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Kinetic Plasma Physics

In high-speed plasma problems dominated by kinetic
effects, one needs to solve for f(x,p,t)

Vlasov/Boltzmann equation
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Kinetic Plasma Physics

Important applications

* High-power/High-frequency microwave generation
e Particle accelerators

e Laser-matter interaction

e Fusion applications, e.g., plasma edge
* etc




Challenges in the Problem

e Full coup
* Large sca
* Electrical

ing between plasma and fields
e separation in both time and space

y large problems

* Time-dependent and highly dynamic
e Often critical phenomena where particles interact
with geometric features

* Emphasis

is on high-speed problems where full

EM is required

Challenge: To solve a 6+ dimensional problem in
complex geometries over long times




Particle-in-Cell (PIC) Methods

This is an attempt to solve the Vlasov/Boltzmann
equation by sampling with P particles

|deally we have

S(x) =d(x) «—— a point particle

However, this is not practical, nor reasonable - so
S(x) is a shape=function




Particle-in-Cell Methods

Maxwell’s equations
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Classic Particle-in-Cell Methods

Four stages:Assume E", H",;j", p" are given

e Advanced Maxwell’s equations

* Interpolate fields to particles

* Advance particles

e Deposit charges and currents to fields

Integration of equations
of motion, moving particles

Weighing Weighing

Integration of field
equations on grid




Classic Particle-in-Cell Methods

Staggered/Yee grid in space Leap-frog in time
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Classic Particle-in-Cell Methods

The central advantages of this scheme are

e Exact energy and charge conservation
e Simple
* Very fast

* Very widely used and tested/validated on
nontrivial problems with > | billion particles

However, there is also a number of well
recognized problems and limitations




Classic Particle-in-Cell Methods

Problems

* The exactness of charge and energy is tightly
coupled to the Cartesian grid - i.e., no support
for local grid-refinement

* No geometric flexibility and staircasing

* (Very) poor accuracy close to boundaries

* 2nd order accuracy in fields (dispersion errors)
* |st order accuracy in currents/charges

* Numerical Cherenkov radiation

* Poor performance on large scale computers

* Not well suited for multi-physics modeling




Classic Particle-in-Cell Methods

This translates into problems and limitations like

 Electrically large problems

* Problems requiring long time integration

* Problems where the interaction with geometries
are important, e.g., secondary emission

e High-density problems

* Problems suggesting a hybrid fluid/particle model

* Problems requiring a peta-scale platform

These are the characteristics of many problems

We need to look for an alternative




A new Particle-in-Cell Methods ?

.. but what should we look for ?

e Geometric flexibility and non-uniform grids

e High/variable order accuracy in fields

* Improved accuracy in currents/charges

* Robustness and flexibility for hybrid problems

e High efficiency

e ..while doing the physics right !

This is harder than it looks
...and we are 20+ years behind
... SO teamwork is essential!




Brief overview of what remains

e DG-FEM for the fields

High-order, general grids and all of that
* Particles

Shapes, moves, identification etc
e Charge conservation

* Boundary-particle interactions
* Tests, Tests
Sanity tests
More complex tests
*Closer to the application
e Open problems and outlook
* Something extra (time permitting)




Solving for the fields

Consider Maxwell’s equations

O E -V xH=—j, udH+VxE=0,

Write it on conservation form as
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Solving for the fields

On each element we assume




Solving for the fields

On each element we then require

/D@q;uv FN_JN) (0 )dx:]{Li(x)ﬁ'[FN—F*] dx.
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With the numerical flux given as

Define the local operators

M;= [ LL dx, S, /VLL dx, ﬁij:y{L,-Lj dx,
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To obtain the local matrix based scheme
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Solving for the fields

In time we use a 4th order Runge-Kutta method

W, = oW1 + AtF(ti_l,q(i_l))
q" = 4"+ Bw,

e Scheme is fully explicit

* Well understood for both electrostatics and
electromagnetics

e Supports general grids, variable order, complex
geometries

e High parallel efficiency

e Used by several groups for EM across the world




Solving the field equations
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Maxwell’s equations
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A bit of promotion ..

Naturally, the devil is in the details
....and (some of) the details you
can find in

Jan S. Hesthaven
Tim Warburton

TEXTS IN APPLIED M

Nodal Discontinuous
Galerkin Methods

Algorithms, Analysis, and
Applications
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Book Overview

18

@ Springer
This is a first text on the discontinuous Galerkin Finite Element
Method, suitable both as a textbook and for self study,
featuring:
Attention to both basic analysis and algorithmic issues
Focus on high-order discretizations

Examples for non-conforming and curvilinear meshes

Easily modified MATLAB library routines S M atl a.b/ C -+ S Oftwa re

Enables 1D-3D solution of PDEs in general geometries

Exercises a.vai I a b I e

*This material is based upon work supported by the National Science Foundation under Grant No. 0514002. Any opinions, findings and conclusions or
recomendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation (NSF)
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Scheme so far

v

Fields: EN, HN

Interpolation

Vi

Field Solve

J

Particles: {x»}, {pn}

/

Deposition

Y/

at pn

HN, —V X EN)

JN

We have ‘conviniently’ neglected these two
components - both key to the PIC model

Note: No
staggering in
time.

Everything is
collocated.

More on that
later




The particles

This is a much harder problem!

* Particle shapes

* Particle pushers and current/charge deposition
* Particle interactions with geometries

* Numerical Cherenkov radiation

e Charge conservation

e ...and many other issues

| will share many results with you -- not clear
we have a ‘steady state’ strategy yet




Particles et al

We are using a grid independent shape function:

o+ 1 2"
Spoll =7 e {1 N (E)] T
* Truncated polynomial
® S(r)—das a —

* SeC*!
* S is compactly supported

High values of ¢ is physically appealing but that
requires many particles

Note: Problems with highly non-uniform grids




Particle pushing

Requires two steps

 Computation of forces on particles
* Advance

dx,, dmu,, 1

E Un(t) p ZQn(E_'_Un XH) m = \/1—(vn/c)2

For the latter we use RK as for the fields

For the former, a paradox arises
* For deposition, particles are clouds
* For pushing they are points




Particle pushing

The force computation at a point is straightforward
Vij = ¥ () m; = i(Zn)
then
E(x,) =V "'m)'E L(z) =V~ ()
This vectorizes very well
Here we have the orthonormal basis ()

However, this is too expensive to evaluate so for force
evaluation we use a simple monomial basis

P(w,y,2) = alyizF, 0<i+j+k<n




Particle pushing

One way to address the apparent paradox is to push
by the cloud averaged forces




Particle pushing

Averaged pushing

* Physically more intuitive

e Computationally more expensive

* One can use the spread of point forces over
a particle as a resolution measure.

.. but the test is -- does it work better

We will see shortly




Current/Charge deposition

We shall discuss two different approaches

e Deposition by shape function
e Deposition by Cartesian overlaid grid

This stage is critical both for accuracy but also
for speed.

There is a clear tradeoff between simple/fast
particles and complex/slow particles

..and the particles play a dual role !




Deposition by shape function

The idea is quite simple

* |dentify which elements are reached by the cloud
e Deposit according to the cloud

Particle

* Face based search (or vertex based)
* Velocity and normals used to identify new
target element




Deposition by shape function

Computational bottleneck: Deposition is expensive
due to uneven nodal distribution.

Idea: Use a Cartesian grid for search

Particle




Deposition by shape function

Features

e About twice as fast as without the grid

e Results identical to simple shape deposition

e Cartesian grid must conform to local resolution in
a locally adaptive way - or be very fine.

In most of the applications and tests so far, we
have used deposition by shape.




Deposition by Cartesian grid

The idea is

e Overlay grid with Cartesian grid
e Deposit all particles by shape onto Cartesian grid
* Map total local charge onto local nodes

/|

|
|
{




Deposition by Cartesian grid

The Cartesian->nodal mapping is often illconditioned
e Compute mapping in preprocessing
* Evaluate conditioning through SVD
* If poorly conditioned, reduce order of mapping
* Recompute mapping in LSQ sense




Deposition by Cartesian grid

Features
e Faster than other methods
e Requires locally adapted grid

.. but what about accuracy !

Note: It is tempting to also perform push at the
Cartesian grid in the spirit of VB-strategy although
boundary problems persists in this case.

This has not been tried yet!




beam in smooth beam tube.

2D, 20k particles, 3rd order elements

Brief comparison

Test case: Gaussian




Brief comparison

Conservation of Momentum in 2D Gaussian Beam Conservation of Energy in 2D Gaussian Beam
x1e-15+3.5201e-11 ><1e-7+6.§16e-3

—— reconstructor:GridFind pusher:Monomial
—— reconstructor:GridRegular pusher:Monomial
ﬁ\/\/' /\/\\/ reconstructor:NormShape pusher:Average
reconstructor:NormShape pusher:Monomial
reconstructor:Shape pusher:Average
reconstructor:Shape pusher:Monomial

reconstructor:GridFind pusher:Monomial
reconstructor:GridRegular pusher:Monomial
reconstructor:NormShape pusher:Average
reconstructor:NormShape pusher:Monomial
reconstructor:Shape pusher:Average

reconstructor:Shape pusher:Monomial M’
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Mesh
Vector

Test case: Kapchinsky-Vladimirsky beam in smooth beam tube.

3D, 20k particles, 3rd order elements

Brief comparison




Brief comparison

L1 Dlvergence error in KV Beam PhyS|cs

—_— reconstructor Gr|d . — reconstructor Gr|d
—— reconstructor:Shape | —— reconstructor:Shape
"'4 ‘,\ / 15 ’w

1.0 1.5 2.0 2.5 . ‘0. . 1.0 1.5 2.0 2.5
Elapsed Simulation Time [s] Elapsed Simulation Time [s]

Total reconstructed charge in KV Beam Physrcs

lldivD—pll, /@,

Kapchlnsku VIadlmlrsku Beam Phy5|cs

— reconstructor Gr|d
—— reconstructor:Shape

Conclusion:
Average force computation
is not a good idea
. Grid based deposition is
comparable in accuracy
. but faster

Relative error in RMS r_

1.0 1.5 2.0 2.5
Elapsed Simulation Time [s]




Charge conservation

The schemes do not guarantee this essential quality

Goal: satisfied to the order of the scheme.

B A

Advective scheme solves local (pn)t +v-Vp, =0

Preserves charge/energy -- but is VERY expensive (yet)




Charge conservation

We currently consider two different techniques

1. Boris correction

E*=E+ V¢

Vip=V-E*—p, ¢=0, xcdf
E=FE*—V¢

* Enforced charge conservation exactly
* Requires global solve (or relaxation)
e Questionable at relativistic speeds




Charge conservation

Il. Hyperbolic cleaning

Modify Maxwell’s equations as Munz et al, 2000

ceOtl —V x H+ Vo =—j
worH +V x E+ xVy =0
S Y 28 = = =7
oY +xV - H = —vy

e Removes DC modes of Maxwell’s equations

e Sweeps errors out with speed X > ¢

* Physical in relativistic regime

* Problematic for resonant problems and large
problems with intermittant activity




Brief comparison

2D ring of charges

A=20 Poisson

Observations:

.. hyperbolic cleaning seems
superior and fast

.. but a high artificial velocity
is needed




Particles-boundary interactions

To correctly model particle behavior close to
boundaries, we represent the geometry by a levelset

V7

0ry +w - Vy = sgn(y) + vV, w = sgn(y) 2]

* (v,w) represents the distance and normal to the
geometry given by 7o

* Boundary interactions can now be done using
physical guidelines

* This works for any geometry




Particles-boundary interactions

A simple reflection test
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A few sanity tests of everything

Larmor radius test in steady field

x10 7

3.0
>0 |
1.0}
0.0 F

1.0 }

>0 L

Test of self-force on
single particle




A few sanity tests of everything

Grid heating

*This is related to a physical requirement of
resolving the Debye shielding length.
* |t is a major problem is dense plasma simulations

* Typical solution - increased resolution or filtering

* Further options
e Larger particles
* Smoother particles

Grid heating persists - but is much better controlled




A few sanity tests of everything

Numerical Cherenkov radiation

e High frequency waves propagates too slow

e Fast particles are able to pass waves

* This creates a numerical Cherenkov radiation
e Usually cured by filtering/damping

An upwind biased DG does not cure it
..but it helps a lot




A few sanity tests of everything

Plasma waves and divergence cleaning




A few sanity tests of everything

Landau damping - strongly kinetic problem

— Damp rate ~ -0.18
------------ xesl
41 —— - Spectral




Sanity tests of the full scheme

A few observations

e Larmor radius shows RK to be sligthly dissipative

* Negligible self-force on single particle

* Grid heating remains but is much better controlled

e Cherenkov radiation remains but is much less
of a concern

* Plasma wave problem confirms the importance of
having a high artificial velocity (>10c) in the
hyperbolic cleaning method

e Tests for other standard tests such as two-stream
instabilities confirm good results




Weibel instability study

* Initial conditions
* Homogeneous plasma with zero
net charge. Constant background
ion charge density.
* |nitial electron velocity (u,v)=(0.25,0.05)
e Zero initial fields.

* The two velocities will evolve toward
one thermal velocity

* The instability will show up as unstable
growth of transverse electromagnetic
waves




Results with FDTD PIC

 Clear signs of grid heating

S

e At N=128 the solution
has reference value

Lept

kinetic energy

total energy

* Initial growth in magnetic
energy is predicted by
linear theory

&
o

* Electric energy is
mostly noise

electric energy

magnetic energy

* 36 particles/cell




Results with FDTD PIC

* Highest resolved wavenumber
is about N/3 - higher than that
the energy increases

E(K) for H,

* No dissipation yields unphysical
growth

E(k) for E,

* Electric energy dominated by
noise




Results with DG

hyperbolic divergence cleaning
1.65e—05

* Reasonable agreement
between the two cases

total energy
Kinetic energy

1.35e-05

0

e Confirms the need for high

artificial velocity

o

e Sligthly less peak magnetic
energy -- not known why

electric energy

magnetic energy

time

—— %=2. N=64. Np=500
emeees ¥ =10, N=64. Np=500
—— ¥=2. N=128. Np=1000
e =10, N=128, Np=1000
— — EFDTD. N=256




Results with DG

* Magnetic energy compares well

e Dissipative nature of DG scheme
is clear in decay of spectrum

E(k) for H,

E(k) for E_

— =10, N=128
Poiss, N=128

| ——— EFDTD.N=256




Smooth bore magnetron

* |nitial conditions
e Constant potential and magnetic field

e Exact |D stationary solution
(Davidson’89)

* The constant electric field rotates the
electrons while the potential keeps
the layer from reaching the anode

* The flow is unstable -- it is a known
instability

Electron
layer

Cathode




Smooth bore magnetron

e Computations confirm the instability
* Average shows electron layer

averaged rho

|
0.3
radial coordinate




A6 Magnetron

* |nitial conditions
* Brillioun flow
* Fixed external magnetic field
and potential

e PEC walls

* When a particle leaves the dom
inject a new one




A6 Magnetron

ial field

Rad

Particle dynamics




Magnetic reconnection

e |nitial conditions
e Harris current sheet
* Perturbed magnetic field

* The magnetic field topology chances
in time: inviscid magnetic reconnection

* The reconnection is accompanied by a
sharp drop in the magnetic potential
energy and an increase in the kinetic
energy.

® This cannot be modeled with
standard MHD




Magnetic reconnection

Benchmark is Implicit FDTD (w/ Lapenta, LANL)

e IFDTD
* 32x32 grid
e 25k particles

e DG PIC
* 32x16x2 elements
e |00k particles
e Radius of particle ~ h




Magnetic reconnection

* Importance of smooth particles for grid heating
is clear

e Reasonable agreement with this and results
of others

L
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total energy
reconnected flux
A 2
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Closer to the application

Advanced Photon Source - ANL

-Argonne Central Campus

T

1 SR edis —— -
“Céntral Lab/Office Bldg. T, Ty =4 e R
Center for APS Conference Center T
Nanoscale Materials = o — } ' e =




Closer to the applicati

DB: pic-1000.silo
Cycle: 1000 Time:1.38581e-10

Mesh
Var: mesh

Mesh
Var: particles

Pseudocolor
Var: abst
1.667e+07

Q.00120

Q.oo0128

o.oo0127

Q.00126

0.00125

Qoo0124

DB: pic-1000.silo
Cycle: 1000 Time:1.38581e-10

Mesh
Var. mesh

Pseudocolor
Var. abse
1.667e+07

— 1.250e+07

user: at
Thu No

{
Min: 0.08948

T

Beam Radus ewalution of Kapchireki - Viadmirks| Baam

T

T T T T

" "
004 005

Longhudinal Cestance

user: andreas
Thu Nov 29 19:42:26 2007




Closer to the application

L

| 6k elements
25k particles

AN
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ST

DB: gun.vtk

d
Wed Sep 19 09:44:13 2007




oser to the application

DB: pic-0000.silo
Cycle: 0 Time:0

Vector
Var: e

-'—2.1019+07

— 1.576e+07

& —1.051e+07

— 5.253e+00

0.435e-18
Max: 2.101e+07
Min: 6.435e-18

Pseudocolor
Var: e_magnitude

-_2. 101e+07

— 15768407 -

B — 1.051e+07

L 5.253e+06. -
6.4350-18 - -
Max: 2.101e+07 - S
Min: 6.435-13




oser to the application

/

c.cz
DB: plcbOOQOO.sno
= / :
Vigie: Time:0
Contour Q.06
Var: e_magnitude
— 1.910e+07
1.719e+07
1.5282+07
1.337e+07 « \
1.146+07 " 8 -0.0100
9.550e+06 g

o

Max: 2,101e+07
Min: 6.435e-18

Mesh
Var: mesh

Contour
Var: h_magnitude
— 4.810e+04
— 4,329e+04
— 3.848e+04
— 3,307e+04
2.886e+04
2,405e+04
1.924e+04
1.443e+04
019,
4810,

o

us, andreas
Tugrun 24 19:02:18 2008




Other related efforts

e RK-IMEX time-stepping to address stiffness in
hyperbolic cleaning approach

* Steps toward particle adaptive solvers
* Splitting/coalesce strategies
e Kinetic error estimation

* Hybrid schemes (DG does the fluids well!)

e Efficient basis families for Vlasov and df solvers

We can discuss these offline




Concluding remarks

New DG based PIC scheme shows some promise
 Geometric flexibility and variable order

 Good inherent properties

* Much progress made in particle part

* Some testing in both 2D and 3D

Still many questions remain open

e Better understanding of phase space resolution
* Adaptivity and parallel implementations

* Improved charge conservation

e Careful attention to boundary/emission models
e Hybrid plasma/fluid modeling

* Speed !




Concluding remarks

The good news is that ‘they’ struggle with many
of the same problems

... ahd have some additional ones we do not have

What we need more than anything is a ‘killer
application’ - one ‘they’ struggle to do

* Electrically large and geometrically complex
* Lots of EM and field/particle-boundary interaction
e Hybrid physics

We have the hammer - now find the nail




Questions/remarks

?

Thank you !

Jan.Hesthaven@Brown.edu
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Something extra

A major criticism against DG is cost By A Kloeckner and
T Warburton

DG on Graphics Processing Units (GPU)

e GPUs have deep memory hierarchies
DG work is mostly local

e Compute >> memory bandwidth
DG is arithmetically intense (high-order)

 GPU’s prefers local workloads
* DG is local by nature

A match made in heaven?




Something extra

DG Performance on CUDA (preliminary)
Single-GPU on Nvidia 9800GX2

Matrices in Smem
Field values in Smem

GFlops/s
=
S

2 3 4

CPU: 2-3 Gflops

Polynomial Degree

>50 speedup !




Something extra

GPUs are truly supercomputers at commodity
prices, but they are not really designed for
commodity computing

Fortunately it looks like DG (with a little work) can
be implemented to harvest the speed of the GPU.

This may actually be a break for DG in general.

On a 8 node/l6 GPU card, T Warburton has
demonstrated close to 2TFlops for Maxwell’s by
combining GPU and MPI!




Questions/remarks

?

Thank you (again) !

Jan.Hesthaven@Brown.edu
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