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The talk is based on joint research with Mike Botchev: 

-   J.G. Verwer and M.A. Botchev, Unconditionally stable  
   integration of Maxwell's equations, Linear Algebra and its  
   Applications 431, pp. 300-317 (2009)  

-   M.A. Botchev and J.G. Verwer, Numerical integration of  
   damped Maxwell equations, SIAM J. Sci. Comput. 31, pp.  
   1322-1346 (2009) 



Why examining implicit time stepping for a wave equation 
like Maxwell’s?  

-  Any explicit method is conditionally stable, that is, the  
   step size is constrained to avoid uncontrolled error growth.  

-   Unnecessary step constraints may arise from locally refined  
   or unstructured grids.   

-   In literature, the ADI approach has already been proven  
   useful. However, ADI requires a Cartesian grid layout.  

The talk is about the oldie: explicit or implicit time stepping?  



Outline    

(1)   Maxwell’s equations  

(3)   A special case: the exponential operator  

(5)   A 2nd - order exponential integrator (EK2) 

(4)  A 2nd - order explicit integrator (CO2) 

(5)  A comparison between EK2 and CO2 



(1)  Maxwell’s equations   
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  Semi-Discrete Maxwell System  

-  Mass matrices are symmetric positive definite 

-  K is the approximation for the curl operator 

-  Conduction matrix S is also symmetric positive definite 

-  For zero matrix S, matrix A is skew-symmetric 



   Stability and conservation  

-  Hence stability, and (energy) conservation if S = 0. 

-  Time integrators should mimic this. 



  Stability and conservation 

-  Norm-preserving transformation yields decoupled 2x2 systems  

-  Useful for examining stability of time integration methods 

- Special case: constant ε and σ 



(2)  The exponential operator 



    The exponential operator 
-  For the autonomous problem 

   solution approximations can be obtained from  

-   This is attractive (compared to time stepping) if                    
   and very high temporal accuracy is wanted at time t only 

-   I’ll compare two techniques: Krylov-Arnoldi subspace iteration       
                                                and Chebyshev series expansion 



  Krylov-Arnoldi subspace iteration  

Hochbruck, Lubich ‘97 



     Chebyshev series expansion (Tal-Ezer ’86) 
Also cf. De Raedt et al ‘02 



      Approximating along the imaginary axis 

CWI Report 
MAS-R0806 



 2D Example  



   Solution at t = 1 for mesh width h = 0.005 



  Krylov versus Chebyshev  
Code expv                 compared to own Chebyshev code on  
four grids                                        for ≈ 10 decimal digits   

(Sidje ’98) 

Within expv, maxit = 20, 40, 60  to avoid excessive storage  

For the current 2D problem Chebyshev is faster  



(3)  2nd - order exponential integration  



  The 2nd - order exponential integrator EK2  

Interpolation: source is linearly interpolated and resulting                 
                      terms are computed analytically     Certaine ’60  

EK2: 

See e.g. also Hochbruck & Ostermann (Acta Numerica, forthcoming)  



 Convergence theorem EK2  

Thm.:  For smooth solutions w(t) we have convergence with  
           order 2 for any stable J and any source function f.  
Proof: See V.& B., LAA paper. 

Such convergence suffices for PDEs with time-dependent  
bc’s (stiff source terms) to maintain temporal order 2  
upon spatial grid refinement  

Sanz-Serna, V. & Hundsdorfer, Numer. Math. ‘86 



    A naïve 2nd - order exponential integrator  

Naïve approach:  trapezoidal quadrature of the integral term  

yields the 2nd – order method  



  Convergence test EK2 and naïve method  

2nd order EK2 (+) convergence 
in the PDE sense, i.e. for simul- 
taneous space-time refinement   

However, no PDE convergence 
for naïve method (o) due to time- 
dependent bndry values 

Central 2nd order FD in space, Dirichlet cnds 



  History exponential integrators  

-   Exponential integrators like EK2 and related methods 
   have a long history: 
       Certaine ’60, Legras ’66, Lawson ’67, Nørsett ’69 
       Van der Houwen & V. ’74, V. ‘77 
       Friedli ’78, Strehmel & Weiner ’82 
-   A revival since the late nineties: 
       Hochbruck, Ostermann, Lubich, Selhofer 
       Beylkin, Keiser, Vozovoi 
       Cox, Matthews, Krogstad 
       Berland, Celledoni, Owren, Martinsen 
       … … … 
       supported by Krylov subspace iteration for  
       computing the matrix functions (H.& L.) 



     (4)  Second-order explicit (in K) method 



       Second-order explicit (in K) method 
-  The method exploits the partitioned structure in 

 and is composed of three sub-steps within one time step: 
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       Second-order explicit (in K) method 
-  The method exploits the partitioned structure in 

 and is composed of three sub-steps within one time step: 

-  First substep is free:   



       Second-order explicit (in K) method 

- CO2 (COmposition order 2) is derived through composition 

-  cheap per time step (just one function evaluation)   

-  is akin to the time-staggered scheme (Yee, Störmer-Verlet) 



-  has even global error expansion 

  uniformly in spatial mesh width (good for g-extrapolation) 
  See B. & V., SISC paper for the proof. 

       Second-order explicit (in K) method 

Convergence uniformly in the spatial mesh width is  
needed for PDEs with time-dependent bc’s to maintain  
the order upon spatial grid refinement!  

NB: Higher-order compositions suffer from order reduction. 



An ideal 2nd order method, except that it is conditionally  
stable for the curl terms:                          

       Second-order explicit (in K) method 

-  for zero S and zero sources the method conserves 



   Stability limit for the 2D problem 

Central 2nd - order discretization on a uniform staggered grid  
with grid size h gives for CO2 the stability limit 



(5) Numerical comparison CO2 and EK2 



Numerical comparison CO2 and EK2 

Ackn: Mike Botchev 



Grids 

Grid 4 Grid 5 



  Terminating Krylov within EK2 

After              Krylov iterations: 

The aim is 

This holds if 

Implementation:  
iteration is stopped if  

EK2: 







Conclusions    
We have examined explicit versus implicit time stepping for   
Maxwell’s equations. Our, as yet limited, experience indicates 

-- The cheap explicit method CO2 will be hard to beat 

-- Convergence of Krylov subspace iteration takes too long 

-- Same conclusion for ITR implemented with CG 

-- For stiff autonomous problems and high ODE accuracy, an 
   exponential solver (Krylov, Chebyshev) is advocated 

-- And in case of skew-symmetry, Chebyshev (Tal-Ezer)  
   is then recommended (also cf. De Raedt et al ’02) 



Coil problem grid  



  Restoring PDE convergence for naïve method  

2nd order for naïve method (o) 

is restored by “boundary 
differentiation”, see marks (□) 

Same accuracy as EK2 (+) 


