Analysis of TTL-based Cache Networks

Choungmo Fofack Nicaise

UNS / Inria Sophia Antipolis


Many researchers have been working on the performance analysis of caching in Information-Centric Networks (ICNs) under various replacement policies like Least Recently Used (LRU), FIFO or Random (RND). However, no exact results are provided, and many approximate models do not scale even for the simple network of two caches connected in tandem. In this paper, we introduce a Time-To-Live based policy (TTL), that assigns a timer to each content stored in the cache and redraws the timer each time the content is requested (at each hit/miss). We show that our TTL policy is more general than LRU, FIFO or RND, since it is able to mimic their behavior under an appropriate choice of its pa- rameters. Moreover, the analysis of networks of TTL-based caches appears simpler not only under the Independent Reference Model (IRM, on which many existing results rely) but also with the Renewal Model for requests. In particular, we determine exact formulas for the performance metrics of interest for a linear network and a tree network with one root cache and N leaf caches. For more general networks, we propose an approximate solution with the relative errors smaller than 0.001 and 0.01 for exponentially distributed and constant TTLs respectively.

[Choungmo Fofack Nicaise]
[UNS / Inria Sophia Antipolis]