# Publications

### Applied mathematics and computational methods

S. Lanteri, D. Paredes, C. Scheid and F. Valentin

The Multiscale Hybrid-Mixed method for the Maxwell equations in heterogeneous media

SIAM J. Multiscale Model. Simul., Vol. 16, No. 4, pp.1648–1683 (2018)

K. Li, T.-Z. Huang, L. Li and S. Lanteri

A reduced-order DG formulation based on POD method for the time-domain Maxwell’s equations in dispersive media

J. Comput. Appl. Math., Vol. 336, pp. 249-266 (2018)

K. Li, T.-Z. Huang, L. Li, S. Lanteri, L. Xu and B. Li

A reduced-order discontinuous Galerkin method based on POD for electromagnetic simulation

IEEE Trans. Ant. Propag., Vol. 66, No. 1, pp. 242-254 (2018)

A. Christophe, S. Descombes and S. Lanteri

An implicit hybridized discontinuous Galerkin method for the 3D time-domain Maxwell equations

Appl. Math. Comput., Vol. 319, pp. 395-408 (2018)

H. Wang, L. Xu, B. Li, S. Descombes and S. Lanteri

A new family of exponential-based high order DGTD methods for modelling 3D transient multiscale electromagnetic problems

IEEE Trans. Ant. Propag., Vol. 65, No. 11, pp. 5960-5974 (2017)

S. Lanteri, C. Scheid and J. Viquerat

Analysis of a generalized dispersive model coupled to a DGTD method with application to nanophotonics

SIAM J. Sci. Comp., Vol. 39, No. 3, pp. A831–A859 (2017)

S. Descombes, S. Lanteri and L. Moya

Temporal convergence analysis of a locally implicit discontinuous Galerkin time domain method for electromagnetic wave propagation in dispersive media

J. Comput. Appl. Math., Vol. 316, pp. 122-132 (2017)

S. Descombes, S. Lanteri and L. Moya

Locally implicit discontinuous Galerkin time domain method for electromagnetic wave propagation in dispersive media applied to numerical dosimetry in biological tissues

SIAM J. Sci. Comp., Vol. 38, No. 5, pp. A2611–A2633 (2016)

S. Descombes and S. Lanteri and L. Moya

Temporal convergence analysis of a locally implicit discontinuous Galerkin time domain method for electromagnetic wave propagation in dispersive media

J. Comp. Appl. Math., Vol. 316, pp 122-132 (2016)

Y.-X. He, L. Li, S. Lanteri and T.-Z. Huang

Optimized Schwarz algorithms for solving time-harmonic Maxwell’s equations discretized by a hybridizable Discontinuous Galerkin method

Comp. Phys. Comm., Vol. 200, pp. 176–181 (2016)

V. Dolean, M. Gander, S. Lanteri, J.-F. Lee and Z. Peng

Effective transmission conditions for domain decomposition methods applied to the time-harmonic Curl-Curl Maxwell’s equations

J. Comput. Phys., Vol. 280, No. 1, pp. 232—247 (2015)

J. Gopalakrishnan, S. Lanteri, N. Olivares and R. Perrussel

Stabilization in relation to wavenumber in HDG methods

Adv. Model. Simul. Engng. Scienc., Vol. 2, No. 13 (2015)

M.E. Bouajaji, V. Dolean, M. Gander, S. Lanteri and R. Perrussel

Discontinuous Galerkin discretizations of optimized Schwarz methods for solving the time-harmonic Maxwell’s equations

Electr. Trans. Numer. Anal., Vol. 44, pp. 572–592 (2015)

S. Delcourte and N. Glinsky

Analysis of a high-order space and time discontinuous Galerkin method for elastodynamic equations. Application to 3D wave propagation

ESAIM: Math. Model. and Numer. Anal., Vol. 49, No. 4, pp. 1085–1126 (2015)

L. Li, S. Lanteri and R. Perrussel

A class of locally well-posed hybridizable discontinuous Galerkin methods for the solution of time-harmonic Maxwell’s equations

Comp. Phys. Comm., Vol. 192, pp. 23–31 (2015)

L. Li, S. Lanteri and R. Perrussel

A hybridizable discontinuous Galerkin method combined to a Schwarz algorithm for the solution of 3d time-harmonic Maxwell’s equations

J. Comput. Phys., Vol. 256, pp. 563–581 (2014)

S. Lanteri and C. Scheid

Convergence of a discontinuous Galerkin scheme for the mixed time domain Maxwell’s equations in dispersive media

IMA J. Numer. Anal., Vol. 33, No. 2, pp. 432–459 (2013)

M.E. Bouajaji and S. Lanteri

High order discontinuous Galerkin method for the solution of 2D time-harmonic Maxwell’s equations

Appl. Math. Comput., Vol. 219, No. 13, pp. 7241–7251 (2013)

L. Moya, S. Descombes and S. Lanteri

Locally implicit time integration strategies in a dis- continuous Galerkin method for Maxwell’s equations

J. Sci. Comp., Vol. 56, No. 1, pp. 190–218 (2013)

C. Durochat, S. Lanteri and C. Scheid

High order non-conforming multi-element discontinuous Galerkin method for time domain electromagnetics

Appl. Math. Comput., Vol. 224, pp. 681–704 (2013)

L. LI, S. Lanteri and R. Perrussel

Numerical investigation of a high order hybridizable discontinuous Galerkin method for 2d time-harmonic Maxwell’s equations

COMPEL, Vol. 32, No. 3, pp. 1112–1138 (2013)

M. El Bouajaji, V. Dolean, M. J. Gander and S. Lanteri

Optimized Schwarz methods for the time-harmonic Maxwell equations with damping

SIAM J. Sci. Comp., Vol. 34, No. 4, pp. A2048-A2071 (2012)

A. Catella, V. Dolean and S. Lanteri

An implicit discontinuous Galerkin time-domain method for two-dimensional electromagnetic wave propagation

COMPEL, Vol. 29, No. 3, pp. 602-625 (2010)

V. Dolean, H. Fahs, L. Fezoui and S. Lanteri

Locally implicit discontinuous Galerkin method for time domain electromagnetics

J. Comput. Phys., Vol. 229, No. 2, pp. 512-526 (2010)

H. Fahs and S. Lanteri

A high-order non-conforming discontinuous Galerkin method for time-domain electromagnetics

J. Comput. Appl. Math., Vol. 234, pp. 1088-1096 (2010)

V. Dolean, H. Fol, S. Lanteri and R. Perrussel

Solution of the time-harmonic Maxwell equations using discontinuous Galerkin methods

J. Comp. Appl. Math., Vol. 218, No. 2 pp. 435-445 (2008)

V. Dolean, S. Lanteri and R. Perrussel

A domain decomposition method for solving the three-dimensional time-harmonic Maxwell equations discretized by discontinuous Galerkin methods

J. Comput. Phys., Vol. 227, No. 3 pp. 2044-2072 (2008)

### Computational nanophotonics

J. Viquerat

Fitting experimental dispersion data with a simulated annealing method for nano-optics applications

J. of Nanophotonics, Vol. 12, No. 3, 036014 (2018)

N. Schmitt, C. Scheid, J. Viquerat and S. Lanteri

Simulation of three-dimensional nanoscale light interaction with spatially dispersive metals using a high order curvilinear DGTD method

J. Comput. Phys., Vol. 373, pp. 210–229 (2018)

L. Li, S. Lanteri, N.A. Mortensen and M. Wubs

A hybridizable discontinuous Galerkin method for solving nonlocal optical response models

Comput. Phys. Comm., Vol. 219, pp. 99-107 (2017)

N. Schmitt, C. Scheid, S. Lanteri, A. Moreau and J. Viquerat

A DGTD method for the numerical modeling of the interaction of light with nanometer scale metallic structures taking into account non-local dispersion effects

J. Comput. Phys., Vol. 316, pp. 396–415 (2016)

J. Viquerat and S. Lanteri

Simulation of near-field plasmonic interactions with a local approximation order discontinuous Galerkin time-domain method

Photonics and Nanostructures - Fundamentals and Applications, Vol. 18, pp. 43–58 (2016)

J. Viquerat and C. Scheid

A 3D curvilinear discontinuous Galerkin time-domain solver for nanoscale light–matter interactions

J. Comp. Appl. Math., Vol. 289, pp 37-50 (2015)

R. Léger, J. Viquerat, C. Durochat, C. Scheid and S. Lanteri

A parallel non-conforming multi-element DGTD method for the simulation of electromagnetic wave interaction with metallic nanoparticles

J. Comp. Appl. Math., Vol. 270, pp. 330–342 (2013)

S. Descombes, C. Durochat, S. Lanteri, L. Moya, C. Sscheid and J. Viquerat

Recent advances on a DGTD method for time-domain electromagnetics

Photonics and Nanostructures - Fundamentals and Applications, Vol. 11, No. 4, pp. 291–302 (2013)

### Computational biolectromagnetics

C. Durochat, S. Lanteri and R. Léger

A non-conforming multi-element DGTD method for the simulation of human exposure to electromagnetic waves

Int. J. Numer. Model., Electron. Netw. Devices Fields, Vol. 27, pp. 614–625 (2013)

H. Fahs, A. Hadjem, S. Lanteri, J. Wiart and M.F. Wong

Calculation of the SAR induced in head tissues using a high order DGTD method and triangulated geometrical models

IEEE Trans. Ant. Propag., Vol. 59, No. 12, pp. 4669-4678 (2011)

### Computational elastodynamics

M. Bonnasse-Gahot, H. Calandra, J. Diaz and S. Lanteri

Hybridizable discontinuous Galerkin method for the two-dimensional frequency-domain elastic wave equations

Geophys. J. Int., Vol. 213, No. 1, pp. 637–659 (2018)

F. Peyrusse, N. Glinsky-Olivier, C. Gélis and S. Lanteri

A nodal discontinuous Galerkin method for site effects assessment in viscoelastic media - verification and validation in the Nice basin

Geophys. J. Int., Vol. 199, No. 1, pp. 315–334 (2014)