Large-scale parallel simulations of
earthquakes at high frequency:
the SPECFEMS3D project

, University of Pau, Institut universitaire de
France and INRIA Magique3D, France

Caltech, USA
BSC MareNostrum, Spain

, University of
Pau and INRIA Magique3D, France




Global 3D Earth

GLOBAL SEISMOGRAPHIC NETWORK

CURRENT SITES AND NEW SITES BEING COMPLETED
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S20RTS mantle model
(Ritsema et al. 1999)




Dynamic geophysical technique of imaging subsurface geologic structures by
generating sound waves at a source and recording the reflected components

of this energy at receivers.
The Seismic Method is the industry standard for locating subsurface oil and
gas accumulations.




Brief history of numerical methods

Seismic wave equatiartremendous increase of computational power

— development of numerical methods for accurate calicu of synthetic
seismograms in complex 3D geological models has beentauos effort in last
30 years.

=Yee 1966, Chorin 1968, Alterman and Karal 1968,
Madariaga 1976, Virieux 1986, Moczo et al, Olsen et, alifficult for boundary
conditions, surface waves, topography, full Earth

(Kawase 1988, Sanchez-Sesma e
1991) : homogeneous layers, expensive in 3D

(Carcione 1990) : smooth media, difficult for
boundary conditions, difficult on parallel compwter

(Lysmer and Drake 1972, Marfurt 1984, Bielak et
1998) : linear systems, large amount of numericaledsspn




Spectral-Element Method

Developed in Computational Fluid
Dynamics (Patera 1984)

Accuracy of a pseudospectral
method, flexibility of a finite-element
method

Extended by Komatitsch and Tromp,
Chaljub et al.

Large curved “spectral” finite-
elements with high-degree
polynomial interpolation

Mesh honors the main discontinuities
(velocity, density) and topography

Very efficient on parallel computers,
no linear system to invert (diagonal
mass maitrix)




Equations of Motion (solid)

Differential or strong form (e.g., finite differences):

p0:s=1[T +f

We solve the integral or weak form:

jpw [0;sd’r = —j (w : Tdr

+M : Ow(r,)S(t) —j w [T [ d°r
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+ attenuatior(memory variables) anocean load




- qugtjlonﬂsqf I\/Io..%tion (Fluid)

Differential or strong form:

pO,V=-LIpEMo p=—« 0LV

We use a generalized velocity potential X

the integral or weak form is:

jK‘1wafxd3r = —j o 'Owxd’r

= 3 times cheaper (scalar
potential)
= natural coupling with soli - I




Finite Elements

m High-degree pseudospectral
finite elements with Gauss-
Lobatto-Legendre integration

m N =5to 8 usually
m Exactly diagonal mass matrix
= No linear system to invert




The Challenge of the Global Earth

A slow, thin, highly variable crust

Sharp radial velocity and density discontinuities
Fluid-solid boundaries (outer core of the Earth)
Anisotropy

Attenuation

Ellipticity, topography and bathymetry

Rotation

Self-gravitation

3-D mantle and crust models (lateral variations)




Thg Cm.ubmed. H_Sphere

m “Gnomonic” mapping (Sadourny 1972)
m Ronchi et al. (1996), Chaljub (2000)

m Analytical mapping from six faces of cube to unit sphere
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Global 3-D Earth

Crust 5.2 (Bassin et al. 2000)
Mantle model S20RTS (Ritsema et al. 1999)

Ellipticity and topography

Small modification
of the mesh, no problem




Topography

m Use flexibility of mesh generation
m Accurate free-surface condition
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Anisotropy

w o ]

m Easy to implement up to 21 coefficients
= No Interpolation necessary
m Tilted axes can be modeled

Cobalt




Effect of Attenuation

—_— SEM vertical
— MNodes

Rayleigh

Displacement (cm)




Accurate surface waves

Rayleigh
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Excellent agreement with normal modes — Depth 15 km
Anisotropy included
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Parallel Im

=

plementation

Mesh decomposed into 150 slices

One slice per processor — MPI communications
Mass matrix exactly diagonal — no linear system
Central cube based on Chaljub (2000)

I £




Non-blocking MPI

Collaboration with Roland Martin and Nicolas
Le Goff (Univ of Pau, France)

MPI_Isend  __| | MPI_Isend
MPI_Irecv MPI_Irecv

MPI_Wait MPI_Wait

Another way to optimize MPI code is to overlap communications with computations using non-
blocking MPI. But, for our code, the overall cost of communications is very small (< 5%)
compared to CPU time.

Also, looping on boundary elements contradicts Cuthill-McKee order and therefore causes
cache misses.

=> No need to use non blocking MPI because potential gain
IS comparable to overhead

=> Tested in 2D, and we did not gain anything significant




Meshing an oil industry model

* Méthode d'éléments finis d'ordre élevé développétyaamique des fluideqPatera
1984), ersismique3Dpar Komatitsch et coll. (1998, 2002), Chaljulceit. (2001).

« SPECFEM:Parallélisation MPH'un Code F90 de 20000 lignes
— mailleur professionnel (GiD-UPC/CIMNE)

P-velocity Model

5.3 millions de points a 10 Hz.

Générateur GiD automatique de
maillage (UPC/ CIMNE). 98%

; : , des angles 45°< 6 < 135°.

* Structures geologiques dans les Andes (Perou)  Ppijres angles: 9.5° and 172°

« Couche fine altérée en surface

— Probléme de dispersion en surface (Freq0 > 10 HZ)--SrﬁgggTﬁ |IQ:|?'A\L}| UPE%)Z(OOB) *




Partitionneur de domaine
(METIS or SCOTCH)

Zone Tampon

METIS or SCOTCH —» | Interface: gestion des| __,

communications MPI Irecv, Isend
non bloguants

!A! —>A+B+C+!

Avantages: Nb éléments non multiple des partitiof
: . : t=>(calcVol +calcFront+comm)
Maillage (GID, Cubit) t=max[> calcVol,Y (calcFront+comm)]
Gain -15%

-
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SPECFEM3D GLOBE

detail of the v3.6 mesh detail of the v4.0 mesh




Optimization of global addressing

In 3D and for NGLL=5 (Q4), for a regular hexahedral mesh there
are:

125 GLL integration points in each element
27 belong only to this element (21.6%)
54 belong to 2 elements (43.2%)
36 belong to 4 elements (28.8%)
8 belong to 8 elements (6.4%)

=> 78.4% of the GLL integration points belong to at least 2
elements

We use the classical reverse Cuthill-McKee (196§orathm,
which consists in renumbering the vertices of tregQ to reduce
the bandwidth of the adjacency matrix

tume on Intel Itanium and on

AMD Opteron, (the IBM
PowerPC is very sensitive to cache misses)




Results for load balancing:
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After adding Cuthil-McKee sorting, global
addressing renumbering and loop reordering we
get a perfectly straight line for cache misses, i.e.
same behavior in all the slices and also almost
perfect load balancing.

The total number of cache misses is also much
lower than in v3.6

CPU time (in orange) is also almost perfectly
aligned
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Results for load balancing: instructions

Analysis of parallel execution performed with Prof. Jesus Labarta in Barcelona
(Spain) using his Paraver software package
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= Number of instructions executed in each slice is well balanced

» Cuthill-McKee has almost no effect on that because we use high-order finite elements (of
Q4 type), each of them fits in the L1 cache and for any such element we perform a very
large number of operations using data that is already in L1




BLAS 3

(Basic Linear Algebra Subroutines)

5% 5 x NDIM x Nb elem ...

Collaboration with Nicolas Le Goff (Univ of Pau, France)

® For one element: matrices (5x25, 25x5, 5 x matrices of (5x5)), BLAS is not efficient: overhead
IS too expensive for matrices smaller than 20 to 30 square.

= If we build big matrices by appending several elements, we have to build 3 matrices, each
having a main direction (x,y,z), which causes a lot of cache misses due to the global access
because the elements are taken in different orders, thus destroying spatial locality.

= Since all arrays are static, the compiler already produces a very well optimized code.

=> No need to, and cannot easily use BLAS

=> Compiler already does an excellent job for small static loops




A very large run for PKP phases at 2 seconds

seismomelar

selsmometar

= PKIKF

inner core 1 outer core

» The goal is to compute differential effects on PKP waves

(collaboration with Sébastien Chevrot at OMP Toulouse
France, UMR 5562)

= Very high resolution needed (2 to 3 seconds typically)

= Mesh accurate down to periods of 2 seconds for P waves
and that fits on 2166 processors (6 blocks of 19 x 19 slices)

» The mesh contains 21 billion points (the “equivalent” of a 2770 x 2770 x 2770 grid);

50000 time steps in 60 hours of CPU on 2166 processors on MareNostrum in
Barcelona. Total memory is 3.5 terabytes.




ALTIVEC /VMX on IBM PowerPC 970

A set of instructions that operate on 128-bit registers (4 single precision
floats).

Found on a few CPUs from the PPC architecture. It has an equivalent in
the x86 family, called SSE.

One of the primary drawbacks is that it only uses 16-byte aligned data.

The computational kernel (computation of forces in each element) takes

90% of the total elapsed time. Time (%) spent in each section

It is divided in 5 sections: 73

- global to local numbering (8%)

- matrix matrix product (20%)

- point per point computation (38%)
- matrix matrix product (24%)

- local to global numbering (10%)
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5%5%5 5

First solution: computation over 4 elements of a matrix at a time.

Problem: because of data alignement, we have to create 3 local matrices for
each element (and for each component).
The speedup is canceled by the overhead.

exl :
real, dimension(8,NGLLY,NGLLZ) :: dummyx_loc

vect_dummy locl = vec_|d(0,dummyx_loc(1,1,k))
vect_dummy_loc2 = vec_Id(0,dummyx_loc(1,2,k))

vect_dummy loc3 = vec_|d(0,dummyx_loc(1,3,k))

vect dummy_loc4 = vec_|d(0,dummyx_loc(1,4,k))
vect_dummy loc5 = vec_|d(0,dummyx_loc(1,5,k))

vect fempl = vec_ctf( vec_splat u32(0),0)

vect_fempl = vec_madd(vect_ dummy_locl,hprime_11,vect fempl)
vect fempl = vec_madd(vect_ dummy_loc2,hprime_21,vect fempl)
vect_fempl = vec_madd(vect_ dummy_loc3,hprime_31,vect fempl)
vect fempl = vec_madd(vect_ dummy_loc4,hprime_41,vect fempl)
vect_fempl = vec_madd(vect_dummy_loc5,hprime_51,vect fempl)
call vec_st(vect_femp1,0,tempx2(1,1,k))



Second solution: computation on the 3 components of a physical vector
(X, y, z and dummy) at a time.

Problem: we purposely lose at least 25% of potential gains.

The overhead remains low; in sections 1, 2, 4 and 5 we gain a total of 30%.
real, dimension(4,NGLLX,NGLLY,NGLLZ) :: dummy_loc

do k= 1,NGLLZ

doi=1NGLLX

vect_dummy_locl = vec_Id(0,dummy_loc(1,i,1,k))

vect_dummy loc2 = vec_|d(0,dummy_loc(1,i,2,k))

vect_ dummy loc3 = vec_|d(0,dummy_loc(1,i,3,k))

vect_dummy loc4 = vec_|d(0,dummy_loc(1,i,4,k))

vect_ dummy_loc5 = vec_|d(0,dummy_loc(1,i,5,k))

vect_fempl = vec_ctf( vec_splat_u32(0),0)

vect fempl = vec_madd(hprimeT_11,vect dummy locl,vect fempl)
vect_fempl = vec_madd(hprimeT_21,vect dummy loc2,vect fempl)
vect fempl = vec_madd(hprimeT_31,vect dummy loc3,vect fempl)
vect_fempl = vec_madd(hprimeT_41,vect dummy_loc4,vect fempl)
vect fempl = vec_madd(hprimeT_51,vect dummy loc5,vect fempl)
call vec_st(vect_fempl,0,femp2(1,i,1,k))



VMX 234 (x,y,z) acceleration VMX loop 2 acceleration serial
total 1022.25 17.66% 1287.16 -3.68% 1241.52

1 117.83 -28.51% 231.36  -152.33% 91.69
132.59 47.91% 144.46 43.25% 254.55

431.1 -1.48% 438.92 -3.13% 474.1

2
3
4 163.59 44.35% 296.36 -0.82% 293.95
5 127.14 0.07% 126.06 0.92% 127.23

We gain 15-20% on the time spent in the computational kernel, without any
Increase in memory consumption.

The kernel code contains a relatively small number of lines; if not, it would
have been more difficult to use ALTIVEC instructions.



Absorbing conditions

Used to be a bi
problem

Bérenger 1994

INRIA (Collino,
Cohen)

Extended to
second-order
systems by
Komatitsch and
Tromp (2003)

PML (Perfectly Matched Layer)




Convolution-PML in 3D for seismic waves

e Optimized for
grazing incidence

* Not split

e Use recursive
convolution based
on memory
variables
(Luebbers and
Hunsberger 1992)

' 4

e « 3D at the cost
Finite-difference technique in velocity and stress: 2D »

staggered grid of Madariaga (1976), Virieux (1986)




De_.fcﬁ 2&6, 20\0\_4 Sumatra event

From Tromp et al., 2005

vertical component of velocity at periods of
10 s and longer on a regional scale




September 9, 2001 M, =42

~ Hollywood Earthquake s

Small M 4.2 earthquake on Sept 9, 2001
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_San Andreas — January 9, 1857

America

K _
{
’ Pacific

g

Carrizo Plain, San Andreas Fault, California, USA




Earthquakes at the regional scale

2 e r

3D spectral-
element method
(SEM)




Future work

ANR NUMASIS (2006-2009): optimize SPECFEM3D (amonigeat
codes) on NUMA machines (e.g. CEA Bull TeralO)

Inverse problems (already done for the source by Lal 2004, but
not for the model yet)

Operto et al. for finite-differencess SEM In frequency? but full
stiffness matrix=> use MUMPS (ANR Solstice project)

Out-of-core for large-scale problems (talk by J&mbcott this
morning, Abdou Guermouche in MUMPS etc)




