From PmWiki

Main: Home Page

Welcome to the Nachos team homepage!

Nachos is a joint project-team between Inria, CNRS and the University of Nice/Sophia Antipolis
via the J.A. Dieudonné Mathematics Laboratory (UMR 7351).

Job openings

Research and development engineer (fixed-term)
Exascale enabled finite element solvers for nanophotonics
Duration: 16 months

Research and development engineer (fixed-term)
Development and application of high order finite element solvers for nanoscale light-matter interactions
Duration: 12 months

News - March 2018

Kick-off meeting of the Math-Amsud PHOTOM - Photovoltaic Solar Devices
in Multiscale Computational Simulations - project
March 13-15, LNCC, Petrópolis, Brazil

New high order Hybridized Discontinuous Solver (HDG) for frequency-domain plasmonics in 3D - Work done in the context of the postdoctoral project of Mostafa Javadzadeh Moghtader


Scattering of a plane wave by a 50 nm gold nanosphere: magnitude of E field at frequencies 1070 THz (left), 1185 THz (middle) and 1300 THz (right)

Scattering of a plane wave by a 50 nm gold nanosphere: scattering (left) and absorption (right) cross sections for calculations based on a HDG method with quadratic interpolation of the EM field components

News - February 2018

Congratulations to Fréderic Valentin who has been awarded an Inria International Chair for the period 2018-2022! The research project that he will lead during this period aims at devising innovative multiscale numerical algorithms for the simulation of wave-matter interaction at the nanoscale. This topic is also at the heart of the Math-Amsud PHOTOM - Photovoltaic Solar Devices
in Multiscale Computational Simulations - project that has started in Januray 2018 for a duration of 2 years, and which involves researchers from Brazil, Chile and France.

Papers on reduced-order modeling based on Proper Orthogonal Decomposition for time-domain electromagnetics in the context of a collaborative work with researchers from UESTC, Chengdu, China.
K. Li, T.-Z. Huang, L. Li and S. Lanteri
A reduced-order DG formulation based on POD method for the time-domain Maxwell’s equations in dispersive media
J. Comput. Appl. Math., Vol. 336, pp. 249-266 (2018)
K. Li, T.-Z. Huang, L. Li, S. Lanteri, L. Xu and B. Li
A reduced-order discontinuous Galerkin method based on POD for electromagnetic simulation
IEEE Trans. Ant. Propag., Vol. 66, No. 1, pp. 242-254 (2018)

News - May 2017

High order DGTD method based on exponential time integrators for modeling
3D transient multiscale electromagnetic problems
More details - Work done in the context of the PhD project of Hao Wang
H. Wang, L. Xu, B. Li, S. Descombes and S. Lanteri
A new family of exponential-based high order DGTD methods for modelling 3D transient multiscale electromagnetic problems
IEEE Trans. Ant. Propag., Vol. 65, No. 11, pp. 5960-5974 (2017)

News - February 2017

Paper entitled "Analysis of a generalized dispersive model coupled to a DGTD method with application to nanophotonics" by S. Lanteri, C. Scheid and J. Viquerat, SIAM J. Sci. Comput., Vol. 39, No. 3, A831–A859 (2017)

Simulation of light trapping in thin-film solar cells with textured layers
More details - Work done in the context of the PhD project of Alexis Gobé

News - January 2017

First review meeting and workshop of the HPC4E project
January 30-February 2, 2017 - Inria Sophia Antipolis-Méditerranée

New DGTD solver for the 3D time-domain Maxwell equations coupled to a linearized non-local Drude model
More details - Work done in the context of the PhD project of Nikolai Schmitt

Retrieved from http://www-sop.inria.fr/nachos/index.php/Main/HomePage
Page last modified on April 17, 2018, at 07:30 AM