
Some Experiences and Open Questions
in the Development of a DG-FEM
Based Particle-in-Cell Method

Jan S Hesthaven
Brown University
Jan.Hesthaven@Brown.edu

INRIA Sophia-Antipolis - July 2008

mailto:Jan.Hesthaven@Brown.edu
mailto:Jan.Hesthaven@Brown.edu

Thanks!

• People making this possible
• Dr Stephane Lanteri
• The kind people of INRIA Sophia-Antipolis - you!

• Collaborators
• Gustaaf Jacobs (SDSU - formerly Brown)
• Akil Narayan (Brown)
• Andreas Kloeckner (Brown)
• Tim Warburton (Rice University)
• PIC group at Kirkland AFB
• Giovanni Lapenta, LANL

•Funding agencies - AFOSR, ANL

Kinetic Plasma Physics

In high-speed plasma problems dominated by kinetic
effects, one needs to solve for f(x,p,t)

Ω :=
⋃

(,) (,) Ω

∂ −
ε
∇× = −

ε
,

∂ +
µ
∇× = ,

∇ · = , ∇ · =
ρ

ε
.

(, ,)

∂ + · ∂ + (+ ×) · ∂ = 〈 〉 − 〈 〉.

ρ :=

ˆ

, :=

ˆ

.

Ω :=
⋃

(,) (,) Ω

∂ −
ε
∇× = −

ε
,

∂ +
µ
∇× = ,

∇ · = , ∇ · =
ρ

ε
.

(, ,)

∂ + · ∂ + (+ ×) · ∂ = 〈 〉 − 〈 〉.

ρ :=

ˆ

, :=

ˆ

.

Ω :=
⋃

(,) (,) Ω

∂ −
ε
∇× = −

ε
,

∂ +
µ
∇× = ,

∇ · = , ∇ · =
ρ

ε
.

(, ,)

∂ + · ∂ + (+ ×) · ∂ = 〈 〉 − 〈 〉.

ρ :=

ˆ

, :=

ˆ

.

Vlasov/Boltzmann equation

Maxwell’s equations

Coupled through

Kinetic Plasma Physics

Important applications
• High-power/High-frequency microwave generation
• Particle accelerators
• Laser-matter interaction
• Fusion applications, e.g., plasma edge
• etc

Challenges in the Problem

• Full coupling between plasma and fields
• Large scale separation in both time and space
• Electrically large problems
• Time-dependent and highly dynamic
• Often critical phenomena where particles interact
 with geometric features
• Emphasis is on high-speed problems where full
 EM is required

Challenge: To solve a 6+1 dimensional problem in
complex geometries over long times

Particle-in-Cell (PIC) Methods

This is an attempt to solve the Vlasov/Boltzmann
equation by sampling with P particles

ρ(x, t) =
P∑

n=1

qnS(x− xn(t)), j(x, t) =
P∑

n=1

vnqnS(x− xn(t))

f(x, p, t) =
P∑

n=1

qnS(x− xn(t))δ(p− pn(t)),

Ideally we have

S(x) = δ(x) a point particle

However, this is not practical, nor reasonable - so
S(x) is a shape-function

Particle-in-Cell Methods

ε∂tE −∇×H = −j, µ∂tH +∇× E = 0,

∇ · (εE) = ρ, ∇ · (µH) = 0,

dxn

dt
= vn(t)

dmvn

dt
= qn(E + vn ×H) m =

1√
1− (vn/c)2

ρ(x, t) =
P∑

n=1

qnS(x− xn(t)), j(x, t) =
P∑

n=1

vnqnS(x− xn(t))

E(xn),H(xn)

Maxwell’s equations

Particle/Phase dynamics

Particles-to-fields

Fields-to-particles

Classic Particle-in-Cell Methods

Four stages: Assume are given

• Advanced Maxwell’s equations
• Interpolate fields to particles
• Advance particles
• Deposit charges and currents to fields

En,Hn, jn, ρn

The PIC loop

WeighingWeighing

Integration of field

equations on grid

Integration of equations

of motion, moving particles

IPAM Fusion Workshop – January 12, 2005 – p.10

Classic Particle-in-Cell Methods

Staggered/Yee grid in space Leap-frog in time

Piecewise constant
charges/shape functions

Scheme due to
Villasenor/Buneman (1992)

Classic Particle-in-Cell Methods

The central advantages of this scheme are

• Exact energy and charge conservation
• Simple
• Very fast
• Very widely used and tested/validated on
 nontrivial problems with > 1 billion particles

However, there is also a number of well
recognized problems and limitations

Classic Particle-in-Cell Methods

• The exactness of charge and energy is tightly
 coupled to the Cartesian grid - i.e., no support
 for local grid-refinement
• No geometric flexibility and staircasing
• (Very) poor accuracy close to boundaries
• 2nd order accuracy in fields (dispersion errors)
• 1st order accuracy in currents/charges
• Numerical Cherenkov radiation
• Poor performance on large scale computers
• Not well suited for multi-physics modeling

Problems

Classic Particle-in-Cell Methods

This translates into problems and limitations like

• Electrically large problems
• Problems requiring long time integration
• Problems where the interaction with geometries
 are important, e.g., secondary emission
• High-density problems
• Problems suggesting a hybrid fluid/particle model
• Problems requiring a peta-scale platform

We need to look for an alternative

These are the characteristics of many problems

A new Particle-in-Cell Methods ?

.. but what should we look for ?

• Geometric flexibility and non-uniform grids
• High/variable order accuracy in fields
• Improved accuracy in currents/charges
• Robustness and flexibility for hybrid problems
• High efficiency

• .. while doing the physics right !

This is harder than it looks
... and we are 20+ years behind

... so teamwork is essential!

Brief overview of what remains

• DG-FEM for the fields
 High-order, general grids and all of that
• Particles
 Shapes, moves, identification etc
• Charge conservation
• Boundary-particle interactions
• Tests, Tests
 Sanity tests
 More complex tests
•Closer to the application
• Open problems and outlook
• Something extra (time permitting)

Solving for the fields

Consider Maxwell’s equations

ε∂tE −∇×H = −j, µ∂tH +∇× E = 0,

Write it on conservation form as

∂q

∂t
+∇ · F = −J

q =
[

E
H

]
J =

[
j
0

]
F =

[
−ê×H
ê× E

]

Represent the computational domain as

Ω =
∑

k

Dk

Solving for the fields

On each element we assume

an Eulerian frame while the charge dynamics more naturally is discussed in a purely Lagrangian setting. A
computational approach will need to effectively connect these two essentially different pictures. In the follow-
ing, we shall discuss in some detail the individual components of the algorithm.

3.1. The field solver

To advance Maxwell!s equations, Eq. (1), in time we shall use a nodal high-order discontinuous Galerkin
method, described in detail in [10]. In this approach, the computational domain, X, is subdivided into non-
overlapping triangular elements, D, to ensure geometric flexibility. On each element, we assume that the local
solution can be represented as an nth order polynomial of the form

qN ðx; tÞ ¼
XN

j¼1

qðxj; tÞLjðxÞ ¼
XN

j¼1

q̂jðtÞLjðxÞ; ð7Þ

where Lj is the genuine multi-dimensional Lagrange interpolant associated with the N grid points, xj, on the
triangular element. In this work, we use the nodes given in [11]. For an nth order polynomial, we have

N ¼ ðnþ 1Þðnþ 2Þ
2

as the number of local grid points or degrees of freedom on each element for each variable.
To seek equations for these N local unknowns, we require the local approximate solution, qN, to Maxwell!s

equations to satisfy
Z

D

oqN
ot

þr % FN & JN

! "
LiðxÞ dx ¼

I

oD

LiðxÞn̂ % ½FN & F() dx. ð8Þ

Here, F(signifies a numerical flux and n̂ is an outward pointing unit vector defined at the boundary of the
element. The role of the numerical flux is to connect the elements and ensure stability of the computational
scheme. If the numerical flux is consistent, the scheme is clearly consistent. On the other hand, boundary/inter-
face conditions are not imposed exactly but rather weakly through the penalizing surface integral. Within this
multi-element context, the formulation is inherently discontinuous and yields, through its very construction, a
highly parallel local scheme.

With the operators,

M̂ ij ¼
Z

D
LiLj dx; Ŝij ¼

Z

D
rLjLi dx; F̂ ij ¼

I

oD

LiLj dx; ð9Þ

we recover from Eq. (8) the fully explicit local scheme,

M̂
dq̂

dt
þ Ŝ % F̂ & M̂ Ĵ ¼ F̂ n̂ % ½F̂ & F̂

(
); ð10Þ

where q̂ represents the 3N-vector of nodal values, qN, at D. Similarly, F̂; Ĵ, and F̂
(
denote nodal values for the

flux, the current density, and the numerical flux, respectively.
To finalize the formulation of the scheme, we must specify the numerical flux F(, which is responsible for

passing information between the elements and imposing the boundary conditions. Given the linearity of Max-
well!s equations, we use a flux like

n̂ % ½F & F() ¼
n* ðcn* ½E) & ½B)Þ;
n* ðcn* ½B) þ ½E)Þ;

#
ð11Þ

where [Q] = Q& & Q+ measures the jump in the values across an interface. Superscript "+! refers to the value
from the neighbor element while superscript "&! refers to field value local to the element. Note that by taking
c = 1, one recovers the classic, dissipative, upwind flux [12], while c = 0 leads to a purely dispersive central
flux. Clearly one is free to take values in between these two extremes with a controlling the amount of dissi-
pation added. A complete analysis in terms of accuracy and stability of the scheme above can be found in [10]
with further details in [9].

G.B. Jacobs, J.S. Hesthaven / Journal of Computational Physics 214 (2006) 96–121 99

N =
(

n + d
n

)
! nd

d!

d=2
n=6

d=3
n=8

d=3
n=6

d=2
n=8

Solving for the fields

On each element we then require

an Eulerian frame while the charge dynamics more naturally is discussed in a purely Lagrangian setting. A
computational approach will need to effectively connect these two essentially different pictures. In the follow-
ing, we shall discuss in some detail the individual components of the algorithm.

3.1. The field solver

To advance Maxwell!s equations, Eq. (1), in time we shall use a nodal high-order discontinuous Galerkin
method, described in detail in [10]. In this approach, the computational domain, X, is subdivided into non-
overlapping triangular elements, D, to ensure geometric flexibility. On each element, we assume that the local
solution can be represented as an nth order polynomial of the form

qN ðx; tÞ ¼
XN

j¼1

qðxj; tÞLjðxÞ ¼
XN

j¼1

q̂jðtÞLjðxÞ; ð7Þ

where Lj is the genuine multi-dimensional Lagrange interpolant associated with the N grid points, xj, on the
triangular element. In this work, we use the nodes given in [11]. For an nth order polynomial, we have

N ¼ ðnþ 1Þðnþ 2Þ
2

as the number of local grid points or degrees of freedom on each element for each variable.
To seek equations for these N local unknowns, we require the local approximate solution, qN, to Maxwell!s

equations to satisfy
Z

D

oqN
ot

þr % FN & JN

! "
LiðxÞ dx ¼

I

oD

LiðxÞn̂ % ½FN & F() dx. ð8Þ

Here, F(signifies a numerical flux and n̂ is an outward pointing unit vector defined at the boundary of the
element. The role of the numerical flux is to connect the elements and ensure stability of the computational
scheme. If the numerical flux is consistent, the scheme is clearly consistent. On the other hand, boundary/inter-
face conditions are not imposed exactly but rather weakly through the penalizing surface integral. Within this
multi-element context, the formulation is inherently discontinuous and yields, through its very construction, a
highly parallel local scheme.

With the operators,

M̂ ij ¼
Z

D
LiLj dx; Ŝij ¼

Z

D
rLjLi dx; F̂ ij ¼

I

oD

LiLj dx; ð9Þ

we recover from Eq. (8) the fully explicit local scheme,

M̂
dq̂

dt
þ Ŝ % F̂ & M̂ Ĵ ¼ F̂ n̂ % ½F̂ & F̂

(
); ð10Þ

where q̂ represents the 3N-vector of nodal values, qN, at D. Similarly, F̂; Ĵ, and F̂
(
denote nodal values for the

flux, the current density, and the numerical flux, respectively.
To finalize the formulation of the scheme, we must specify the numerical flux F(, which is responsible for

passing information between the elements and imposing the boundary conditions. Given the linearity of Max-
well!s equations, we use a flux like

n̂ % ½F & F() ¼
n* ðcn* ½E) & ½B)Þ;
n* ðcn* ½B) þ ½E)Þ;

#
ð11Þ

where [Q] = Q& & Q+ measures the jump in the values across an interface. Superscript "+! refers to the value
from the neighbor element while superscript "&! refers to field value local to the element. Note that by taking
c = 1, one recovers the classic, dissipative, upwind flux [12], while c = 0 leads to a purely dispersive central
flux. Clearly one is free to take values in between these two extremes with a controlling the amount of dissi-
pation added. A complete analysis in terms of accuracy and stability of the scheme above can be found in [10]
with further details in [9].

G.B. Jacobs, J.S. Hesthaven / Journal of Computational Physics 214 (2006) 96–121 99

an Eulerian frame while the charge dynamics more naturally is discussed in a purely Lagrangian setting. A
computational approach will need to effectively connect these two essentially different pictures. In the follow-
ing, we shall discuss in some detail the individual components of the algorithm.

3.1. The field solver

To advance Maxwell!s equations, Eq. (1), in time we shall use a nodal high-order discontinuous Galerkin
method, described in detail in [10]. In this approach, the computational domain, X, is subdivided into non-
overlapping triangular elements, D, to ensure geometric flexibility. On each element, we assume that the local
solution can be represented as an nth order polynomial of the form

qN ðx; tÞ ¼
XN

j¼1

qðxj; tÞLjðxÞ ¼
XN

j¼1

q̂jðtÞLjðxÞ; ð7Þ

where Lj is the genuine multi-dimensional Lagrange interpolant associated with the N grid points, xj, on the
triangular element. In this work, we use the nodes given in [11]. For an nth order polynomial, we have

N ¼ ðnþ 1Þðnþ 2Þ
2

as the number of local grid points or degrees of freedom on each element for each variable.
To seek equations for these N local unknowns, we require the local approximate solution, qN, to Maxwell!s

equations to satisfy
Z

D

oqN
ot

þr % FN & JN

! "
LiðxÞ dx ¼

I

oD

LiðxÞn̂ % ½FN & F() dx. ð8Þ

Here, F(signifies a numerical flux and n̂ is an outward pointing unit vector defined at the boundary of the
element. The role of the numerical flux is to connect the elements and ensure stability of the computational
scheme. If the numerical flux is consistent, the scheme is clearly consistent. On the other hand, boundary/inter-
face conditions are not imposed exactly but rather weakly through the penalizing surface integral. Within this
multi-element context, the formulation is inherently discontinuous and yields, through its very construction, a
highly parallel local scheme.

With the operators,

M̂ ij ¼
Z

D
LiLj dx; Ŝij ¼

Z

D
rLjLi dx; F̂ ij ¼

I

oD

LiLj dx; ð9Þ

we recover from Eq. (8) the fully explicit local scheme,

M̂
dq̂

dt
þ Ŝ % F̂ & M̂ Ĵ ¼ F̂ n̂ % ½F̂ & F̂

(
); ð10Þ

where q̂ represents the 3N-vector of nodal values, qN, at D. Similarly, F̂; Ĵ, and F̂
(
denote nodal values for the

flux, the current density, and the numerical flux, respectively.
To finalize the formulation of the scheme, we must specify the numerical flux F(, which is responsible for

passing information between the elements and imposing the boundary conditions. Given the linearity of Max-
well!s equations, we use a flux like

n̂ % ½F & F() ¼
n* ðcn* ½E) & ½B)Þ;
n* ðcn* ½B) þ ½E)Þ;

#
ð11Þ

where [Q] = Q& & Q+ measures the jump in the values across an interface. Superscript "+! refers to the value
from the neighbor element while superscript "&! refers to field value local to the element. Note that by taking
c = 1, one recovers the classic, dissipative, upwind flux [12], while c = 0 leads to a purely dispersive central
flux. Clearly one is free to take values in between these two extremes with a controlling the amount of dissi-
pation added. A complete analysis in terms of accuracy and stability of the scheme above can be found in [10]
with further details in [9].

G.B. Jacobs, J.S. Hesthaven / Journal of Computational Physics 214 (2006) 96–121 99

an Eulerian frame while the charge dynamics more naturally is discussed in a purely Lagrangian setting. A
computational approach will need to effectively connect these two essentially different pictures. In the follow-
ing, we shall discuss in some detail the individual components of the algorithm.

3.1. The field solver

To advance Maxwell!s equations, Eq. (1), in time we shall use a nodal high-order discontinuous Galerkin
method, described in detail in [10]. In this approach, the computational domain, X, is subdivided into non-
overlapping triangular elements, D, to ensure geometric flexibility. On each element, we assume that the local
solution can be represented as an nth order polynomial of the form

qN ðx; tÞ ¼
XN

j¼1

qðxj; tÞLjðxÞ ¼
XN

j¼1

q̂jðtÞLjðxÞ; ð7Þ

where Lj is the genuine multi-dimensional Lagrange interpolant associated with the N grid points, xj, on the
triangular element. In this work, we use the nodes given in [11]. For an nth order polynomial, we have

N ¼ ðnþ 1Þðnþ 2Þ
2

as the number of local grid points or degrees of freedom on each element for each variable.
To seek equations for these N local unknowns, we require the local approximate solution, qN, to Maxwell!s

equations to satisfy
Z

D

oqN
ot

þr % FN & JN

! "
LiðxÞ dx ¼

I

oD

LiðxÞn̂ % ½FN & F() dx. ð8Þ

Here, F(signifies a numerical flux and n̂ is an outward pointing unit vector defined at the boundary of the
element. The role of the numerical flux is to connect the elements and ensure stability of the computational
scheme. If the numerical flux is consistent, the scheme is clearly consistent. On the other hand, boundary/inter-
face conditions are not imposed exactly but rather weakly through the penalizing surface integral. Within this
multi-element context, the formulation is inherently discontinuous and yields, through its very construction, a
highly parallel local scheme.

With the operators,

M̂ ij ¼
Z

D
LiLj dx; Ŝij ¼

Z

D
rLjLi dx; F̂ ij ¼

I

oD

LiLj dx; ð9Þ

we recover from Eq. (8) the fully explicit local scheme,

M̂
dq̂

dt
þ Ŝ % F̂ & M̂ Ĵ ¼ F̂ n̂ % ½F̂ & F̂

(
); ð10Þ

where q̂ represents the 3N-vector of nodal values, qN, at D. Similarly, F̂; Ĵ, and F̂
(
denote nodal values for the

flux, the current density, and the numerical flux, respectively.
To finalize the formulation of the scheme, we must specify the numerical flux F(, which is responsible for

passing information between the elements and imposing the boundary conditions. Given the linearity of Max-
well!s equations, we use a flux like

n̂ % ½F & F() ¼
n* ðcn* ½E) & ½B)Þ;
n* ðcn* ½B) þ ½E)Þ;

#
ð11Þ

where [Q] = Q& & Q+ measures the jump in the values across an interface. Superscript "+! refers to the value
from the neighbor element while superscript "&! refers to field value local to the element. Note that by taking
c = 1, one recovers the classic, dissipative, upwind flux [12], while c = 0 leads to a purely dispersive central
flux. Clearly one is free to take values in between these two extremes with a controlling the amount of dissi-
pation added. A complete analysis in terms of accuracy and stability of the scheme above can be found in [10]
with further details in [9].

G.B. Jacobs, J.S. Hesthaven / Journal of Computational Physics 214 (2006) 96–121 99

an Eulerian frame while the charge dynamics more naturally is discussed in a purely Lagrangian setting. A
computational approach will need to effectively connect these two essentially different pictures. In the follow-
ing, we shall discuss in some detail the individual components of the algorithm.

3.1. The field solver

To advance Maxwell!s equations, Eq. (1), in time we shall use a nodal high-order discontinuous Galerkin
method, described in detail in [10]. In this approach, the computational domain, X, is subdivided into non-
overlapping triangular elements, D, to ensure geometric flexibility. On each element, we assume that the local
solution can be represented as an nth order polynomial of the form

qN ðx; tÞ ¼
XN

j¼1

qðxj; tÞLjðxÞ ¼
XN

j¼1

q̂jðtÞLjðxÞ; ð7Þ

where Lj is the genuine multi-dimensional Lagrange interpolant associated with the N grid points, xj, on the
triangular element. In this work, we use the nodes given in [11]. For an nth order polynomial, we have

N ¼ ðnþ 1Þðnþ 2Þ
2

as the number of local grid points or degrees of freedom on each element for each variable.
To seek equations for these N local unknowns, we require the local approximate solution, qN, to Maxwell!s

equations to satisfy
Z

D

oqN
ot

þr % FN & JN

! "
LiðxÞ dx ¼

I

oD

LiðxÞn̂ % ½FN & F() dx. ð8Þ

Here, F(signifies a numerical flux and n̂ is an outward pointing unit vector defined at the boundary of the
element. The role of the numerical flux is to connect the elements and ensure stability of the computational
scheme. If the numerical flux is consistent, the scheme is clearly consistent. On the other hand, boundary/inter-
face conditions are not imposed exactly but rather weakly through the penalizing surface integral. Within this
multi-element context, the formulation is inherently discontinuous and yields, through its very construction, a
highly parallel local scheme.

With the operators,

M̂ ij ¼
Z

D
LiLj dx; Ŝij ¼

Z

D
rLjLi dx; F̂ ij ¼

I

oD

LiLj dx; ð9Þ

we recover from Eq. (8) the fully explicit local scheme,

M̂
dq̂

dt
þ Ŝ % F̂ & M̂ Ĵ ¼ F̂ n̂ % ½F̂ & F̂

(
); ð10Þ

where q̂ represents the 3N-vector of nodal values, qN, at D. Similarly, F̂; Ĵ, and F̂
(
denote nodal values for the

flux, the current density, and the numerical flux, respectively.
To finalize the formulation of the scheme, we must specify the numerical flux F(, which is responsible for

passing information between the elements and imposing the boundary conditions. Given the linearity of Max-
well!s equations, we use a flux like

n̂ % ½F & F() ¼
n* ðcn* ½E) & ½B)Þ;
n* ðcn* ½B) þ ½E)Þ;

#
ð11Þ

where [Q] = Q& & Q+ measures the jump in the values across an interface. Superscript "+! refers to the value
from the neighbor element while superscript "&! refers to field value local to the element. Note that by taking
c = 1, one recovers the classic, dissipative, upwind flux [12], while c = 0 leads to a purely dispersive central
flux. Clearly one is free to take values in between these two extremes with a controlling the amount of dissi-
pation added. A complete analysis in terms of accuracy and stability of the scheme above can be found in [10]
with further details in [9].

G.B. Jacobs, J.S. Hesthaven / Journal of Computational Physics 214 (2006) 96–121 99

[Q] = Q− −Q+

With the numerical flux given as

Define the local operators

To obtain the local matrix based scheme

Solving for the fields

In time we use a 4th order Runge-Kutta methodThe set of linear ODE!s in (10) is integrated with the low storage, fourth order Runge–Kutta scheme (RK4)
from Carpenter and Kennedy [13],

wi ¼ aiwi"1 þ DtFðti"1; qði"1ÞÞ
qðiÞ ¼ qði"1Þ þ biwi

)

; i ¼ 1; 2; . . . ; s; ð12Þ

where a1 = 0 for the algorithm to be self-starting, qð0Þ ¼ q̂n"1; qðsÞ ¼ q̂n, and ti = tn " 1 + ciDt. This is a 2N stor-
age scheme, since only q and w require storage. Compared to a classic 4th order Runge–Kutta method the
memory usage is reduced by half. The current scheme is a five stage method with the coefficients [13] given by

a1 ¼ 0:0; b1 ¼ 0:1496590219993; c1 ¼ 0:0;

a2 ¼ "0:4178904745; b2 ¼ 0:3792103129999; c2 ¼ 0:1496590219993;

a3 ¼ "1:192151694643; b3 ¼ 0:8229550293869; c3 ¼ 0:3704009573644;

a4 ¼ "1:697784692471; b4 ¼ 0:6994504559488; c4 ¼ 0:6222557631345;

a5 ¼ "1:514183444257; b5 ¼ 0:1530572479681; c5 ¼ 0:9582821306748.

ð13Þ

3.2. Tracking the particles

Lagrangian tracking of the particles consists of three stages per particle, including searching the element a
particle is located in, interpolating the field variables to the particle location, and pushing the particle forward
with a time integration method.

In [14] a tracking algorithm is discussed in a system that only couples the field equations to the particles in
one direction, e.g., passive advection. It was shown that interpolation and temporation integration method
may, in most cases, be of a lower order than the approximation order of the spatial and temporal discretiza-
tion method used for the field equations. From numerous tests, however, it has become clear that only full
order interpolation using Eq. (7) suffices in a system that fully couples particles and field equations in both
directions. In full order interpolation the interpolating polynomial order is equal to the order of the polyno-
mial used to represent the fields.

A fast full-order interpolation technique is discussed in Appendix A. Lower order interpolation severely
influences the accuracy of the total scheme and may lead to instability in many situations. Similarly, the time
scheme for integration of Eq. (4) should be the same as the time scheme that integrates the field equations, i.e.,
Eq. (12).

The particle localization scheme follows [14], where the particle!s element is found by comparing the
mapped particle coordinate to the coordinates of the standard element for each element on the grid. The map-
ping takes advantage of the simple inverse of the linear blending formula for triangles. For the smooth map-
ping of a straightsided triangle the inverse is given as,

np ¼ C1xp þ C2; ð14Þ

where np is the mapped coordinate. Matrix C1 and vector C2 contains constants that are functions of the tri-
angles! vertex coordinates. Even though the elements are typically large, scanning all elements in a large grid is
prohibitive. We reduce the cost dramatically by storing information about the elements connected to one
node, and scan only these elements if a particle leaves the element close to this node. Since high-order elements
are typically large and we are considering purely explicit time stepping here, particles do in general not leave
the bounds of this cloud of elements.

3.3. Weighing of the particles to the grid

To connect the fields and the particles, we must translate the action of the particles to the Eulerian grid
using Eq. (6). Computational efficiency and accuracy suggest that the particles be treated as clouds rather than
points [1]. Thus the shape function S in Eq. (6) is not chosen as a Coulomb distribution, but commonly as a
compact distribution spanning approximately the area of a grid cell.

100 G.B. Jacobs, J.S. Hesthaven / Journal of Computational Physics 214 (2006) 96–121

• Scheme is fully explicit
• Well understood for both electrostatics and
 electromagnetics
• Supports general grids, variable order, complex
 geometries
• High parallel efficiency
• Used by several groups for EM across the world

Solving the field equations

Maxwell’s equations

Scattering by aircraft

X

Y

Z

Darmstadt International Workshop, October 2004 – p.33

Darmstadt International Workshop, October 2004 – p.34

Animations
by Nico Godel
Hamburg
using NuDG

A bit of promotion ..

Naturally, the devil is in the details
 and (some of) the details you
 can find in

54

springer.com

Hesthaven
W

arburton

Jan S. Hesthaven
Tim Warburton

Nodal Discontinuous
Galerkin Methods
Algorithms, Analysis, and
Applications

This book discusses the discontinuous Galerkin family of computational methods
for solving partial differential equations. While these methods have been known
since the early 1970s, they have experienced a phenomenal growth in interest dur-
ing the last ten to fifteen years, leading both to substantial theoretical develop-
ments and the application of these methods to a broad range of problems.

These methods are distinct in nature from standard methods such as finite ele-
ment or finite difference methods, often presenting a challenge in the transition
from theoretical developments to actual implementations and applications.

This book is suitable for graduate level classes in applied and computational
mathematics. The combination of an in-depth discussion of the fundamental
properties of the discontinuous Galerkin computational methods with the avail-
ability of extensive accompanying Matlab based implementations allows students
to gain first-hand experience from the beginning without eliminating theoretical
insight.

Jan S. Hesthaven is a professor of Applied Mathematics at Brown University.

Tim Warburton is an assistant professor of Applied and Computational
Mathematics at Rice University.

Nodal Discontinuous Galerkin M
ethods

TEXTS IN APPLIED MATHEMATICS

54
TEXTS IN APPLIED MATHEMATICS

Nodal Discontinuous Galerkin
Methods: Algorithms, Analysis, and
Applications
Jan S. Hesthaven • Tim Warburton

TAM
54

 ----

http://www.nudg.org

Matlab/C++ software
available

http://www.nudg.org
http://www.nudg.org

Scheme so far

{ } { }

∂ (∇× ,−∇×)

We have ‘conviniently’ neglected these two
components - both key to the PIC model

Note: No
staggering in
time.

Everything is
collocated.

More on that
later

The particles

This is a much harder problem!

• Particle shapes
• Particle pushers and current/charge deposition
• Particle interactions with geometries
• Numerical Cherenkov radiation
• Charge conservation
• ... and many other issues

I will share many results with you -- not clear
we have a ‘steady state’ strategy yet

Particles et al

We are using a grid independent shape function:

Classic particle-in-cell (PIC) methods [1] usually weigh with a zero or first order function, which is not suit-
able for a high-order method as the lack of smoothness of the particle shape results in a Gibbs type phenom-
enon that severely influences accuracy and introduces noise in q and J. The non-smooth shape is also more
likely to enhance the well-known finite grid heating and instability [1]. Thus, an unstructured grid high-order
method requires a different approach, in which smoothness is desirable.

In the volume weighing approach [1] the interpolation function is different from the shape function. Assign-
ing a particle according to this approach to a high-order element is difficult unless we use linear weighing.
Rather, we choose to assign a smooth shape function to the grid directly. Thus, in the approach developed
here, the shape function is the interpolation function.

We compare four potential smooth shape functions. These include a raised cut-off cosine function,

Scos ¼
p

R2ðp2 # 4Þ
cos

rp
R

! "
þ 1

h i
; ð15Þ

where r = |x # xp| is the Eulerian distance from the center of the particle cloud, and R is the influence radius of
the cloud. (15) is normalized such that that integral

R 2p
0

R R
0 Scosr dr d/ ¼ 1, where / is the azimuthal coordi-

nate. However, the odd derivatives are not zero at r = R, leading to unfavorable behavior as we shall see
shortly.

Secondly, we consider a Gaussian shape function,

Sgauss ¼
1

2p!2
e

#r2

2p!2 ; ð16Þ

where ! is the well-known variance. The spatial unboundedness of the Gaussian function does not suit the
finite nature of a particle cloud, but in practice the Gaussian is zero to machine precision at a radius of five
to seven times the variance and can be cut off. The integral of Sgauss is again unity, the Gaussian is analytic
and, unlike the cosine, its derivative is approximately zero at the cutoff radius.

Thirdly, we consider the polynomial function,

Spol ¼
1

2pA
1# ð2p þ 1Þ!=ðp!Þ2

Z r=R

0

½sð1# sÞ'p ds
$

; r ¼ 0; . . . ;R; ð17Þ

This function is p differentiable and has a finite radius, R. The parameter, A, ensures that the integral over its
surface is unity (for example for p = 4, A = 3R2/22). The first p/2 derivatives of Spol are zero at r = R. If p
(mostly p = 4) is set, the seemingly expensive evaluation of Spol is relatively inexpensive, as the integral reduces
to a few multiplications.

Finally, we consider the polynomial function,

Spo1l ¼
aþ 1

pR2 1# r
R

! "2
$a

; r ¼ 0; . . . ;R; ð18Þ

which is likewise smooth and has a unit integral. The evaluation of this function is the least expensive of the
above functions. Note that all functions are isotropic as opposed to the rectangular cloud shape commonly
used in standard PIC codes.

Fig. 1 plots the three distribution functions versus the radial coordinate. Sgauss is plotted for a cut-off at
R = 5! and R = 7!. Spol is plotted for p = 4 and 6. Spol1 is plotted for a = 10 and 20. The Gaussian and Spol1

show similar trends. Note that Spol1 does not require a cut-off, whereas the Gaussian does. Sgauss and Spol1

have larger maxima (at r = 0) than the cosine and Spol, as they decay to zero faster when r goes to R. The
cosine and polynomial function distribute their weight more evenly over the cloud influence area. The non-
zero value of the cosine higher order derivatives is evident from the large slope the cosine has toward
r = R compared to the polynomial function. If p increases, the weight of the polynomial concentrates at
0 < r < R/2 and the function goes to zero more rapidly for r > R/2 to ensure that the higher order derivatives
vanish.

An accurate representation of S(r) requires multiple interpolation points. In fact, approximating a single
particle shape to order Oð10#3Þ is found to require a number of grid points per particle that varies from
150 to 500 depending on the approximation order. This number is high, i.e., computationally expensive for

G.B. Jacobs, J.S. Hesthaven / Journal of Computational Physics 214 (2006) 96–121 101

| (,)() = N

(
− || ||

)α

→ δ α→∞
∈ α−

α

• Truncated polynomial
• as
•
• S is compactly supported

S(r)→ δ α→∞
S ∈ Cα−1

αHigh values of is physically appealing but that
requires many particles

Note: Problems with highly non-uniform grids

Particle pushing

Requires two steps

• Computation of forces on particles
• Advance

dxn

dt
= vn(t)

dmvn

dt
= qn(E + vn ×H) m =

1√
1− (vn/c)2

For the latter we use RK as for the fields

For the former, a paradox arises
• For deposition, particles are clouds
• For pushing they are points

Particle pushing

The force computation at a point is straightforward

Vij = ψj(ηi) mi = ψi(xn)

E(xn) = (V −T m)T E L(x) = V −T ψ(x)
then

This vectorizes very well

Here we have the orthonormal basis ψ(x)

However, this is too expensive to evaluate so for force
evaluation we use a simple monomial basis

ψ(x, y, z) = xiyjzk, 0 ≤ i + j + k ≤ n

Particle pushing

One way to address the apparent paradox is to push
by the cloud averaged forces

∑ ∑

Particle pushing

Averaged pushing

• Physically more intuitive
• Computationally more expensive
• One can use the spread of point forces over
 a particle as a resolution measure.

.. but the test is -- does it work better

We will see shortly

Current/Charge deposition

We shall discuss two different approaches

• Deposition by shape function
• Deposition by Cartesian overlaid grid

This stage is critical both for accuracy but also
for speed.

There is a clear tradeoff between simple/fast
particles and complex/slow particles

.. and the particles play a dual role !

Deposition by shape function

The idea is quite simple

• Identify which elements are reached by the cloud
• Deposit according to the cloud

(,)

← { ()} ← ∅
"= ∅ ∈

← ∪ { }
{ ()} =

() !∈ ∪
(, (() ∩)) <
(,) ∩ (() ∩) != ∅

• Face based search (or vertex based)
• Velocity and normals used to identify new
 target element

Deposition by shape function

Computational bottleneck: Deposition is expensive
due to uneven nodal distribution.

Idea: Use a Cartesian grid for search

×
×

Deposition by shape function

• About twice as fast as without the grid
• Results identical to simple shape deposition
• Cartesian grid must conform to local resolution in
 a locally adaptive way - or be very fine.

In most of the applications and tests so far, we
have used deposition by shape.

Features

Deposition by Cartesian grid

The idea is
• Overlay grid with Cartesian grid
• Deposit all particles by shape onto Cartesian grid
• Map total local charge onto local nodes

Deposition by Cartesian grid

 The Cartesian->nodal mapping is often illconditioned
• Compute mapping in preprocessing
• Evaluate conditioning through SVD
• If poorly conditioned, reduce order of mapping
• Recompute mapping in LSQ sense

Deposition by Cartesian grid

Features
• Faster than other methods
• Requires locally adapted grid

.. but what about accuracy ?

Note: It is tempting to also perform push at the
Cartesian grid in the spirit of VB-strategy although
boundary problems persists in this case.

This has not been tried yet!

Brief comparison

Test case: Gaussian beam in smooth beam tube.
2D, 20k particles, 3rd order elements

Brief comparison

Brief comparison

Test case: Kapchinsky-Vladimirsky beam in smooth beam tube.
3D, 20k particles, 3rd order elements

Brief comparison

Conclusion:
.. Average force computation
 is not a good idea
.. Grid based deposition is
 comparable in accuracy
.. but faster

Charge conservation

The schemes do not guarantee this essential quality

Goal: satisfied to the order of the scheme.

Advective scheme solves local (ρn)t + v ·∇ρn = 0

Preserves charge/energy -- but is VERY expensive (yet)

Charge conservation

We currently consider two different techniques

E∗ = E +∇φ

∇2φ = ∇ · E∗ − ρ, φ = 0, x ∈ ∂Ω
E = E∗ −∇φ

1. Boris correction

• Enforced charge conservation exactly
• Requires global solve (or relaxation)
• Questionable at relativistic speeds

Charge conservation

II. Hyperbolic cleaning

Modify Maxwell’s equations as

∂tψ + χ∇ · H = −νψ

∂tφ + χ(∇ · E − ρ) = −νφ

• Removes DC modes of Maxwell’s equations
• Sweeps errors out with speed
• Physical in relativistic regime
• Problematic for resonant problems and large
 problems with intermittant activity

χ! c

µ∂tH +∇× E + χ∇ψ = 0

Munz et al, 2000

ε∂tE −∇×H + χ∇φ = −j

Brief comparison

2D ring of charges

Observations:
.. hyperbolic cleaning seems
superior and fast
.. but a high artificial velocity
is needed

Particles-boundary interactions

To correctly model particle behavior close to
boundaries, we represent the geometry by a levelset

∂τγ + w ·∇γ = sgn(γ0) + ν∇2γ, w = sgn(γ0)
∇γ

|∇γ|

• represents the distance and normal to the
 geometry given by
• Boundary interactions can now be done using
 physical guidelines
• This works for any geometry

(γ, w)
γ0

Particles-boundary interactions

A simple reflection test

A few sanity tests of everything

Larmor radius test in steady field

Test of self-force on
single particle

A few sanity tests of everything

Grid heating

•This is related to a physical requirement of
resolving the Debye shielding length.
• It is a major problem is dense plasma simulations

• Typical solution - increased resolution or filtering

• Further options
• Larger particles
• Smoother particles

Grid heating persists - but is much better controlled

A few sanity tests of everything

Numerical Cherenkov radiation

• High frequency waves propagates too slow
• Fast particles are able to pass waves
• This creates a numerical Cherenkov radiation
• Usually cured by filtering/damping

An upwind biased DG does not cure it
 ...but it helps a lot

A few sanity tests of everything

Plasma waves and divergence cleaning

A few sanity tests of everything

Landau damping - strongly kinetic problem

Sanity tests of the full scheme

A few observations

• Larmor radius shows RK to be sligthly dissipative
• Negligible self-force on single particle
• Grid heating remains but is much better controlled
• Cherenkov radiation remains but is much less
 of a concern
• Plasma wave problem confirms the importance of
 having a high artificial velocity (>10c) in the
 hyperbolic cleaning method
• Tests for other standard tests such as two-stream
 instabilities confirm good results

Weibel instability study

• Initial conditions
• Homogeneous plasma with zero
 net charge. Constant background
 ion charge density.
• Initial electron velocity (u,v)=(0.25,0.05)
• Zero initial fields.

• The two velocities will evolve toward
 one thermal velocity

• The instability will show up as unstable
 growth of transverse electromagnetic
 waves

L=1

Results with FDTD PIC

• Clear signs of grid heating

• At N=128 the solution
 has reference value

• Initial growth in magnetic
 energy is predicted by
 linear theory

• Electric energy is
 mostly noise

• 36 particles/cell

Results with FDTD PIC

• Highest resolved wavenumber
 is about N/3 - higher than that
 the energy increases

• No dissipation yields unphysical
 growth

• Electric energy dominated by
 noise

Results with DG

• Reasonable agreement
 between the two cases

• Confirms the need for high
 artificial velocity

• Sligthly less peak magnetic
 energy -- not known why

Results with DG

• Magnetic energy compares well

• Dissipative nature of DG scheme
 is clear in decay of spectrum

Smooth bore magnetron

• Initial conditions
• Constant potential and magnetic field
• Exact 1D stationary solution
 (Davidson’89)

• The constant electric field rotates the
 electrons while the potential keeps
 the layer from reaching the anode

• The flow is unstable -- it is a known
 instability Anode

Cathode

Electron
layer

H

Smooth bore magnetron

• Computations confirm the instability
• Average shows electron layer

A6 Magnetron

• Initial conditions
• Brillioun flow
• Fixed external magnetic field
 and potential

• PEC walls

• When a particle leaves the domain,
 inject a new one

cathode

anode

B
z

A6 Magnetron

Particle dynamics Radial field

Magnetic reconnection

• Initial conditions
• Harris current sheet
• Perturbed magnetic field

• The magnetic field topology chances
 in time: inviscid magnetic reconnection

• The reconnection is accompanied by a
 sharp drop in the magnetic potential
 energy and an increase in the kinetic
 energy.

• This cannot be modeled with
 standard MHD

Magnetic reconnection

Benchmark is Implicit FDTD (w/ Lapenta, LANL)

• IFDTD
• 32x32 grid
• 25k particles

• DG PIC
• 32x16x2 elements
• 100k particles
• Radius of particle ~ h

Magnetic reconnection

• Importance of smooth particles for grid heating
 is clear
• Reasonable agreement with this and results
 of others

Closer to the application

Advanced Photon Source - ANL

Closer to the application

Closer to the application

16k elements
25k particles

Closer to the application

Closer to the application

Other related efforts

• RK-IMEX time-stepping to address stiffness in
 hyperbolic cleaning approach

• Steps toward particle adaptive solvers
• Splitting/coalesce strategies
• Kinetic error estimation

• Hybrid schemes (DG does the fluids well!)

• Efficient basis families for Vlasov and df solvers

We can discuss these offline

Concluding remarks

New DG based PIC scheme shows some promise
• Geometric flexibility and variable order
• Good inherent properties
• Much progress made in particle part
• Some testing in both 2D and 3D

Still many questions remain open
• Better understanding of phase space resolution
• Adaptivity and parallel implementations
• Improved charge conservation
• Careful attention to boundary/emission models
• Hybrid plasma/fluid modeling
• Speed !

Concluding remarks

The good news is that ‘they’ struggle with many
of the same problems

... and have some additional ones we do not have

What we need more than anything is a ‘killer
application’ - one ‘they’ struggle to do

• Electrically large and geometrically complex
• Lots of EM and field/particle-boundary interaction
• Hybrid physics

We have the hammer - now find the nail

Questions/remarks

?
Thank you !

Jan.Hesthaven@Brown.edu

mailto:Jan.Hesthaven@Brown.edu
mailto:Jan.Hesthaven@Brown.edu

Something extra

A major criticism against DG is cost

DG on Graphics Processing Units (GPU)

• GPUs have deep memory hierarchies
• DG work is mostly local

• Compute >> memory bandwidth
• DG is arithmetically intense (high-order)

• GPU’s prefers local workloads
• DG is local by nature

A match made in heaven ?

By A Kloeckner and
T Warburton

Something extra

2 3 4 5 6 7 8 9 10
Polynomial Degree

0

50

100

150

200

G
F

lo
p

s/
s

Matrices in Smem
Field values in Smem

DG Performance on CUDA (preliminary)
Single-GPU on Nvidia 9800GX2

CPU: 2-3 Gflops >50 speedup !

Something extra

GPUs are truly supercomputers at commodity
prices, but they are not really designed for
commodity computing

Fortunately it looks like DG (with a little work) can
be implemented to harvest the speed of the GPU.

This may actually be a break for DG in general.

On a 8 node/16 GPU card, T Warburton has
demonstrated close to 2TFlops for Maxwell’s by
combining GPU and MPI!

Questions/remarks

?
Thank you (again) !

Jan.Hesthaven@Brown.edu

mailto:Jan.Hesthaven@Brown.edu
mailto:Jan.Hesthaven@Brown.edu

