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The talk is based on joint research with Mike Botchev:

- J.G. Verwer and M.A. Botchev, Unconditionally stable
integration of Maxwell's equations, Linear Algebra and its
Applications 431, pp. 300-317 (2009)

- M.A. Botchev and J.G. Verwer, Numerical integration of
damped Maxwell equations, SIAM J. Sci. Comput. 31, pp.
1322-1346 (2009)



The talk is about the oldie: explicit or implicit time stepping?

Why examining implicit time stepping for a wave equation
like Maxwell’s?

- Any explicit method is conditionally stable, that is, the
Step size is constrained to avoid uncontrolled error growth.

- Unnecessary step constraints may arise from locally refined
or unstructured grids.

- In literature, the ADI approach has already been proven
useful. However, ADI requires a Cartesian grid layout.



Outline

(1) Maxwell’'s equations

(3) A special case: the exponential operator
(5) A 2" - order exponential integrator (EK2)
(4) A 2n9- order explicit integrator (CO2)

(5) A comparison between EK2 and CO2



(1) Maxwell’s equations



Maxwell’s equations
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H magnetic field

E electric field

J electric current

cF 1S a damping conduction term



Maxwell’s equations

In 3D with scalar coefficients:
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Semi-Discrete Maxwell System

1 U H
I — ~ — — ~ h
Mw = Aw+g(t), A e ( ) (Eh )

v

(o) ()= (r =5) (2)+(5r)

- Mass matrices are symmetric positive definite
- K is the approximation for the curl operator
- Conduction matrix S is also symmetric positive definite

- For zero matrix S, matrix A is skew-symmetric



Stability and conservation

My O u 0O —K U
0 M, o] T\ KT =8 v
Hw||M (Mw,w), (Mw,w) = (Myu,u)+ (Myv,v)

1 d

= Slwlify = (Mu',w) = (Aw,w) = (~Sv,v) < O

- Hence stability, and (energy) conservation if S = 0.

- Time integrators should mimic this.



Stability and conservation

- Special case: constant € and o

(o) ()= (e =) ()

where S =aMy, a = —
€

- Norm-preserving transformation yields decoupled 2x2 systems

<€LI>:<O _8>(7}> s=0 or N(RTK) ~1/h

(Y S —« (V)

- Useful for examining stability of time integration methods



(2) The exponential operator



The exponential operator

- For the autonomous problem

M, O u 0O —K U /
0O M, o ] T\ KT —§ v or w =Juw
solution approximations can be obtained from

w(t) = et w(0)

- This is attractive (compared to time stepping) if |[tJ] > 1
and very high temporal accuracy is wanted at time t only

- Il compare two techniques: Krylov-Arnoldi subspace iteration
and Chebyshev series expansion



Krylov-Arnoldi subspace iteration

- Approximates matfunvec o(tJ)b € R"* by
d = Vy(tHp) er - [bll, Vi € R™F, H) € RF*F

- Very efficient if k < n

_ k matvecs with tJ
- Main costs ,
storage of V,. (practical drawback)
- Worst case estimate foret/, J=—Jl : k=~ ||tJ|

Hochbruck, Lubich ‘97



Chebyshev series expansion (Tal-Ezer *86)
Also cf. De Raedt et al ‘02

- Approximates et/w(0) for skew-symmetric J = —J7%
O

-ef =Jo(R)+2 ¥ J(R)Qr(H), z€R, [2| <R
k=1

-wy(t) = Py(J)w(0) ~ e/w(0), N > R>o(tJ])

- Only a three-term C-recursion required for Qg
- Work: N matvecs and only 3 extra storage arrays

- wy(t) can be implemented to converge
to any accuracy for N = O(o(tJ)), o(tJ) —



Approximating along the imaginary axis

- Adaptive approximation to e* with tol = 1016

(error increase is due to round off) cwiReport
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2D Example

2D — T M del s = i
B mode H ot Oz
e=1, 0=0, J=0 OH? OEY
< = ——
unit square H ot ox
EY =0 on boundary @ — OH™ _ OH”
\ ot 0z ox

H*(x,2,0) =0, H*(z,2,0) =0
FEY(x,2,0) =sin(Bx)sin(Bz), 8 =2«

u(z, 2) = [1.0 + 99 ¢—(2:010% ((z-0.5)%+ (2-0.5)%))] -1
peaked shape with pmin = 1072

2nd-order, staggered grid = w(t) = et/ w(0), J = —JL



Solution at t =  for mesh width 47 = 0.005
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Krylov versus Chebyshev

Code expv (Sidje '98) compared to own Chebyshev code on
four grids h =1/20, ... ,1/160 for= 10 decimal digits

Within expv, maxit = 20, 40, 60 to avoid excessive storage

Matvecs expv

ratio = 1atvecs Chebyshev
0 o : maxit = 20
'*5 100 * . maxit = 40
: + : maxit = 60

-1

107 10

For the current 2D problem Chebyshev is faster



(3) 2™ - order exponential integration



The 2" - order exponential integrator EK2

w(tyt1) = e w(tn) + /OT el f(tn + 5)ds

Interpolation: source is linearly interpolated and resulting
terms are computed analytically Certaine '60

EK2: wp41 = wn + T7o1(7J) wy,
+702(rT) (f(tn1) — f(tn))

p1(z) = (e —=1)/z, ¢2(2) = (p1(2) —1)/z

See e.g. also Hochbruck & Ostermann (Acta Numerica, forthcoming)



Convergence theorem EK?2

W41 = wn + Te1(7J) wy,

02(r) (f(tng1) — F(tn))

p1(z) = (2= 1)/z, @2(2) = (p1(2) —1)/z

Thm.: For smooth solutions w(t) we have convergence with
order 2 for any stable J and any source function f.
Proof: See V.& B., LAA paper.

Such convergence suffices for PDEs with time-dependent
bc’s (stiff source terms) to maintain temporal order 2
upon spatial grid refinement

Sanz-Serna, V. & Hundsdorfer, Numer. Math. ‘86



A naive 2" - order exponential integrator

Naive approach: trapezoidal quadrature of the integral term

w(tn+1):eTJw(tn) /Oe(T_S)Jf(tn s)ds

yields the 2" — order method

1 1
wnt1 = (wn+ Sf () + 57 (tng1)



max. error

Convergence test EK2 and naive method

w+ur =0, 0O0<zx<l, 0<t<Ll1

u(x,t) = cos(w(x —t)), w=127

Central 2" order FD in space, Dirichlet cnds

2" order EK2 (+) convergence
in the PDE sense, i.e. for simul-
taneous space-time refinement

However, no PDE convergence
for naive method (o) due to time-
10! dependent bndry values




History exponential integrators

- Exponential integrators like EK2 and related methods
have a long history:

Certaine '60, Legras ‘66, Lawson ‘67, Narsett '69
Van der Houwen & V. '74, V. ‘77
Friedli ’78, Strehmel & Weiner ‘82

- Arevival since the late nineties:
Hochbruck, Ostermann, Lubich, Selhofer
Beylkin, Keiser, VVozovoi
Cox, Matthews, Krogstad
Berland, Celledoni, Owren, Martinsen
supported by Krylov subspace iteration for
computing the matrix functions (H.& L.)



(4) Second-order explicit (1n K) method



Second-order explicit (in K) method

- The method exploits the partitioned structure in

(o) ()= (i =5) ()50

and is composed of three sub-steps within one time step:



Second-order explicit (in K) method
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and is composed of three sub-steps within one time step:
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Second-order explicit (in K) method

- The method exploits the partitioned structure in

(o) ()= (i =5) ()50

and is composed of three sub-steps within one time step:

Up+1/2 — Un
T

Un+1 — Un

My

— —%Kvn + %gu(tn)

S(vn + vp41) n gu(tn) + gv(tn41)

My = Kluppqn -
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Second-order explicit (in K) method

- The method exploits the partitioned structure in
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Second-order explicit (in K) method

- The method exploits the partitioned structure in

(o) ()= (i =5) ()50

and is composed of three sub-steps within one time step:

Up+1/2 — Un

My, - — _%K’Un + %gu(tn)
~ S t t
M, Un—l—lT Un _ KTun—I—l/Q B (Un -Z’Un—I—l) + g’v( n) ‘|'29v( n—l—l)

Up41 — Up4-1/2
T

My, = —3Kvpt1+ 59u(tnt1)

- First substep is free: u,,41/0 =2un —u,_1/0, n=>1



Second-order explicit (in K) method

Up41/2 — Un

M.
Y T/2

= —Kuvn + gu(tn)

. Updt1—Yn _ T S(on +vpg1) | gu(tn) + go(tp41)
CO2: M, . = K upyq1/0— 5 nrll 4 5 nt
Up41 — Upt1/2
My, nt ntl/2 —Kvp41 + gu(ty4+1)

T/2

- CO2 (COmposition order 2) is derived through composition
- cheap per time step (just one function evaluation)

- is akin to the time-staggered scheme (Yee, Stormer-Verlet)

Up41/2 — Up—1/2
My, nti/ n1/ — —K’Un‘|‘gu(tn)
T/2
v — v S(vn + v tn) + go(t
M, n+1 no_ KTun_|_1/2— n . n-l—l) _I_g’U( n) ng( n—l—l)

T



Second-order explicit (in K) method

- has even global error expansion

w(tn>_wn: 0272+C4T4 + ...

uniformly in spatial mesh width (good for g-extrapolation)
See B. & V., SISC paper for the proof.

Convergence uniformly in the spatial mesh width is
needed for PDEs with time-dependent bc’s to maintain
the order upon spatial grid refinement!

NB: Higher-order compositions suffer from order reduction.



Second-order explicit (in K) method

- for zero S and zero sources the method conserves

1 _
lwnlly — 5 72(My * Ken, Ken)

An ideal 2"? order method, except that it is conditionally
stable for the curl terms:

()= (2 22)

) )

)_ 7s <2 if a=20
o rs<2ifa>0



Stability limit for the 2D problem

( OH?* OEY
2D —T'M model ) 5 = 5,
e=1 0=0, J=0 OH? OEY
< =
unit square H ot ox
EY =0 on boundary 8_Ey — OH" _ OH*"
\ ot 0z ox

Central 2" - order discretization on a uniform staggered grid
with grid size h gives for CO2 the stability limit

\/gh, 1 constant

T < e _
S0 hA, o variable




(5) Numerical comparison CO2 and EK2



Numerical comparison CO2 and EK?2

- 3D Maxwell
,LLatH = —VXE
ek = VXH—cFE—J

discretized with 15%-order, 15%-type Nédélec FEM
on tetrahedral unstructured grids

- Unit square, 0 <t < 10, prescribed solution

Ackn: Mike Botchev
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Terminating Krylov within EK2

EK2: w,41 = wn + 7P1 + 7P>

1 =p1(rNw),, P2=pa(r]) (f(tug1) — f(tn))

After ki1, ko Krylov iterations: w,4+1 = wn + TCD + 7P, iz

The aim is ||wn_|_1 — wn_|_1|| lt@EKQ =" 7'||wn||5

This holds if [|[®; — || < 3 [lwnl|6 < & ltegxo

Implementation: L
iteration is stopped if ||®.," — P, 7| < %Hwn” 0

for a prescribed tolerance §



results EK2 (1)

o= 10,34608 DOFs

T # matvecs total # t.error t.error
per t.step matvecs m.field el.field
CcO2
0.025 1 400 1.21e-02 1.23e-02
EK2 (6 = 1073)

0.0625 14.9 2388 8.28e-04 2.67e-04
0.125 22.0 1757  3.36e-03 1.12e-03
0.25 35.5 1418 2.13e-02 1.71e-02
0.5 62.2 1757 1.17e-01 1.05e-01
1.0 116 1160  5.88e-01 5.84e-01




results EK2 (2)

o = 607, 34608 DOFs

T # matvecs total # t.error t.error
per t.step matvecs m.field el.field
CO2
0.025 1 400 1.15e-04 9.34e-06
EK2 (rg = 1()_3)

0.0625 11.5 1836 1.07e-03 5.19e-05
0.125 13.7 1096  3.43e-03 1.26e-04
0.25 16.4 654 1.32e-02 4.34e-04
0.5 21.6 431 4.99e-02 1.81e-03
1.0 29.6 296 1.96e-01 7.18e-03




Conclusions

We have examined explicit versus implicit time stepping for
Maxwell's equations. Our, as yet limited, experience indicates

-- The cheap explicit method COZ2 will be hard to beat
-- Convergence of Krylov subspace iteration takes too long
-- Same conclusion for ITR implemented with CG

-- For stiff autonomous problems and high ODE accuracy, an
exponential solver (Krylov, Chebyshev) is advocated

-- And in case of skew-symmetry, Chebyshev (Tal-Ezer)
is then recommended (also cf. De Raedt et al '02)



Coil problem grid




Restoring PDE convergence for naive method

w+ur =0, 0O0<zx<l, 0<t<Ll1
u(x,t) = cos(w(x —t)), w=127

10 2nd order for naive method (0)
1 1
§ 10_2 - Wpt1 = GTJ (’wn + ETf(tn)> + §Tf(tn-|-1)
2 . is restored by “boundary
€10} differentiation”, see marks (o)
_4 .
1010_3 - 10" Same accuracy as EK2 (+)



