
Large-scale parallel simulations of
earthquakes at high frequency:

the SPECFEM3D project

Dimitri Komatitsch, University of Pau, Institut universitaire de
France and INRIA Magique3D, France

Jeroen Tromp et al., Caltech, USA
Jesús Labarta, Sergi Girona, BSC MareNostrum, Spain

Roland Martin, David Michéa, Nicolas Le Goff, University of
Pau and INRIA Magique3D, France

INRIA NACHOS workshop, December 11, 2007

Global 3D Earth

S20RTS mantle model
(Ritsema et al. 1999)

Crust 5.2 (Bassin et al. 2000)

Dynamic geophysical technique of imaging subsurface geologic structures by
generating sound waves at a source and recording the reflected components
of this energy at receivers.

The Seismic Method is the industry standard for locating subsurface oil and
gas accumulations.

Collaboration with the oil industryCollaboration with the oil industry UMR tripartite

Brief history of numerical methods

Seismic wave equation: tremendous increase of computational power
⇒ development of numerical methods for accurate calculation of synthetic

seismograms in complex 3D geological models has been a continuous effort in last
30 years.

Finite-difference methods: Yee 1966, Chorin 1968, Alterman and Karal 1968,
Madariaga 1976, Virieux 1986, Moczo et al, Olsen et al..., difficult for boundary
conditions, surface waves, topography, full Earth

Boundary-element or boundary-integral methods(Kawase 1988, Sanchez-Sesma et al.
1991) : homogeneous layers, expensive in 3D

Spectral and pseudo-spectral methods(Carcione 1990) : smooth media, difficult for
boundary conditions, difficult on parallel computers

Classical finite-element methods(Lysmer and Drake 1972, Marfurt 1984, Bielak et al
1998) : linear systems, large amount of numerical dispersion

Spectral-Element Method

� Developed in Computational Fluid
Dynamics (Patera 1984)

� Accuracy of a pseudospectral
method, flexibility of a finite-element
method

� Extended by Komatitsch and Tromp,
Chaljub et al.

� Large curved “spectral” finite-
elements with high-degree
polynomial interpolation

� Mesh honors the main discontinuities
(velocity, density) and topography

� Very efficient on parallel computers,
no linear system to invert (diagonal
mass matrix)

Differential or strongstrong form (e.g., finite differences):

fΤ s +⋅∇=∂2

tρ
We solve the integral or weakweak form:

∫∫ ∇−=∂⋅ rΤ:wrsw 332
ddt ρ

() () rnΤwrw:Μ 2

S F

d ˆ s ⋅⋅−∇+ ∫ −
tS

Equations of Motion (solid)

+ attenuation(memory variables) and ocean load

Equations of Motion (Fluid)

We use a generalized velocity potential

pt −∇=∂ vρ

∫∫ ∇⋅∇−=∂ −− rr 31321
dd xwxw t ρκ

r v n 2

S F

d ̂ ⋅+ ∫ −
w

v⋅∇−=∂ κpt

xp t∂=
the integral or weak form is:

Differential or strong form:

χ

⇒ 3 times cheaper (scalar
potential)
⇒ natural coupling with solid

Finite Elements

� High-degree pseudospectral
finite elements with Gauss-
Lobatto-Legendre integration

� N = 5 to 8 usually
� Exactly diagonal mass matrix
� No linear system to invert

The Challenge of the Global Earth

� A slow, thin, highly variable crust

� Sharp radial velocity and density discontinuities

� Fluid-solid boundaries (outer core of the Earth)

� Anisotropy

� Attenuation

� Ellipticity, topography and bathymetry

� Rotation

� Self-gravitation

� 3-D mantle and crust models (lateral variations)

The Cubed Sphere

� “Gnomonic” mapping (Sadourny 1972)

� Ronchi et al. (1996), Chaljub (2000)

� Analytical mapping from six faces of cube to unit sphere

Final Mesh

Global 3-D Earth

Ellipticity and topography

Small modification
of the mesh, no problem

Crust 5.2 (Bassin et al. 2000)
Mantle model S20RTS (Ritsema et al. 1999)

Topography

� Use flexibility of mesh generation
� Accurate free-surface condition

Fluid / solid

Bathymetry

� Use flexibility of
mesh generation
process

� Triplications

� Stoneley

Anisotropy

� Easy to implement up to 21 coefficients
� No interpolation necessary
� Tilted axes can be modeled

ZincCobalt

Effect of Attenuation

Accurate surface waves

Excellent agreement with normal modes – Depth 15 km
Anisotropy included

Vanuatu Depth 15 km

Composante verticale (onde de Rayleigh), trajet
océanique, retard 85 s à Pasadena, meilleur fit au Japon

Parallel Implementation

� Mesh decomposed into 150 slices

� One slice per processor – MPI communications

� Mass matrix exactly diagonal – no linear system

� Central cube based on Chaljub (2000)

Non-blocking MPI

Proc A Proc B

Boundary computation
MPI_Isend MPI_Isend
MPI_Irecv MPI_Irecv

Inner element computation

MPI_Wait MPI_Wait

Add contributions of neighbours

Another way to optimize MPI code is to overlap communications with computations using non-
blocking MPI. But, for our code, the overall cost of communications is very small (< 5%)
compared to CPU time.

Also, looping on boundary elements contradicts Cuthill-McKee order and therefore causes
cache misses.

Collaboration with Roland Martin and Nicolas
Le Goff (Univ of Pau, France)

=> No need to use non blocking MPI because potential gain
is comparable to overhead

=> Tested in 2D, and we did not gain anything significant

22

• Méthode d'éléments finis d'ordre élevé développée en dynamique des fluides (Patera
1984), en sismique3Dpar Komatitsch et coll. (1998, 2002), Chaljub et coll. (2001).

• SPECFEM:Parallélisation MPId'un Code F90 de 20000 lignes
→ mailleur professionnel(GiD-UPC/CIMNE)

• Structures géologiques dans les Andes (Pérou)
• Couche fine altérée en surface
→ Problème de dispersion en surface (Freq0 > 10 Hz).

� 5.3 millions de points à 10 Hz.
� Générateur GiD automatique de

maillage (UPC/ CIMNE). 98%
des angles 45o < θ < 135o.
Pires angles: 9.5o and 172o

Sandrine Fauqueux
Thèse INRIA/IFP (2003)

Meshing an oil industry model

23

Maillage (GiD, Cubit)

METIS or SCOTCH Interface: gestion des
communications MPI

Zone Tampon
Irecv, Isend

non bloquants

Avantages: Nb éléments non multiple des partitions
t=∑(calcVol +calcFront+comm)

t=max[∑calcVol,∑(calcFront+comm)]
Gain -15%

B → B+A+C+D

A →A+B+C+D

CD

Séquentiel (10Hz)

Partitionneur de domaine
(METIS or SCOTCH)

SPECFEM3D GLOBE

detail of the v3.6 mesh detail of the v4.0 mesh

Optimization of global addressing

In 3D and for NGLL=5 (Q4), for a regular hexahedral mesh there
are:

125 GLL integration points in each element

27 belong only to this element (21.6%)

54 belong to 2 elements (43.2%)

36 belong to 4 elements (28.8%)

8 belong to 8 elements (6.4%)

=> 78.4% of the GLL integration points belong to at least 2
elements

=> it is crucial to reuse these points by keeping them in the cache

We use the classical reverse Cuthill-McKee (1969) algorithm,
which consists in renumbering the vertices of the graph to reduce
the bandwidth of the adjacency matrix

We gain a factor of 1.55 in CPUtime on Intel Itanium and on
AMD Opteron, and a factor of 3.3 on Marenostrum(the IBM
PowerPC is very sensitive to cache misses)

Results for load balancing: cache misses

After adding Cuthill-McKee sorting, global
addressing renumbering and loop reordering we
get a perfectly straight line for cache misses, i.e.
same behavior in all the slices and also almost
perfect load balancing.

The total number of cache misses is also much
lower than in v3.6

CPU time (in orange) is also almost perfectly
aligned

V4.0

V3.6

V4.0V4.0

Results for load balancing: instructions

Number of instructions executed in each slice is well balanced

Cuthill-McKee has almost no effect on that because we use high-order finite elements (of
Q4 type), each of them fits in the L1 cache and for any such element we perform a very
large number of operations using data that is already in L1

V4.0 with Cuthill-McKee V4.0 without Cuthill-McKee

Analysis of parallel execution performed with Prof. Jesús Labarta in Barcelona
(Spain) using his Paraver software package

BLAS 3
(Basic Linear Algebra Subroutines)

Can we use highly optimized BLAS matrix matrix products (90% of computations)?

For one element: matrices (5x25, 25x5, 5 x matrices of (5x5)), BLAS is not efficient: overhead
is too expensive for matrices smaller than 20 to 30 square.

If we build big matrices by appending several elements, we have to build 3 matrices, each
having a main direction (x,y,z), which causes a lot of cache misses due to the global access
because the elements are taken in different orders, thus destroying spatial locality.

Since all arrays are static, the compiler already produces a very well optimized code.

5x 5 x NDIM x Nb elem ...
5

5
5

=> No need to, and cannot easily use BLAS

=> Compiler already does an excellent job for small static loops

Collaboration with Nicolas Le Goff (Univ of Pau, France)

A very large run for PKP phases at 2 seconds

The goal is to compute differential effects on PKP waves
(collaboration with Sébastien Chevrot at OMP Toulouse,
France, UMR 5562)

Very high resolution needed (2 to 3 seconds typically)

Mesh accurate down to periods of 2 seconds for P waves
and that fits on 2166 processors (6 blocks of 19 x 19 slices)

The mesh contains 21 billion points (the “equivalent” of a 2770 x 2770 x 2770 grid);
50000 time steps in 60 hours of CPU on 2166 processors on MareNostrum in
Barcelona. Total memory is 3.5 terabytes.

ALTIVEC / VMX on IBM PowerPC 970

A set of instructions that operate on 128-bit registers (4 single precision
floats).

Found on a few CPUs from the PPC architecture. It has an equivalent in
the x86 family, called SSE.

One of the primary drawbacks is that it only uses 16-byte aligned data.

The computational kernel (computation of forces in each element) takes
90% of the total elapsed time.

It is divided in 5 sections:

- global to local numbering (8%)
- matrix matrix product (20%)
- point per point computation (38%)
- matrix matrix product (24%)
- local to global numbering (10%)

First solution: computation over 4 elements of a matrix at a time.

Problem: because of data alignement, we have to create 3 local matrices for
each element (and for each component).
The speedup is canceled by the overhead.

ex1 :
real, dimension(8,NGLLY,NGLLZ) :: dummyx_loc
.
vect_dummy_loc1 = vec_ld(0,dummyx_loc(1,1,k))
vect_dummy_loc2 = vec_ld(0,dummyx_loc(1,2,k))
vect_dummy_loc3 = vec_ld(0,dummyx_loc(1,3,k))
vect_dummy_loc4 = vec_ld(0,dummyx_loc(1,4,k))
vect_dummy_loc5 = vec_ld(0,dummyx_loc(1,5,k))
vect_femp1 = vec_ctf(vec_splat_u32(0), 0)
vect_femp1 = vec_madd(vect_dummy_loc1,hprime_11,vect_femp1)
vect_femp1 = vec_madd(vect_dummy_loc2,hprime_21,vect_femp1)
vect_femp1 = vec_madd(vect_dummy_loc3,hprime_31,vect_femp1)
vect_femp1 = vec_madd(vect_dummy_loc4,hprime_41,vect_femp1)
vect_femp1 = vec_madd(vect_dummy_loc5,hprime_51,vect_femp1)
call vec_st(vect_femp1,0,tempx2(1,1,k))

Second solution: computation on the 3 components of a physical vector
(x, y, z and dummy) at a time.

Problem: we purposely lose at least 25% of potential gains.

The overhead remains low; in sections 1, 2, 4 and 5 we gain a total of 30%.

real, dimension(4,NGLLX,NGLLY,NGLLZ) :: dummy_loc
.

do k = 1,NGLLZ
do i = 1,NGLLX
vect_dummy_loc1 = vec_ld(0,dummy_loc(1,i,1,k))
vect_dummy_loc2 = vec_ld(0,dummy_loc(1,i,2,k))
vect_dummy_loc3 = vec_ld(0,dummy_loc(1,i,3,k))
vect_dummy_loc4 = vec_ld(0,dummy_loc(1,i,4,k))
vect_dummy_loc5 = vec_ld(0,dummy_loc(1,i,5,k))
vect_femp1 = vec_ctf(vec_splat_u32(0), 0)
vect_femp1 = vec_madd(hprimeT_11,vect_dummy_loc1,vect_femp1)
vect_femp1 = vec_madd(hprimeT_21,vect_dummy_loc2,vect_femp1)
vect_femp1 = vec_madd(hprimeT_31,vect_dummy_loc3,vect_femp1)
vect_femp1 = vec_madd(hprimeT_41,vect_dummy_loc4,vect_femp1)
vect_femp1 = vec_madd(hprimeT_51,vect_dummy_loc5,vect_femp1)
call vec_st(vect_femp1,0,femp2(1,i,1,k))

VMX_234 (x,y,z) acceleration VMX_loop_2 acceleration serial
total 1022.25 17.66% 1287.16 -3.68% 1241.52

1 117.83 -28.51% 231.36 -152.33% 91.69
2 132.59 47.91% 144.46 43.25% 254.55

3 481.1 -1.48% 488.92 -3.13% 474.1

4 163.59 44.35% 296.36 -0.82% 293.95
5 127.14 0.07% 126.06 0.92% 127.23

We gain 15-20% on the time spent in the computational kernel, without any
increase in memory consumption.

The kernel code contains a relatively small number of lines; if not, it would
have been more difficult to use ALTIVEC instructions.

Absorbing conditions

� Used to be a big
problem

� Bérenger 1994
� INRIA (Collino,

Cohen)
� Extended to

second-order
systems by
Komatitsch and
Tromp (2003)

PML (Perfectly Matched Layer)

Convolution-PML in 3D for seismic waves

Finite-difference technique in velocity and stress:
staggered grid of Madariaga (1976), Virieux (1986)

• Optimized for
grazing incidence

• Not split

• Use recursive
convolution based
on memory
variables
(Luebbers and
Hunsberger 1992)

• « 3D at the cost
of 2D »

Dec 26, 2004 Sumatra event

vertical component of velocity at periods of
10 s and longer on a regional scale

From Tromp et al., 2005

Hollywood Earthquake
Small M 4.2 earthquake on Sept 9, 2001

Amplification in basin

San Andreas – January 9, 1857

Carrizo Plain, San Andreas Fault, California, USA

America

Pacific

Vertical scale approximately 1 km

Earthquakes at the regional scale

3D spectral-
element method
(SEM)

Scale approximately 500 km

9 m
America

Pacific

Carrizo Plain, USA, horizontal scale ≅ 200 m

Future work

� ANR NUMASIS (2006-2009): optimize SPECFEM3D (among other
codes) on NUMA machines (e.g. CEA Bull Tera10)

� Inverse problems (already done for the source by Liu et al 2004, but
not for the model yet)

� Operto et al. for finite-differences⇒ SEM in frequency? but full
stiffness matrix⇒ use MUMPS (ANR Solstice project)

� Out-of-core for large-scale problems (talk by Jennifer Scott this
morning, Abdou Guermouche in MUMPS etc)

