Nanophotonique $\dot{\sigma}$ plasmonique

Antoine Moreau

Institut Pascal, Université Blaise Pascal

15 juillet 2014

1 NANOPHOTONIQUE

- Nanophotonique
- Métamatériaux
- Plasmonique

2 Résonateurs à gap-plasmons

- Cavités
- Gap-plasmon
- Résonateurs
- Nanocubes
- **3** Optique des gap-plasmons
 - Section efficace
 - Contrôle interférométrique

4 Non-localité

- Historique
- Impact sur le gap-plasmon
- Impact sur les résonateurs

Résonateurs à gap-plasmons Optique des gap-plasmons Non-localité Nanophotonique Métamatériaux Plasmonique

1 NANOPHOTONIQUE

- Nanophotonique
- Métamatériaux
- Plasmonique

2 Résonateurs à gap-plasmons

- Cavités
- Gap-plasmon
- Résonateurs
- Nanocubes
- **3 Optique des gap-plasmons**
 - Section efficace
 - Contrôle interférométrique
- **4** Non-localité
 - Historique
 - Impact sur le gap-plasmon
 - Impact sur les résonateurs

Résonateurs à gap-plasmons Optique des gap-plasmons Non-localité

Nanophotonique Métamatériaux Plasmonioue

NANOPHOTONIQUE

- Miroirs de Bragg
- Années 90 : généralisation à 2D ou 3D
- Perspectives de contrôle de l'émission spontanée
- Dans la nature :
 - Opales
 - Structures animales (morphos, souris de mer)
- Application : fibres à cristaux photoniques

Résonateurs à gap-plasmons Optique des gap-plasmons Non-localité Nanophotonique Métamatériaux Plasmonique

Métamatériaux

- Début 2000
- Résonateurs < $\lambda/10$
- Matériaux effectifs avec ϵ et μ contrôlables
- Réfraction négative
- Invisibilité
- Lentille parfaite

Plasmonique

Étude des résonances dûes au métal

- Contrôle de l'émission spontanée
- Concentration des champs (effets NL, Raman)
- Biosensing
- Opérations logiques, nanolasers... (?)

Nanophotonique Métamatériaux Plasmonique

Modes de surface

Résonateurs à gap-plasmons Optique des gap-plasmons Non-localité Nanophotonique Métamatériaux Plasmonique

Λ

Plasma & lumière

- Courants inclus dans la permittivité
- $\epsilon < 0$
- Poynting en $\frac{1}{\epsilon}$
- Réfraction négative
- Lentilles plates

lodèle de Drude	
$\dot{\mathbf{P}}_{f}=\mathbf{j}$	
$\ddot{\mathbf{P}}_{f} + \gamma \dot{\mathbf{P}}_{f} = \epsilon_{0} \omega_{p}^{2} \mathbf{E}$	

Réfraction négative

Cavités Gap-plasmon Résonateurs Nanocubes

Résonance de cavité

- Onde (sonore, corde, lumière)
- Extrêmités réfléchissantes
- Résonances (modes de cavité)
- Taille minimale $\lambda/2$ (cordes)
- Taille minimale $\lambda/4$ (son)
- Caisses de résonance, lasers

NIQUE CAVITÉS MONS GAP-PLASMON MONS RÉSONATEURS ALITÉ NANOCUBES

GAP-PLASMON

Un mode guidé se propage entre deux demi-espaces métalliques

- En polarisation *H*//
- Pour toute épaisseur (pas de coupure)
- En dessous de 50 nm @600nm, effet plasmonique
- Le mode ralentit
- L'indice effectif diverge

Cavités Gap-plasmon **Résonateurs** Nanocubes

Résonateurs à gap-plasmons

- Gap-plasmon : onde à très faible λ
- Coefficient de réflexion important (guide ouvert ou fermé)
- Résonateurs $\lambda/2$
- Résonateurs $\lambda/4$
- Excitation via un prisme

Cavités Gap-plasmon Résonateurs **Nanocubes**

Metasurface absorbante

- Utilisation de cubes synthétisés chimiquement
- Réflexion aux bords,
- Résonances de cavité (malgré la taille < $\lambda/10$),
- Grande sensibilité
- Grande section efficace !

Section efficace Contrôle interférométrique

NANOPHOTONIQUE

- Nanophotonique
- Métamatériaux
- Plasmonique
- 2 Résonateurs à gap-plasmons
 - Cavités
 - Gap-plasmon
 - Résonateurs
 - Nanocubes

3 Optique des gap-plasmons

- Section efficace
- Contrôle interférométrique
- 4 Non-localité
 - Historique
 - Impact sur le gap-plasmon
 - Impact sur les résonateurs

Section efficace Contrôle interférométrique

Section efficace d'absorption

- Pour un gap un peu grand, la cavité est mauvaise (coefficient de réflexion bas).
- Pour un très petit gap, la cavité est bonne, mais difficile à coupler.
- Où est l'optimum ?
- Autour de 5 nm, avec une couverture théorique de la surface de 3% !

Contrôle interférométrique de l'Absorption

Le contrôle interférométrique

- Tue les résonances impaires en incidence normale
- Augmente l'efficacité de l'absorption par les résonances paires

Optique des gap-plasmons

Contrôle interférométrique

Résonances impaires

....SAUF EN INCIDENCE OBLIQUE.

Section efficace Contrôle interférométrique

Efficacité des résonances paires

Section efficace Contrôle interférométrique

OPTIQUE DES GAP-PLASMONS

- Beaucoup de résonances liées aux gap-plasmons
- Physique intéressante à développer
- Importance de la section efficace pour l'auto-assemblage
- Application directe : biosensing

Historique Impact sur le gap-plasmon Impact sur les résonateurs

NANOPHOTONIQUE

- Nanophotonique
- Métamatériaux
- Plasmonique
- 2 Résonateurs à gap-plasmons
 - Cavités
 - Gap-plasmon
 - Résonateurs
 - Nanocubes
- **3 Optique des gap-plasmons**
 - Section efficace
 - Contrôle interférométrique
- 4 Non-localité
 - Historique
 - Impact sur le gap-plasmon
 - Impact sur les résonateurs

Historique Impact sur le gap-plasmon Impact sur les résonateurs

Non-localité

• Modèle de Drude, sans interactions entre électons

$$\ddot{\mathbf{P}}_f + \gamma \dot{\mathbf{P}}_f = \epsilon_0 \omega_p^2 \mathbf{E}$$

où $\dot{\mathbf{P}}_{f} = \mathbf{j}$.

- En réalité les électrons se repoussent (coulomb, échange)
- Si on linéarise les équations de l'hydrodynamique

$$-\beta^2 \nabla \left(\nabla \cdot \mathbf{P}_{\! f} \right) + \ddot{\mathbf{P}}_{\! f} + \gamma \dot{\mathbf{P}}_{\! f} = \epsilon_0 \omega_p^2 \mathbf{E}$$

• "Libre parcours moyen" 20 nm !

HISTORIQUE Impact sur le gap-plasmon Impact sur les résonateurs

LE FLOP.

- Étude dans les années 70-80, mais deux écueils
 - Quelles conditions aux limites choisir ?
 - Le plasmon est-il sensible ?
 - \rightarrow Pas d'expérience permettant de valider les modèles.
 - Deux livres. Stop.

Historique Impact sur le gap-plasmon Impact sur les résonateur

Résultats récents

- En utilisant des nanosphères
- Un poly-électrolyte comme spacer
- Ecart à Drude, bien décrit par le modèle hydrodynamique

^aC. Ciracì et al., Science **337** 1072 (2012)

Historique Impact sur le gap-plasmon Impact sur les résonateurs

IMPACT SUR LE GAP-PLASMON

Résultats analytiques^a

$$\frac{\kappa_z}{\epsilon_d} \tanh \frac{\kappa_z \, h}{2} + \frac{\kappa_t}{\epsilon} = \Omega$$

où
$$\Omega = \frac{k_x^2}{\kappa_l} \left(\frac{1}{\epsilon} - \frac{1}{1+\chi_b} \right)$$

- A faible épaisseur k_x élevé → effets non-locaux !
- Mode *idéal* pour étudier la non-localité.

Historique Impact sur le gap-plasmon Impact sur les résonateurs

Plasmons

Historique Impact sur le gap-plasmon Impact sur les résonateurs

CONDITIONS AUX LIMITES SUPPLEMENTAIRES

- Modèle hydro connu pour exagérer les effets non-locaux
- Forcément via les conditions aux limites
- En tenant compte des transitions interbandes
 - Conditions aux limites
 - Impact moindre
 - Résultats plus réalistes ?

Historique Impact sur le gap-plasmon Impact sur les résonateurs

INFLUENCE SUR LES NANOANTENNES PATCH

- En temps normal, on ne saurait pas exciter des gap-plasmons avec une si faible épaisseur.
- Avec des nanoantennes patch, on peut !
- Conduit à un décalage (mesurable ?) de la résonance.

Historique Impact sur le gap-plasmon **Impact sur les résonateurs**

- Nanoréseau
 - Fentes de 2 à 5 nm de large
 - 15 nm de profondeur
 - Résonateurs à gap-plasmons $\frac{\lambda}{4}$
- Mécanisme clair de sensibilité à la non-localité
- Le gap-plasmon n'est pas le seul impliqué dans la résonance.
- Seul à être sensible.

Historique Impact sur le gap-plasmon **Impact sur les résonateurs**

MILIEUX LAMELLAIRES

- Solution analytique dans chaque couche
- Matrices de scattering généralisées
- Simulation possible de tous les empilements métallo-diélectriques
- Impact important pour des faibles épaisseurs de métal (5 nm)
- En général, une meilleure transmission !

Historique Impact sur le gap-plasmon **Impact sur les résonateurs**

Coupleur à prisme pour gap-plasmon

- Excitation du gap-plasmon via un prisme
- Indice élevé (TiO₂), @543 nm
- Décalage mesurable autour de 70°

Historique Impact sur le gap-plasmon **Impact sur les résonateurs**

PERSPECTIVES

- Optique des gap-plasmons
 - Réflexion, section efficace
 - Autres résonateurs (dimères de cubes)
- Fabrication
 - Sylvie Marguet (CEA Saclay) : les cubes
 - Jérôme Plain et Renaud Bachelot (UTT) : photopolymères
 - Impact de la non-localité ?
- "Plasmonique Quantique"
 - Strasbourg
 - Validité du modèle hydrodynamique
 - Inclure le spill-out