Fixed Point Models and Congestion Pricing for TCP and Related Schemes

Peter Key peterkey@microsoft.com

Collaborators

- Frank Kelly, Richard Gibbens (Stats Lab)
 - preprint: A note on resource pricing and congestion control for networks with delay and loss, R J Gibbens and P B Key
- Derek McAuley, Paul Barham, Koenraad Laevens, Dave Stewart, (Microsoft Res Ltd)
 - submitted: *Differential QOS and Pricing in Networks: where flow-control meets game theory*, Peter Key & Derek McAuley, UKPEW1998

Outline

- A single resource system
- Implied cost type models
- Multiple Resources
- A distributed game!

Resource system ('network')

Simple models of TCP (CA)

Single resource, lose pkts with prob. *p, x* is window in MSS

$$x_{t+1} = x_t + 1 - px_t x_t / 2 \implies x^* = \sqrt{\frac{2}{p}}$$

Strictly periodic loss (Sawtooth)

$$x^* = \sqrt{\frac{3}{2p}}$$

Random loss, ...

$$x* = 1.309 \sqrt{\frac{1}{p}}$$

Simple TCP model, multiple connections

n sources, single resource capacity C

$$\frac{dW_t}{dt} = 1 - \Pr\{\text{packet lost}\} \cdot W_t \cdot \frac{W_t}{2}$$

$$= 1 - \frac{\left(\sum_{i} W_t^i - C\right)^+}{\sum_{i} W_t^i} W_t \cdot \frac{W_t}{2}$$

So in steady state, with equal connections

$$\Rightarrow W = \frac{C + \sqrt{C^2 + 8n^2}}{2n}$$

Simple TCP model with feedback

Resource loses excess load, *n* number of sources, *nC* capacity (=n x resource capacity*RTT/MSS),

RTT=1ms, cap=1MB/s, C=244

window=

$$\frac{1}{2}\left(C+\sqrt{8+C^2}\right)$$

Normalised Load

Stochastic Network Formulation

Suppose user has utility U_r and offers at rate v_r objective:

Maximise
$$\sum_{r} U_r(x_r)$$
 over $x_r \ge 0$ s.t. $x_r \le v_r$

where

$$x_r = v_r \prod_j (1 - B_j)^{A_{jr}} \stackrel{def}{=} v_r (1 - L_r)$$

$$B_j = B(\rho_j, C_j) \quad \text{for some twice differentiable } B$$

$$\rho_j = (1 - B_j)^{-1} \sum_r A_{jr} v_r \prod_j (1 - B_j)^{A_{jr}}$$

Theorem (Implied Costs)

$$\frac{dW}{dv_r} = (1 - L_r) \left\{ U_r'(x_r) - \sum_j A_{jr} c_j \right\}$$

$$c_k = \frac{1}{\left(1 - B_k\right)^2} \frac{\partial B_k}{\partial v_{[k]}} \sum_r A_{kr} x_r \left\{ U_r'(x_r) - \sum_j A_{jr} c_j \right\}$$

Corollary (Shadow prices)

If B is Erlang's formula, the c's are also the shadow prices

$$c_k = \frac{dW}{dC_k}$$

$$c_{k} = \frac{\eta_{k}}{(1 - B_{k})} \sum_{r} A_{kr} x_{r} \left\{ U'_{r}(x_{r}) - \sum_{j} A_{jr} c_{j} \right\}$$

$$\eta_k \stackrel{def}{=} Erl(\rho_k, C_k) - Erl(\rho_k, C_k - 1)$$

System with Cost function (Kelly/Gibbens)

Suppose there is a cost function, $C_j(y)$ giving rate at which cost incurred at resource j with load y_j objective:

Maximise
$$\sum_{r} U(x_r) - \sum_{j} C_j \left(\sum_{r} A_{jr} x_r \right)$$
 over $x \ge 0$

Solution the same (for convex *C*) with

$$\mu_j = p_j \left(\sum_r A_{jr} x_r \right)$$
 where $p_j(y) \stackrel{def}{=} \frac{dC_j(y)}{dy}$

Example

$$C_j(y) = E(Y - c_j)^{\dagger} \implies \mu_j = \frac{dC_j}{dy} = \Pr\{Y \ge c_j\}$$

if Y Poisson and E(Y) = y.

Also,

$$E(x_r I\{Y \ge c\}) = x_r \Pr\{Y \ge c_j\}$$

Hence mark packet if exceed capacity

If
$$U(x_r) = w_r \operatorname{Log}(x_r)$$
, then

$$w_r = x_r \Pr\{Y \ge c_j\}$$

Adaptive (prop fair) scheme

Good reasons (eg Nash Arbitration) for choosing

$$U_r(x_r) = w_r \operatorname{Log}(x_r)$$

which suggests the adaptive scheme

$$\frac{d}{dt}x_r(t) = \kappa \left(w_r(t) - x_r(t) \sum_{j \in r} \mu_j(t) \right)$$

where
$$\mu_j(t) = p_j\left(\sum_{j \in r} x_r(t)\right) \frac{d}{dy}C_j(y) = p_j(y)$$

Example - elastic control

$$x_{t+1} = x_t + \kappa \left(w_t - f(t) \right)$$

 w_t reflects willingness to pay,

f(t) is feedback received from the network

eg

 $f(t) = x_t$ if (resource/bottleneck overloaded) else = 0

Example Strategies

Willingness to pay

$$x_{t+1} = x_t + \kappa \left(w_t - f(t) \right)$$

TCP-like

$$x_{t+1} = x_t + \kappa \left(w_t - f(t) \frac{x_t}{2} \right)$$

TCP-like with shadow price

$$x_{t+1} = x_t + \kappa \left(w_t - f(t) \frac{x_t}{2} \right)$$

 w_t willingness to pay,

$$f(t) = x_t P_{\text{sat}} = x_t Pr \left\{ \sum x_r \ge C \right\}$$
$$= x_t Pr \{ Y \ge C \}$$

$$f(t) = x_t P_{loss} = x_t \frac{E[Y - C]^+}{E[Y]}$$

$$f(t) = x_t P_{\text{sat}} = x_t Pr\{Y \ge C\}$$

Large Deviation Analysis

$$\frac{P_{loss}}{P_{sat}} = \frac{1}{E[Y](e^{s^*} - 1)}$$

$$s^* = \arg\inf\log(\phi(s^*) - s^*C)$$

$$\frac{P_{loss}}{P_{sat}} = \frac{1}{C - y}$$
 If Y Poisson mean y

TCP & TCP like schemes

TCP with shadow price

w = 0.05

Fairness Example - no control

Fixed point equations imply

$$\frac{x_1}{v_1} = \frac{1}{2} \left(\sqrt{1 + \frac{4}{\rho}} - 1 \right) = \frac{x_3}{x_1} \quad \text{for } \rho > \frac{1}{2}$$

and allocation changes from max-min fairness to maximum utilisation as ρ increases

Throughput (no flow control)

Fairness Examples, prop. fair prices

Two-Node Example: Congestion pricing

100 of each user type

Two-Node Example, Delays

Users types

- Users adapt
- Turn on and off (geometric loads)
- Horizontal users have twice worth of vertical users

 $w \in (0.00002, 0.002)$

Number active

Marking & Utilisation

Lost packets

Througput vs w

2-node summary

- Very low loss, despite small buffers
- Users who pay more get more!

A framework for congestion pricing

- Underlying model very simple
 - Network sends congestion/pricing signals to users
 - Users can react as they wish
- Is this a rich enough framework?
 - Tested with simple models, and via a constrained Java competition
 - But test in a distributed game setting?

Distributed multi-player game

Protocol structures

Information flow

Game / controller

Protocol

Example Objectives

Assumes notified cost per mark

- Maximise (ave. thruput ave. cost)
- Max Discounted Σ (thruput cost)
- For given utility function, max Σ (utility cost)
- Transfer an amount of data F(file) at min cost
- Transfer *F* in set time *T* at min cost
- Transfer F as quickly as possible at min cost
- Given fixed budget, maximise transfer

Iterative Approach

- New User plays on test harness
- Plays against controlled load
 - (eg against copies of single game or against sample from random population)
- Plays against other users each with same objective
- Plays against others with multiple objectives

Disciplines

- Computer science
- Control Theory
- Game Theory / econometrics
- Stochastic Decision Theory
- Optimisation / Dynamic Programming

The future

- A rich class of differentiated services can be constructed from the simplest of frameworks
- Control shared between the user and the network
- β -version of software exists, will be available
- To see if it works... come and play the game!