mathbf{O} & \mathbf{M}_{i}^{\varepsilon} \end{array} \right) \quad , \quad \mathbf{M}^{\mu} = \left(\begin{array}{c} \mathbf{M}_{e}^{\mu} & \mathbf{O} \\ \mathbf{O} & \mathbf{M}_{i}^{\mu} \end{array} \right) \\ \mathbf{K} &= \left(\begin{array}{c} \mathbf{K}_{e} & \mathbf{O} \\ \mathbf{O} & \mathbf{K}_{i} \end{array} \right) \quad , \quad \mathbf{B} = \left(\begin{array}{c} \mathbf{B}_{e} & \mathbf{O} \\ \mathbf{O} & \mathbf{B}_{i} \end{array} \right) \end{split}$$

Hybrid explicit/implicit DGTD- \mathbb{P}_p method

- A: matrix corresponding to fluxes at cell interfaces
 - A_{ee} and A_{ii} are symmetric matrices
 - $\mathbf{A}_{ei} = {}^{\mathsf{T}} \mathbf{A}_{ie}$

$$\mathbf{A} = \left(\begin{array}{cc} \mathbf{A}_{ee} & \mathbf{A}_{ei} \\ \mathbf{A}_{ie} & \mathbf{A}_{ii} \end{array} \right)$$

.....

- $\mathbf{G}_e = \mathbf{K}_e \mathbf{A}_{ee} + \mathbf{B}_e$
- $\mathbf{G}_i = \mathbf{K}_i \mathbf{A}_{ii} + \mathbf{B}_i$
- G_e and G_i are symmetric matrices

$$\begin{cases} \mathsf{M}^{\varepsilon} \frac{d\mathbb{E}}{dt} = \mathsf{F}\mathbb{H} \\ \mathsf{M}^{\mu} \frac{d\mathbb{H}}{dt} = -\mathsf{T} \mathsf{F}\mathbb{E} \end{cases} \begin{cases} \mathsf{M}^{\varepsilon}_{e} \frac{d\mathbb{E}_{e}}{dt} = \mathsf{G}_{e}\mathbb{H}_{e} - \mathsf{A}_{ei}\mathbb{H}_{i} \\ \mathsf{M}^{\mu}_{e} \frac{d\mathbb{H}_{e}}{dt} = -\mathsf{T} \mathsf{G}_{e}\mathbb{E}_{e} + \mathsf{A}_{ei}\mathbb{E}_{i} \\ \mathsf{M}^{\varepsilon}_{i} \frac{d\mathbb{H}_{i}}{dt} = \mathsf{G}_{i}\mathbb{H}_{i} - \mathsf{A}_{ie}\mathbb{H}_{e} \\ \mathsf{M}^{\mu}_{i} \frac{d\mathbb{H}_{i}}{dt} = -\mathsf{T} \mathsf{G}_{i}\mathbb{E}_{i} + \mathsf{A}_{ie}\mathbb{E}_{e} \end{cases}$$

Hybrid explicit/implicit DGTD- \mathbb{P}_p method

$$\begin{cases} \mathbf{M}_{e}^{\mu} \frac{\mathbb{H}_{e}^{n+\frac{1}{2}} - \mathbb{H}_{e}^{n}}{\Delta t/2} &= -^{\mathsf{T}} \mathbf{G}_{e} \mathbb{E}_{e}^{n} + \mathbf{A}_{ei} \mathbb{E}_{i}^{n} \\ \mathbf{M}_{e}^{\varepsilon} \frac{\mathbb{E}_{e}^{n+\frac{1}{2}} - \mathbb{E}_{e}^{n}}{\Delta t/2} &= \mathbf{G}_{e} \mathbb{H}_{e}^{n+\frac{1}{2}} - \mathbf{A}_{ei} \mathbb{H}_{i}^{n} \\ \begin{cases} \mathbf{M}_{i}^{\varepsilon} \frac{\mathbb{E}_{i}^{n+1} - \mathbb{E}_{i}^{n}}{\Delta t} &= \mathbf{G}_{i} \frac{\mathbb{H}_{i}^{n+1} + \mathbb{H}_{i}^{n}}{2} - \mathbf{A}_{ie} \mathbb{H}_{e}^{n+\frac{1}{2}} \\ \mathbf{M}_{i}^{\mu} \frac{\mathbb{H}_{i}^{n} - \mathbb{H}_{i}^{n+1}}{\Delta t} &= -^{\mathsf{T}} \mathbf{G}_{i} \frac{\mathbb{E}_{i}^{n} + \mathbb{E}_{i}^{n+1}}{2} + \mathbf{A}_{ie} \mathbb{E}_{e}^{n+\frac{1}{2}} \\ \end{cases} \\ \begin{cases} \mathbf{M}_{e}^{\varepsilon} \frac{\mathbb{E}_{e}^{n+1} - \mathbb{E}_{e}^{n+\frac{1}{2}}}{\Delta t/2} &= \mathbf{G}_{e} \mathbb{H}_{e}^{n+\frac{1}{2}} - \mathbf{A}_{ei} \mathbb{H}_{i}^{n+1} \\ \mathbf{M}_{e}^{\mu} \frac{\mathbb{H}_{e}^{n+1} - \mathbb{H}_{e}^{n+\frac{1}{2}}}{\Delta t/2} &= -^{\mathsf{T}} \mathbf{G}_{e} \mathbb{E}_{e}^{n+1} + \mathbf{A}_{ei} \mathbb{E}_{i}^{n+1} \end{cases} \end{cases}$$

Numerical results: 2D case

Scattering of a plane wave by a dielectric cylinder

vertices = 4,108 # elements = 8,054

 $\begin{array}{l} \mbox{Cylinder: } \mathsf{R}{=}0.6 \mbox{ m} \\ \mbox{F}{=}300 \mbox{ MHz}, \ \varepsilon_{r,1} = 1.0 \mbox{ and } \ \varepsilon_{r,2} = 2.25 \end{array}$

 $(\Delta t)_m = 2.09$ picosec $(\Delta t)_M = 309.63$ picosec

Numerical results: 2D case Scattering of a plane wave by a dielectric cylinder

F=300 MHz: contour lines of E_z after 10 periods Left: exact solution Middle: implicit DGTD- \mathbb{P}_1 method - Right: implicit DGTD- \mathbb{P}_2 method

Numerical results: 2D case Scattering of a plane wave by a dielectric cylinder

F=300 MHz: time evolution of the L2 error Left: DGTD- \mathbb{P}_1 method - Right: DGTD- \mathbb{P}_2 method

Numerical results: 2D case Scattering of a plane wave by a dielectric cylinder

F=300 MHz: 1D distribution of DFT(E_z), y = 0.0 m Left: DGTD- \mathbb{P}_1 method - Right: DGTD- \mathbb{P}_2 method • Separation threshold t: triangle area

- $\min(A_{\tau_i}) = 0.25 \times 10^{-6} \text{ m}^2$ and $\max(A_{\tau_i}) = 0.65 \times 10^{-2} \text{ m}^2$
- t = 10^{-4} m² \Rightarrow $|S^e| = 5,745$ and $|S^i| = 2,309$
- Reference time step: $\Delta t = 36.575$ picosec

Computing times (AMD Opteron 2 GHz based workstation)

Time integration	Method	$CFL-\mathbb{P}_p$	CPU time	Gain
Explicit	$DGTD-\mathbb{P}_1$	0.3	477 sec	-
Implicit	-	21.0	109 sec	4.4
Hybrid explicit/implicit	-	0.3/17.5	145 sec	3.3
Explicit	$DGTD-\mathbb{P}_2$	0.2	1805 sec	-
Implicit	-	21.0	257 sec	7.0
Hybrid explicit/implicit	-	0.2/17.5	524 sec	3.4

• Separation threshold t: triangle area

- $\min(A_{\tau_i}) = 0.25 \times 10^{-6} \text{ m}^2 \text{ and } \max(A_{\tau_i}) = 0.65 \times 10^{-2} \text{ m}^2$
- t = 10^{-4} m² \Rightarrow $|S^e| = 5,745$ and $|S^i| = 2,309$
- Reference time step: $\Delta t = 36.575$ picosec

Computing times (AMD Opteron 2 GHz based workstation) Factorization phase

Time integration	Method	CPU time	Total RAM size
Implicit	$DGTD-\mathbb{P}_1$	3 sec	70 MB
Hybrid explicit/implicit	-	1 sec	18 MB
Implicit	$DGTD-\mathbb{P}_2$	8 sec	181 MB
Hybrid explicit/implicit	-	2 sec	46 MB

Numerical results The 3D case: eigenmode in a metallic cavity

- # vertices = 3,815 and # tetrahedra = 19,540
 - $(\Delta t)_m = 0.84$ picosec and $(\Delta t)_M = 107.10$ picosec
 - Separation threshold: specific geometric criterion
 - $|S^e| = 17,334$ and $|S^i| = 2,206$
 - Reference time step: $\Delta t = 35.35$ picosec

Computing times (Intel Xeon 2.33 GHz based workstation)

Time integration	$ \mathcal{S}^i $	Method	CFL - \mathbb{P}_p	CPU time	Gain
Explicit	-	$DGTD-\mathbb{P}_1$	0.3	2293 sec	-
Hybrid explicit/implicit	2,206	-	0.3/14.0	257 sec	9.0
Explicit	-	$DGTD-\mathbb{P}_2$	0.2	15992 sec	-
Hybrid explicit/implicit	1,259	-	0.2/1.7	5338 sec	3.0
-	1,603	-	0.2/3.3	3561 sec	4.5
-	2,206	-	0.2/7.0	1490 sec	10.7

Factorization phase (Intel Xeon 2.33 GHz based workstation)

Time integration	$ \mathcal{S}^i $	Method	CPU time	Total RAM size
Hybrid explicit/implicit	2,206	$DGTD-\mathbb{P}_1$	60 sec	341 MB
-	1,259	$DGTD-\mathbb{P}_2$	140 sec	627 MB
-	1,603	-	278 sec	967 MB
-	2,206	-	544 sec	1470 MB

Numerical results The 3D case: a toy problem

vertices = 71,392 and # elements = 396,312 Scattering of a plane wave by a nail geometry F=3 GHz, $(\Delta t)_m = 0.25$ picosec, $(\Delta t)_M = 8.43$ picosec

Contour lines of E_z after 5 periods (DGTD-P1 method) # vertices = 71,392 and # elements = 396,312 Scattering of a plane wave by a nail geometry, F=3 GHz

Separation threshold: specific geometric criterion # vertices = 71,392 and # elements = 396,312 Scattering of a plane wave by a nail geometry F=3 GHz, $(\Delta t)_m = 0.25$ picosec, $(\Delta t)_M = 8.43$ picosec

Time evolution of the E_z component at a given point (last of 5 periods) # vertices = 71,392 and # elements = 396,312 Scattering of a plane wave by a nail geometry

Numerical results The 3D case: a toy problem

- # vertices = 71,392 and # elements = 396,312
 - $(\Delta t)_m = 0.25$ picosec and $(\Delta t)_M = 8.43$ picosec
 - Separation threshold: specific geometric criterion, $t = 10^{-3}$
 - $|S^e| = 393,256$ and $|S^i| = 3,056$ (0.8 % of # elements)
 - Reference time step: $\Delta t = 3.33$ picosec

Time integration	Method	$CFL-\mathbb{P}_p$	CPU time	Gain
Explicit	$DGTD-\mathbb{P}_1$	0.3	7 h 21 mn	-
Hybrid explicit/implicit	-	0.3/4.3	55 mn	8.0
Explicit	$DGTD-\mathbb{P}_2$	0.2	54 h 26 mn	-
Hybrid explicit/implicit	-	0.2/2.2	6 h 34 mn	8.1

Computing times (Intel Xeon 2.33 GHz based workstation)

Factorization phase (Intel Xeon 2.33 GHz based workstation)

Time integration	Method	CPU time	Total RAM size
Hybrid explicit/implicit	$DGTD-\mathbb{P}_1$	5 sec	110 MB
-	DGTD- \mathbb{P}_2	42 sec	490 MB

Outline

- Context, motivations and objectives of the study
- 2 DG- \mathbb{P}_p method for Maxwell equations
- 3 Explicit DGTD- \mathbb{P}_p method
- 4 Implicit DGTD- \mathbb{P}_p method
 - Formulation and properties
 - Numerical results
- 5 Hybrid explicit/implicit DGTD-P_p method
 - Formulation and properties
 - Numerical results: 2D case
 - Numerical results: 3D case

Closure

- Hybrid explicit/implicit (or locally implicit) scheme
 - Well suited to locally refined meshes ($\approx 1\%$ of # elements in 3D)
 - Unconditional stability in the refined region (observed in practice)
 - Memory overhead may still be a concern in 3D (if exact LU is used)
- Future works
 - Stability analysis of the hybrid explicit/implicit scheme
 - Parallelization (computational load balancing)
 - Extension to non-conforming locally refined meshes
 - Relying on a DGTD- \mathbb{P}_{p_i} formulation
 - \mathbb{P}_1 interpolation in the refined regions (minimal memory overhead)