
1

A Survey of TCP over Ad Hoc Networks
Ahmad Al Hanbali, Eitan Altman, Philippe Nain

INRIA

B.P. 93, 06902 Sophia Antipolis Cedex, France

{aalhanba,altman,nain}@sophia.inria.fr

June, 2005

Abstract

The Transmission Control Protocol (TCP) was designed to provide reliable end-to-end delivery of data over

unreliable networks. In practice, most TCP deployments have been carefully designed in the context of wired

networks. Ignoring the properties of wireless Ad Hoc Networks can lead to TCP implementations with poor

performance. In order to adapt TCP to Ad hoc environment, improvements have been proposed in the literature to

help TCP to differentiate between the different types of losses. Indeed, in mobile or static Ad hoc networks losses

are not always due to network congestion, as it is mostly the case in wired networks. In this report, we present an

overview of this issue and a detailed discussion of the major factors involved. In particular, we show how TCP can

be affected by mobility and lower layers protocols. In addition, we survey the main proposals which aim at adapting

TCP to mobile and static Ad hoc environments.

Index Terms

Mobile Ad hoc networks, static Ad hoc networks, TCP, survey ,routing protocol, packet loss, routing failure,

power constraint, cross layer.

I. I NTRODUCTION

Ad Hoc Networks are complex distributed systems that consist of wireless mobile or static nodes that can freely

and dynamically self-organize. In this way they form arbitrary, and temporary “Ad hoc” networks topologies,

allowing devices to seamlessly interconnect in areas with no pre-existing infrastructure. Recently, the introduction

of new protocols such as Bluetooth [1], IEEE 802.11 [2] and Hyperlan [3] are making possible the deployment of

Ad hoc networks for commercial purposes. As a result, considerable research efforts have been put on this new

challenging wireless environment. For simplicity, in the following we will use the term MANETs instead of mobile

Ad hoc networks, and SANETs instead of static Ad hoc networks. Also we note that the term Ad hoc networks

will represent both mobile Ad hoc networks (MANETs) and static Ad hoc networks (SANETs).

TCP (Transmission Control Protocol) [4] was designed to provide reliable end-to-end delivery of data over

unreliable networks. In theory, TCP should be independent of the technology of the underlying infrastructure. In



2

particular, TCP should not care whether the Internet Protocol (IP) is running over wired or wireless connections.

In practice, it does matter because most TCP deployments have been carefully designed based on assumptions that

are specific to wired networks. Ignoring the properties of wireless transmission can lead to TCP implementations

with poor performance.

In Ad hoc networks, the principal problem of TCP lies in performing congestion control in case of losses that

are not induced by network congestion. Since bit error rates are very low in wired networks, nearly all TCP

versions nowadays assume that packets losses are due to congestion. Consequently, when a packet is detected to

be lost, either by timeout or by multiple duplicated ACKs, TCP slows down the sending rate by adjusting its

congestion window. Unfortunately, wireless networks suffer from several types of losses that are not related to

congestion, making TCP not adapted to this environment. Numerous enhancements and optimizations have been

proposed over the last few years to improve TCP performance over one-hop wireless (not necessarily Ad hoc)

networks. These improvements include infrastructure based WLANs [5], [6], [7], [8], mobile cellular networking

environments [9], [10], and satellite networks [11], [12]. Ad hoc networks inherit several features of these networks,

in particular high bit error rates and path asymmetry, and add new problems that come from mobility and multi-hop

communications, such as network partitions, route failures, and hidden (or exposed) terminals. We note that the

following TCP versions: Tahoe, Reno, Newreno, and Vegas perform differently in Ad hoc networks [13]. However,

all these versions suffer from the same problem of inability to distinguish between packet losses due to congestion

from losses due to the specific features of Ad hoc networks. For more details about TCP versions see Appendix I,

and for a survey about TCP versions we refer to [14].

By examining the TCP’s performance studies over MANETs and SANETs, we identified the following four

major problems:(i) TCP is unable to distinguish between losses due to route failures and network congestion.(ii)

TCP suffers from frequent route failures.(iii) the contention on the wireless channel.(iv) TCP unfairness. We note

that the first two problems are the main causes of TCP performance degradation in MANETs, and the other two

problems are the main causes of TCP performance degradation in SANETs. Based on these four problems, the

proposals that aim to improve TCP performance over Ad hoc networks are regrouped in four sets. We classify the

proposals of a set in two categories: cross layer proposals and layered proposals. In cross layer proposals, TCP

and its underlying protocols work jointly. For example, considerable improvements are possible when TCP can

differentiate between packet losses due to congestion that should activate the congestion control algorithm, and

losses due to the specific features of MANETs. In order to do that, some proposals suggest that when the routing

layer detects a route failure, it notifies the TCP sender about a routing failure [15], [16], [17], [18], [19]. Upon

receiving this notification, TCP sender enters afreezing state. In this state, TCP stops sending data packets, and

it freezes all its variables to their current value, such as the congestion window and the retransmission timer. After

route re-establishment, TCP sender goes back to the normal state. In layered proposals, the problems of TCP are



3

addressed at one of the OSI layers. For example in [20], Altman and Jimenez use adaptive TCP delayed ACK to

reduce the contention on wireless channel in SANETs. In [21], Fu et al. propose two link layer techniques, called

Link RED and adaptive pacing, to improve TCP performance over SANETs.

The rest of the report is organized as follows: In Section II we discuss TCP’s challenges in Ad hoc networks.

In Section III we survey papers on TCP performance over mobile and static Ad hoc networks. In Section IV we

review the main proposals for improving TCP performance. Section V compares and discusses these proposals.

Section VI concludes the paper and gives research directions.

II. TCP’S CHALLENGES INAD HOC NETWORKS

The performance of TCP degrades in Ad hoc networks. This is because TCP has to face new challenges due to

several reasons specific to these networks: lossy channels, hidden and exposed stations, path asymmetry, network

partitions, route failures, and power constraints.

A. Lossy channels

The main causes of errors in wireless channel are the following:

• Signal attenuation: This is due to a decrease in the intensity of the electromagnetic energy at the receiver (e.g.

due to long distance), which leads to low signal-to-noise ratio (SNR).

• Doppler shift: This is due to the relative velocities of the transmitter and the receiver. Doppler shift causes

frequency shifts in the arriving signal, thereby complicating the successful reception of the signal.

• Multipath fading: Electromagnetic waves reflecting off objects or diffracting around objects can result in the

signal traveling over multiple paths from the transmitter to the receiver. Multipath propagation can lead to

fluctuations in the amplitude, phase, and geographical angle of the signal received at a receiver.

In order to increase the success of transmissions, link layer protocols implement the following techniques: Auto-

matic Repeat reQuest (ARQ), or Forward Error Correction (FEC), or both. For example, IEEE 802.11 implements

ARQ, so when a transmitter detects an error, it will retransmit the frame, error detection is timer based. Bluetooth

implements both ARQ and FEC on some synchronous and asynchronous connections.

Note that packets transmitted over a fading channel may cause routing protocol to incorrectly conclude that

there is a new one-hop neighbor. This one-hop neighbor could provide a shorter route to even more distant nodes.

Unfortunately, this new shorter route is usually unreliable. As an example in [22], Chin et al. deploy DSDV [23]

and AODV [24] routing protocols in a real network, they find that neither of these protocols can provide a stable

multi-hop route because of the physical channel behaviors and especially fading.



4

B. Hidden and Exposed stations

In Ad hoc networks, stations may rely on physical carrier-sensing mechanism to determine idle channel, such as

in the IEEE 802.11 DCF function. This sensing mechanism does not solve completely thehidden stationand the

exposed stationproblems [25]. Before explaining these problems, we need to clarify the “transmission range” term.

The transmission range is the range, with respect to the transmitting station, within which a transmitted packet can

be successfully received.

A typical hidden terminal situation is depicted in Figure 1. Stations A and C have a frame to transmit to station

B. Station A cannot detect C’s transmission because it is outside the transmission range of C. Station C (resp. A)

is therefore “hidden” to station A (resp. C). Since A and C transmission areas are not disjoint, there will be packet

collisions at B. These collisions make the transmission from A and C toward B problematic. To alleviate the hidden

station problem, virtual carrier sensing has been introduced [2], [26]. It is based on a two-way handshaking that

precedes data transmission. Specifically, the source station transmits a short control frame, called Request-To-Send

(RTS), to the destination station. Upon receiving the RTS frame, the destination station replies by a Clear-To-

Send (CTS) frame, indicating that it is ready to receive the data frame. Both RTS and CTS frames contain the

total duration of the data transmission. All stations receiving either RTS or CTS will keep silent during the data

transmission period (e.g. station C in Figure 1).

However, as pointed out in [21], [27] the hidden station problem may persist in IEEE 802.11 Ad hoc networks

even with the use of the RTS/CTS handshake. This is due to the fact that the power needed for interrupting a

packet reception is much lower than that of delivering a packet successfully. In other words, node’s transmission

range is smaller than the sensing node range. For more details see the model of the physical layer implemented in

NS-2 and Glomosim simulators [28], [29].

A B C

Transmission Range

Transmissions Collision

Fig. 1. Hidden terminal problem: Packets sent to B by A and C will collide at B.

The exposed station problem results from a situation where a transmission has to be delayed because of the

transmission between two other stations within the sender’s transmission range. In Figure 2, we show a typical



5

scenario where the exposed terminal problem occurs. Let us assume that A and C are within B’s transmission range,

and A is outside C’s transmission range. Let us also assume that B is transmitting to A, and C has a frame to be

transmitted to D. According to the carrier sense mechanism, C senses a busy channel because of B’s transmission.

Therefore, station C will refrain from transmitting to D, although this transmission would not cause interference at

A. The exposed station problem may thus result in a reduction of channel utilization.

It is worth noting that hidden terminal and exposed terminal problems are correlated with the transmission range.

By increasing the transmission range, the hidden terminal problem occurs less frequently. On the other hand, the

exposed terminal problem becomes more important as the transmission range identifies the area affected by a single

transmission.

A B C D

B’s Transmission Range

C refrains transmission

Fig. 2. Exposed terminal problem: Because of B’s transmission C refrains transmission to D.

C. Path asymmetry

Path asymmetry in Ad hoc networks may appear in several forms like bandwidth asymmetry, loss rate asymme-

try,and route asymmetry.

Bandwidth asymmetry: Satellite networks suffer from high bandwidth asymmetry, resulting from various engineer-

ing tradeoffs (such as power, mass, and volume), as well as the fact that for space scientific missions, most of the

data originates at the satellite and flows to the earth. The return link is not used, in general, for data transferring. For

example, in broadcast satellite networks the ratio of the bandwidth of the satellite-earth link over the bandwidth of

the earth-satellite link is about 1000 [11]. On the other hand in Ad hoc networks, the degree of bandwidth asymmetry

is not very high. For example, the bandwidth ratio lies between 2 and 54 in Ad hoc networks that implement the

IEEE 802.11 version g protocol [2]. The asymmetry results from the use of different transmission rates. Because

of this different transmission rates, even symmetric source destination paths may suffer from bandwidth asymmetry.

Loss rate asymmetry: This type of asymmetry takes place when the backward path is significantly more lossy

than the forward path. In Ad hoc networks, this asymmetry is due to the fact that packet losses depend on local



6

constraints that can vary from place to place. Note that loss rate asymmetry may produce bandwidth asymmetry. For

example, in multi-rate IEEE 802.11 protocol versions, senders may use the Auto-Rate-Fallback (ARF) algorithm

for transmission rate selection [30]. With ARF, senders attempt to use higher transmission rates after consecutive

transmission successes, and revert to lower rates after failures. So, as the loss rate increases the sender will keep

using low transmission rates.

Route asymmetry: Unlike the previous two forms of asymmetry, where the forward path and the backward

path can be the same, route asymmetry implies that distinct paths are used for TCP data and TCP ACKs. This

asymmetry may be artifact of the routing protocol used. Route asymmetry increases routing overheads and packet

losses in case of high degree of mobility1. Because when nodes move, using a distinct forward and reverse routes

increases the probability of route failures experienced by TCP connections. However, this is not the case of static

networks or networks that have low degree of mobility, like the case of a network with routes of high lifetime

compared to the session transfer time. So, it is up to the routing protocols to select symmetric paths when such

routes are available in the case of Ad hoc networks of high mobility.

In the context of satellite networks, there has been a lot of research on how to improve TCP performance. But

since satellite networks are out of the scope of the report, we will limit ourselves to list three techniques introduced

by these proposals, which we believe might be useful in Ad hoc networks.

The first one is “TCP header compression” that reduces the size of the TCP ACKs on the backward path [31].

The second one is “ACK filtering” that reduces the number of TCP ACKs transmitted, by taking advantage of

the fact that TCP ACKs are cumulative [32]. The third one is “ACK congestion control” that let the receiver also

control the congestion on the backward path. This is done by dynamically maintaining a delayed-ACK factord by

the receiver, and by sending one ACK for everyd data packet received [32]. The difference between ACK filtering

and ACK congestion control is that the first one is a link layer technique that can be implemented at intermediate

nodes, however the second one is a TCP layer technique that is implemented at the TCP sink. Unfortunately,

these techniques alone cause problems such as increasing sender’s burst traffic and also slowing down the sender’s

congestion window growth. So, it is necessary to adapt the sender congestion control algorithm to avoid these

problems. For details about the sender adaptation techniques, we refer to [32]; The adaptive delayed-ACK proposed

in [20] aims to reduce the contention on the channel, by reducing the number of TCP ACKs transmitted. This

proposal also alleviates the asymmetry problem in SANETs. We have not found any other proposal dealing with

the asymmetry problem in Ad hoc networks.

1Network with routes of short lifetime compared to the session transfer time is an example of a network of high degree of mobility



7

D. Network partition

An Ad hoc network can be represented by a simple graphG. Mobile stations are the “vertices”. A successful

transmission between two stations is an undirected “edge”. Network partition happens whenG is disconnected. The

main reason of this disconnection in MANETs is node mobility. Another factor the can lead to network partition

is energy constrained operation of nodes. An example of network partition illustrated in Figure 3. In this figure,

dashed lines are the links between nodes. When node D moves away from node C this results in a partition of the

network into two separate components. Clearly, the TCP agent of node A can not receive the TCP ACK transmitted

by node F. If the disconnectivity persists for a duration greater than the retransmission timeout (RTO) of node A,

the TCP agent will trigger theexponential backoffalgorithm [33], which consists of doubling the RTO whenever

the timeout expires. Originally, TCP does not have indication about the exact time of network reconnection. This

lack of indication may lead to long idle periods during which the network is connected again, but TCP is still in

the backoff state.

A

B

C

D
TCP

E

F Sink

Moving (1)

Moving (2)

Fig. 3. Network partition scenario: When D is moving away from C. The network is reconnected when E is moving toward C.

E. Routing failures

In wired networks route failures occur very rarely. In MANETs they are frequent events. The main cause of route

failures is node mobility. Another factor that can lead to route failures is the link failures due to the contention

on the wireless channel, which is the main cause of TCP performance degradation in SANETs. The route re-

establishment duration after route failure in Ad hoc networks depends on the underlying routing protocol, mobility

pattern of mobile nodes, and traffic characteristics. As already discussed in Section II-D, if TCP sender’s does not

have indications on the route re-establishment event, the throughput and session delay will degrade because of the

large idle time. Also, if the new route established is longer or shorter, in term of hops, than the old route TCP will

face a brutal fluctuation in Round Trip Time (RTT).

In addition, in Ad hoc networks, routing protocols that rely on broadcast Hello messages to detect neighbors’

reachability, may suffer from the “communication gray zones” problem. In these zones data messages cannot be

exchanged although broadcast Hello messages and control frames indicate that neighbors are reachable. So on

sending a data messages, routing protocols will experience routing failures. In [34] Lundgren et al. have conducted

experiments and have subsequently concluded that the origin of this problem is heterogeneous transmission rates,



8

absence of acknowledgment for broadcast packets, small packet size of Hello messages, and fluctuations of wireless

links.

F. Power constraints

Because batteries carried by each mobile node have limited power supply, processing power is limited. This

is a major issue in Ad hoc networks, as each node is acting as an end system and as a router at the same

time, with the implication that additional energy is required to forward and relay packets. TCP must use this

scarce power resource in an “efficient” manner. Here, efficiency means minimizing the number of unnecessary

retransmissions at the transport layer as well as at the link layer2. In general, in Ad hoc networks there are two

correlated power problems: the first one is “power saving” that aims at reducing the power consumption; the second

one is “power control” that aims at adjusting the transmission power of mobile nodes. Power saving strategies have

been investigated at several levels of a mobile device including the physical layer transmissions, the operation

systems, and the applications [35]. Power control can be jointly used with routing or transport agents to improve

the performance of Ad hoc networks [36], [37]; power constraints communications reveal also the problem of

cooperation between nodes, as nodes may not participate in routing and forwarding procedures in order to save

battery power.

III. TCP PERFORMANCE OVERAD HOC NETWORKS

In this section, first we report the studies of TCP performance over MANETs. Second, we report the studies of

TCP performance over the SANETs. At the end, we summarize the major problems of TCP over static and mobile

Ad hoc networks. In passing, we point out that routing protocols and link layer protocols in Ad hoc networks are

beyond the scope of this survey. The interested readers are referred to [38], [39] for details.

A. TCP performance over MANETs

In [16], Monks et al. investigate the impact of mobility on TCP throughput in MANETs. In their simulation

scenarios, nodes move according to the random way-point model with0s pause time. The speed of node was

uniformly distributed in[0.9v−1.1v] for some mean speedv. At the routing layer, the authors use DSR [40]. They

report that when the mean speed increases from2m/s to10m/s the throughput drops sharply. But, when it increases

from 10m/s to30m/s the throughput drops slightly. Also they remark that, for a given mean speed, certain mobility

patterns achieve throughput close to0, although the other mobility patterns are able to achieve high throughput. By

analyzing the simulations trace of patterns of low throughput, they found that the TCP sender’s routing protocol

is unable to quickly recognize and purge stale routes from its cache, which results in repeated routing failures

and TCP retransmission timeouts. For patterns of high throughput they found that most of time the TCP sender

2IEEE 802.11 protocol implements a local retransmission at the link layer upon detecting a transmission error



9

and receiver are close to each other. By examining the mobility patterns, the authors observe that as the sender

and receiver move closer to each other, DSR can maintain a valid route. This is done by shortening the existing

route before a routing failure occurs. However, as the sender and receiver move away from each other, DSR waits

until a failure occurs to lengthen a route. The route failure induces up to a TCP-window worth of packet losses

[41], and subsequent route discovery latency often results in repeated TCP timeout. To prevent TCP invocation of

congestion control that deteriorates TCP throughput in case of losses induced by mobility, the authors suggest to use

the explicit link failure notification (ELFN) technique. An overview of this technique is discussed in Section IV-A.1.

In [41], In addition to the problem highlighted in [16] that is “ TCP treats losses induced by route failures as

signs of network congestion”, Anantharaman et al. identify a set of factors that contribute also to the degradation

of TCP throughput in the presence of mobility. These factors are: MAC failure detection and route computation

latencies. The MAC failure detection latency is defined as the amount of time spent before the MAC concludes a

link failure. They found that in the case of the IEEE 802.11 protocol, when the load is light (one TCP connection)

this latency is small and independent of the speed of the nodes. However in case of high load, the value of this

latency is magnified and becomes a function of the nodes’ speed. The route computation latency is defined as the

time taken to recompute the route after a link failure. They found that, as for MAC failure detection latency, the

route computation latency increases with the load and becomes a function of the nodes’ speed in the high load

case. Also, the authors identify another problem, called MAC packet arrival, that is related to routing protocols.

In fact, when a link failure is detected, the link failure is sent to the routing agent of the packet that triggered the

detection. If other sources are using the same link in the path to their destinations, the node that detects the link

failure has to wait till it receives a packet from these sources before they are informed of the link failure. This also

contributes to the delay after which a source realizes that a path is broken.

In [42], Dyer and Boppana report simulation results on the performance of TCP Reno over three different

routing protocols (AODV [24], DSR [40], ADV [43]). It is found that ADV performs well under a variety of

mobility patterns and topologies. Furthermore, they propose an heuristic technique called fixed RTO to improve

the performance of on-demand routing protocols (AODV and DSR). An overview of this technique is discussed in

Section IV-A.2. Also in [44], Lim et al. show that TCP’s performance degrades when the multipath routing protocol

SMR [45] is used. Multipath routing effects TCP by two factors: The first one is inaccuracy of the average RTT

measurement that leads to more premature timeouts. The second one is out-of-order packet delivery via different

paths, which triggers duplicated ACK, which in turn triggers TCP congestion control.

B. TCP performance over SANETs

In [20], [21], [46], [47] the authors report simulation results on TCP throughput in a static linear multi-hop chain,

where IEEE 802.11 protocol is used. In Figure 4, we display a multi-hop chain ofN nodes. It is expected that, as



10

the number of hops increases, the spatial reuse will also increase. However, simulation results indicate that TCP

throughput decreases “rapidly” up to a point as the number of hops increases. It is argued that this decrease is due to

the hidden terminals problem, which increases frames collisions. After a repeated3 transmission failure MAC layer

will react by two actions. First, the MAC will drop the head-of-line frame destinated to the next hop, we note that

this type of drops is known also as drops due to contention on wireless channel. Second, the MAC will notify the

upper layer about a link failure. When the routing protocol of a source node detects a routing failure, it will initiate

a route re-establishment process. In general the route re-establishment duration is greater than the retransmission

timer of the TCP agent; hence the TCP agent will enter the backoff procedure and will set its congestion window

to 1. Also, as TCP sender’s does not have indications on the route re-establishment event, TCP will suffer from a

long idle time. During this time, the network may be connected again, but TCP is still in the backoff state.

1 2 3 4 NN−1

TCP
sink

TCP
source

Fig. 4. Multi-hop chain topology

In [13], Xu and Saadawi study the performance of TCP Tahoe, Reno, New Reno, Sack and Vegas4 over the

multi-hop chain topology shown in Figure 4, in the case where the IEEE 802.11 protocol is used. It is shown

that TCP Vegas delivers the better performance and does not suffer from instability. By tuning the sender TCP’s

maximum window size (advertised window) to approximately four packets, all TCP versions perform similarly.

Furthermore, the authors investigate the performance of these TCP versions using the delayed-ACK option, as

defined in RFC 1122. According to the mentioned RFC, the TCP sink will send one TCP ACK packet for every

two TCP packets received. This option will reduce the contention on the wireless channel, because the data and

Ack packets share the same wireless channel. Simulating the multihop chain with the delayed-ACK option, they

report that an improvement of 15% to 32%.

In [46], [48], the authors study how the TCP connections share the bandwidth of the channel in the context

of Ad hoc network. They report some unfair bandwidth sharing using the actual MAC 802.11 in a multi-hop

communication environment. Moreover in [49], Xu and al. show that also in scenarios where TCP crosses wireless

Ad hoc and wired networks, the TCP unfairness problem persists. Xu et al. in [50] report that RED [51] did not

solve TCP’s unfairness in Ad hoc networks. The reason is that congestion does not happen in a single node, but

3On repeated transmission failure, 802.11 MAC is allowed to retransmit short frames seven times and long frames four times.
4For details about TCP versions see Appendix I



11

in an entire area involving multiple nodes. So, the local packet queue at any single node cannot completely reflect

the network congestion state. For this reason, they define a new distributed queue that contains all packets whose

transmissions will affect the node transmission in addition to its own packets. An overview of this proposal is

given in Section IV-D.1. In [52], Anastasi et al. investigate the performance of IEEE 802.11 Ad hoc network by

means of an experimental study. Their findings match those obtained by simulations, namely, TCP connections

may experience significant unfairness. They mention several aspects that are usually neglected in simulation studies

of the IEEE 802.11b protocol. For instance, since the control frames (RTS, CTS, ACK) and data frame may be

transmitted at different rates, this produces different transmission ranges and carrier sensing ranges in the network.

In [53], Chen et al. study the impact of the TCP’s congestion window limit (CWL) on TCP throughput in SANETs.

In fact, they relate the problem of setting TCP’s optimal CWL to identifying the bandwidth-delay product (BDP)

of multi-hop paths. As they argue that TCP’s congestion window should be less than the BDP. They prove that

regardless of the MAC layer being used, the value of the BDP in bytes at multi-hop routes cannot exceed the value

of the Round-Trip Hop-Count (RTHC) times the size of data packets in bytes of these multi-hop routes. This is

done by assuming similar bottleneck bandwidths along the forward and reverse route. In the case of IEEE 802.11

MAC layer protocol, when a node is transmitting, all other nodes that are inside its interference range or that

receive the RTS or CTS frames will remain silent till the transmission ends. The limit on CWL is illustrated in the

scenario of Figure 4; the distance between adjacent nodes equal to the node transmission range, which is taken to

be 250m, and node interference range equals to500m. For that scenario, the authors report that the BDP is less

one1/4 of the RTHC, as only4−hops nodes away can transmission of data packets be done concurrently without

collisions. Using simulation of the previous scenario, they found that when the CWL exceed one1/5 of the RTHC,

TCP throughput decreases substantially. So based on this tighter bound, the authors propose an algorithm to adjust

TCP CWL according to the RTHC of the routes used. Using their algorithm they report an improvement in TCP

performance up to16% even in mobile scenarios that contain multiple TCP connections. In [21], Fu et al report

that given a specific network topology and flow patterns, there exists an optimal TCP’s window sizeW ∗. Using

W ∗ TCP achieves the best throughput via improved spatial reuse. But, unfortunately, in practice, TCP operates at

an average window size that is much larger thanW ∗. This leads to increased packet loss due to the contention

on the wireless channel. To help TCP operating aroundW ∗, they propose two techniques: link RED and adaptive

pacing at the link layer. By coupling these two techniques they show a30% improvement in the performance. An

overview of these techniques is given in Section IV-C.3.

C. Summary

We conclude that the cause of TCP performance degradation in MANETs are due to two major problems. The

first problem is, TCP is unable to distinguish between losses due to route failures and network congestion. The

second problem is, TCP suffers from frequent route failures. However in SANETs, TCP faces two major problems.



12

The first problem is the contention on wireless channel. The second problem is TCP unfairness. Basing on these

four problems, the TCP proposals of the next section will be regrouped into four sets.

IV. PROPOSALS TO IMPROVETCP PERFORMANCE INAD HOC NETWORKS

In this section we present the various proposals which have been made in the literature to improve the performance

of TCP in Ad hoc networks. We regroup these proposals to four sets according to the four problems identified

in Section III-C. These four problems are:(1) TCP is unable to distinguish between losses due to route failures

and those due to network congestion,(2) frequent route failures,(3) contention on wireless channel, and(4) TCP

unfairness. We note that problems (1) and (2) are the main causes of TCP performance degradation in MANETs.

However, problems (3) and (4) are the main causes of TCP performance degradation in SANETs. Figure 5 shows

a general classification of each set of proposals. We classify the proposals that belong to the same set to two types:

cross layer proposals, and layered proposals. The cross layer proposals rely on interactions between two layers of

the Open System Interconnection (OSI) architecture. These proposals was motivated by the fact that “providing

lower layer informations to upper layer should help the upper layer to perform better”. Thus, depending on between

which two OSI layers there will be informations exchange, cross layer proposals can be further classified to four

types: TCP and network, TCP and link, TCP and physical, and network and physical. Layered proposals rely on

adapting OSI layers independently of other layers. Thus, depending on which layer is involved, layered proposals

can be further classified to three types: TCP layer, network layer, and link layer proposals.

In general, cross layer solutions report better performance than layered solution. But layered solutions respect

the concept of designing protocols in isolation, thus they are considered as long term solutions. So, to choose

between cross layer and layered solutions we have to answer first what is prior for us performance optimization or

architecture. Performance optimization can lead to short term gain, while architecture is usually based on longer

term considerations. In addition, cross layer solutions are more complex to implement and to design than layered

solutions. Because, the implementation of cross layer solutions require at least modifications of two OSI layers,

and their design requires that the system is considered in its entirety. For more discussions about cross layer design

in Ad hoc networks we refer the reader to [54].

A. Proposals to distinguish between losses due to route failures and congestion

The proposals that address the problem of TCP inability to distinguish between losses due to route failures and

network congestion in MANETs can fall into to two categories: TCP and network cross layer proposals, and TCP

layer proposals.



13

Network
and phys.

proposals 
Layered

TCP and
phys.

TCP 
layer

Network 
layer

Link 
layer

TCP and
link

Cross layer 
proposals 

TCP and
network

Proposals to improve TCP perfromance in Ad hoc

Fig. 5. Classification of proposals to improve TCP performance in Ad hoc networks.

1) TCP and network cross layer proposals:

TCP-F: TCP Feedback [55] is a feedback based approach to handle route failures in MANETs. This approach

allows the TCP sender to distinguish between losses due to routes failure and those due to network congestion.

This is done as follows. When routing agent of a node detects the disruption of a route, it explicitly sends a Route

Failure Notification (RFN) packet to the source. On receiving the RFN, the source goes into a snooze state. TCP

sender in snooze state will stop sending packets, and will freeze all its variables, such as timers and congestion

window size. The TCP sender remains in this snooze state until it is notified of the restoration of the route through

Route Re-establishment Notification (RRN) packet. On receiving the RRN, the TCP sender will leave the snooze

state and will resume transmission based on the previous sender window and timeout values. To avoid blocking

scenario in the snooze state, the TCP sender, on receiving RFN, triggers a route failure timer. When this timer

expires the congestion control algorithm is invoked normally.

The authors report an improvement by using TCP-F over TCP. The simulation scenario is basic and is not based on

an Ad hoc network. Instead, they emulate the behavior of an Ad hoc network from the viewpoint of a transport layer.

ELFN-based technique:Explicit Link Failure Notification technique [16] is similar to TCP-F. However in contrast

to TCP-F, the evaluation of the proposal is based on a real interaction between TCP and the routing protocol.

This interaction aims to inform the TCP agent about route failures when they occur. The authors use an ELFN

message, which is piggy-backed on the route failure message sent by the routing protocol to the sender. The ELFN

message is like a “host unreachable” Internet Control Message Protocol (ICMP) message, which contains the sender

receiver addresses and ports, as well as TCP packet’s sequence number. On receiving the ELFN message, the source

responds by disabling its retransmission timers and enters a “standby” mode. During the standby period, the TCP

sender probes the network to check if the route is restored. If the acknowledgment of the probe packet is received,

TCP sender leaves the standby mode, resumes its retransmission timers, and continues the normal operations.



14

In the mentioned reference, the authors study the effect of varying the time interval between probe packets. Also,

they evaluate the impact of the RTO and the Congestion Window (CW) upon restoration of the route. They find

that a probe interval of2 sec. performs the best, and they suggest to make this interval a function of the RTT

instead of giving it a fixed value. For the RTO and CW values upon route restoration, they find that using the prior

values before route failure performs better than initializing CW to1 packet and/or RTO to6 sec., the latter value

being the initial default value of RTO in TCP Reno and New Reno versions.

This technique provides significant enhancements over standard TCP, but further evaluations are still needed. For

instance, different routing protocols should be considered other than the reactive protocol DSR considered in [16],

especially proactive protocols such as OLSR [56]; In [41], Anantharaman et al. report that in case of high load5

ELFN performs worse than standard TCP. Because ELFN is based on probing the network periodically to detect

route re-establishment. Also in [57], Monks et al. find that even in case of light load ELFN performs worse than

standard TCP by5% in case of static Ad hoc networks.

ATCP: Ad hoc TCP [17] utilizes network layer feedback too. In addition to the route failures, ATCP tries to

deal with the problem of high Bit Error Rate (BER). The TCP sender can be put into persist state, congestion

control state or retransmit state. A layer called ATCP is inserted between the TCP and IP layers of the TCP source

nodes. ATCP listens to the network state information provided by ECN (Explicit Congestion Notification) messages

[58] and by ICMP “Destination Unreachable” message; then ATCP puts TCP agent into the appropriate state. On

receiving a “Destination Unreachable” message, TCP agent enters a persist state. The TCP agent during this state is

frozen and no packets are sent until a new route is found by probing the network. The ECN is used as a mechanism

to explicitly notify the sender about network congestion along the route being used. Upon reception of ECN, TCP

congestion control is invoked normally without waiting for a timeout event. To detect packet losses due to channel

errors, ATCP monitors the received ACKs. When ATCP sees that three duplicate ACKs have been received, it does

not forward the third duplicate ACK but puts TCP in the persist state and quickly retransmits the lost packet from

TCP’s buffer. After receiving the next ACK, ATCP will resume TCP to the normal state. Note that ATCP allows

interoperability with TCP sources or destinations that do not implement ATCP.

ATCP was implemented in a testbed and evaluated under different scenarios, such as congestion, lossy links,

partition, and packet reordering. In all cases the transfer time of a given file using ATCP yielded better performance

than TCP. However, the used scenario was somewhat special, since neither wireless links nor Ad hoc routing

protocols were considered. In fact, the authors used an experimental testbed consisting of five PCs equipped with

525 TCP connections



15

Ethernet cards. With these PCs, the authors formed a four hop network.

In addition to routes failure, ATCP tries to deal with the problem of high BER, network congestion, and packet

reorder. This advantages make ATCP a more robust proposal for TCP in MANETS. But some assumptions such as

ECN-capable node as well as sender node being always reachable might be somehow hard to meet in a mobile Ad

hoc context. Also, the probing mechanism used to detect routes re-establishment generates problems in the case of

high load, like in the ELFN proposal.

TCP-BuS: TCP Buffering capability and Sequence information [19], like previous proposals, uses the network

feedback in order to detect route failure events and to take convenient reaction to this event. The novel scheme

in this proposal is the introduction ofbuffering capabilityin mobile nodes. The authors select the source-initiated

on-demand ABR [59] (Associativity-Based Routing) routing protocol. The following enhancements are proposed:

• Explicit notification: two control messages are used to notify the source about the route failure and the route

re-establishment. These messages are called Explicit Route Disconnection Notification (ERDN) and Explicit

Route Successful Notification (ERSN). On receiving the ERDN from the node that detected the route failure,

called the Pivoting Node (PN) , the source stops sending. And similarly after route re-establishment by the

PN using a Localized Query (LQ), the PN will transmit the ERSN to the source. On receiving the ERSN, the

source resumes data transmission.

• Extending timeout values: during the Route ReConstruction (RRC) phase, packets along the path from the

source to the PN are buffered. To avoid timeout events during the RRC phase, the retransmission timer value

for buffered packets is doubled.

• Selective retransmission request: as the retransmission timer value is doubled, the lost packet along the path

from the source to the PN are not retransmitted until the adjusted retransmission timer expires. To overcome

this, an indication is made to the source so that it can retransmit these lost packet selectively.

• Avoiding unnecessary requests for fast retransmission: when the route is restored, the destination notifies the

source about the lost packets along the path from the PN to the destination. On receiving this notification,

the source simply retransmits these lost packets. But the packets buffered along the path from the source to

the PN may arrive at the destination earlier than the retransmitted packets. So. the destination will reply by

duplicate ACK. These unnecessary request packets for fast retransmission are avoided.

• Reliable retransmission of control message: in order to guarantee the correctness of TCP-BuS operation, they

propose to transmit reliably the routing control messages ERDN and ERSN. The reliable transmission is done

by overhearing the channel after transmitting the control messages. If a node has sent a control message but

did not overhear this message relayed during a timeout, it will conclude that the control message is lost and

it will retransmit this message.



16

This proposal introduces many new techniques for the improvement of TCP. The novel contributions of this

paper are the buffering techniques and the reliable transmission of control messages. In their evaluation, the authors

found that TCP-BuS outperforms the standard TCP and the TCP-F under different conditions. The evaluation is

based only on the ABR routing protocol and other routing protocols should be taken into account. Also, TCP-BuS

did not take into account that pivoting node may fail to establish a new partial route to the destination. In this case,

what will happen to the packets buffered at intermediate nodes is not handled by the authors.

2) TCP layer proposals:

Fixed RTO: This technique [42] is a sender-based technique that does not rely on feedback from the network. In

fact, the authors employ a heuristic to distinguish between route failures and congestion. When two timeout expire

in sequence, which corresponds to the situation where the missing ACK is not received before the second RTO

expires, the sender concludes that a route failure event has occurred. The unacknowledged packet is retransmitted

but the RTO is not doubled a second time. This is in contrast with the standard TCP, where an “exponential”

backoff algorithm is used. The RTO remains fixed until the route is re-established and the retransmitted packet is

acknowledged.

In [42] Dyer et al. evaluate this proposal by considering different routing protocols as well as the TCP selective and

the delayed acknowledgment options. They report that significant enhancements are achieved when using fixed-RTO

with on-demand routing protocols. Nevertheless, as stated by the authors themselves, this proposal is restricted to

wireless networks only, a serious limitation since interoperation with wired networks is clearly necessary. Also, the

supposition that two consecutive timeouts are the exclusive results of route failures need more analysis, especially

in cases of congestion.

TCP DOOR: TCP Detection of Out-of-Order and Response (DOOR) is an end-to-end approach [18]. This approach,

which does not require the cooperation of intermediate nodes, is based on out-of-order (OOO) delivery events. OOO

events are interpreted as an indication of route failure. The detection of OOO events is accomplished either by the

means of a sender-based or a receiver-based mechanism. The sender-based mechanism uses the non-decreasing

property of the ACKs sequence number to detect the OOO events. In case of duplicate ACK packets, these

ACKs will have the same sequence number, so that the sender needs additional information to detect OOO event.

This information is a one byte option added to ACKs called ACK Duplication Sequence Number (ADSN). The

ADSN is incremented and transmitted with each duplicate ACK. However, the receiver-based mechanism needs an

additional two bytes TCP option to detect OOO events, called TCP Packet Sequence Number (TPSN). The TPSN

is incremented and transmitted with each TCP packets including the retransmitted packets. If the receiver detects

an OOO event, it should notify the sender by setting a specific option bit, called OOO bit, in the ACK packet header.



17

Once the TCP sender knows about an OOO event, it takes the following two response actions: temporarily

disabling congestion control, and instant recovery during congestion avoidance. In the former action, the TCP

sender disables the congestion algorithm for a specific time period (T1). In the latter action, if the congestion

control algorithm was invoked during the past time period (T2), the TCP sender should recover immediately to the

state before the invocation of the congestion control. In fact, the authors make the time periodsT1 andT2 function

of the RTT.

In the simulation study presented in [18], different scenarios are considered by combining all mechanisms and

actions mentioned above. Their results show that the sender and receiver-based mechanisms behave similarly.

So, they recommend the use of the sender detection mechanism as it does not require notifications from the

sender to the receiver. Regarding the actions, temporarily disabling congestion control and instant recovery during

congestion avoidance, to be taken upon an OOO event detection, they have found that both of them lead to significant

improvement. In general, TCP DOOR improves TCP performance up to50%. Nevertheless, the supposition that

OOO events are the exclusive results of route failure deserves much more analysis. Actually, multipath routing

protocols such as TORA [60] may produce OOO events that are not related to route failures.

3) Comparison:

Six proposals have been presented. These proposals address the problem of TCP inability to distinguish between

losses due to route failures and network congestion. The authors of these proposals proceed with a TCP and network

cross layer solution, like TCP-F, ELFN, ATCP, and TCP-BuS, or a TCP layered solution, like Fixed RTO, and

TCP-DOOR. The four TCP and network cross layer proposals, TCP-F, ELFN, ATCP, and TCP-BuS, are based

on an explicit notification from the network layer to detect the route failures. But, they differ in how to detect

route re-establishments. TCP-F and TCP-BuS use the explicit notification from the network layer. However, ELFN

and ATCP use a probing mechanism. Comparing with the explicit notification, the probing mechanism is easy to

implement. But what is the optimal value of the probing interval? And what is the implication of this mechanism in

case high load? Especially we saw that in the case of high load, ELFN proposal performs worst than the standard

TCP. Between the four cross layer proposals, ATCP emerges as a robust proposal as it supports mechanisms to

alleviate the negative impact of high BER and packets out-of-order on TCP performance. But This proposal need

to revise some assumptions such as ECN-capable node. Table I compares the key features of the four TCP and

network cross layer proposals. The TCP layer proposals, Fixed RTO and TCP DOOR, distinguish between packet

losses induced by routes failures and congestion by employing end-to-end TCP layer approach. In Fixed RTO, this

is done by considering two consecutive timeouts as a sign of route failures. In TCP-DOOR, when the source or the

sink receives out-of-order packets, it considers that a route failure has occurred. The main advantage of these two



18

proposals is that they do not require explicit notification from routing layer, neither do they require other nodes

cooperation to detect route failures. Comparing these two proposals, TCP DOOR performs better than fixed RTO,

but at the cost of more modifications.

TCP-F ELFN ATCP TCP-BuS

High BER Not handled Not handled Handled Not handled

packet loss

Route failures (RF) RFN pkt freezes ELFN pkt freezes ICMP “destination ERDN pkt freezes

detection TCP sender state TCP sender state unreachable” freezes TCP sender state

TCP sender state

Route reconstruction RRN pkt resumes Probing mechanism Probing mechanism ERSN pkt resumes

(RR) detection) TCP to normal state TCP to normal state

Packet reordering Not handled Not handled Handled Not handled

Congestion window Old CW and Old CW and Reset for each new Old CW and

and RTO after RR RTO RTO route RTO

Reliable transmission Not handled Not handled Not handled Handled

of control messages

Evaluation Emulation no routing Simulation Experimental no routing Simulation

protocol considered protocol considered

TABLE I

COMPARISON OFTCP AND NETWORK CROSS LAYER PROPOSALS TO DISTINGUISH BETWEEN LOSSES DUE TO ROUTE FAILURES AND

CONGESTION.

B. Proposals to reduce route failures

The proposals that address the problem of frequent route failures in MANETs can be classified as follows to

three categories: TCP and network cross layer proposals, network and physical cross layer proposals, and network

layer proposals.

1) TCP and network cross layer proposal:

Split TCP: TCP connections that have large number of hops suffer from frequent route failures due to mobility.

To improve the throughput of these connections and to resolve the unfairness problem, the Split TCP scheme

was introduced to split long TCP connections into shorter localized segments [61] – see Figure 6. The interfacing

node between two localized segments is called a proxy. The routing agent decides if its node has the role of proxy

according to the inter-proxy distance parameter. The proxy intercepts TCP packets, buffers them, acknowledges their

receipt to the source (or previous proxy) by sending a local acknowledgment (LACK). Also, a proxy is responsible



19

for delivering the packets, at an appropriate rate, to the next local segment. Upon the receipt of a LACK (from

the next proxy or from the final destination), a proxy will purge the packet from its buffer. To ensure the source

to destination reliability, an ACK is sent by the destination to the source similarly to the standard TCP. In fact,

this scheme splits also the transport layer functionalities into those end-to-end reliability and congestion control.

This is done by using two transmission windows at the source which are the congestion window and the end-to-

end window. The congestion window is a sub-window of the end-to-end window. While the congestion window

changes in accordance with the rate of arrival of LACKs from the next proxy, the end-to-end window will change

in accordance with the rate of arrival of the end-to-end ACKs from the destination. At each proxy, there would be

a congestion window that would govern the rate of sending between proxies.

S DP1
P2

Lack Message from P1 to S 
Lack Message from P2 to P1 

Lack Message from D to P2 

Message flows through the

Message flows through the Message flows through the
first stage from S to P1

second stage from P1 to P2

first stage from P2 to D

Fig. 6. TCP Split

Simulation results indicate that an inter-proxy distance of between3 and5 has a good impact on both throughput

and fairness. The authors report that an improvement up to30% can be achieved in the total throughput by using

Split TCP. The drawbacks are large buffers and network overhead. Also, this proposal makes the role of proxy

nodes more complex, as for each TCP session they have to control packet delivery to succeeding proxies.

2) Network and physical cross layer proposals:

Preemptive routing in Ad hoc networks: As we report in Section II-E, in MANETs TCP may suffer from long

idle periods induced by frequent route failures. This proposal [62] addresses this problem by reducing the number

of route failures. In addition, it also reduces the route reconstruction latency. These are achieved by switching to a

new route when a link of the current route is expected to fail in the future (see below). This technique is coupled

with the on-demand routing protocol AODV and DSR. The detection mechanism of failure is power based. More

specifically, when an intermediate node along a route detects that the signal power of a packet received from its

upstream node drops below a given, called preemptive threshold, this intermediate node will detect a routing failure.

For example in Figure 7, when node4 senses that the signal power of a packet received from node5 drops below

the preemptive threshold, it will detect the routing failure event. On detecting this event, node4 will notify the



20

source of the route, node1. On receiving this notification, the source’s routing agent proactively looks up a new

route. When the new route is available, the routing agent switches to this new route. The value of the preemptive

threshold appears to be critical. Indeed, in the case of a low threshold value, there will not be sufficient time to

discover an alternative path before the route fails. Also, in the case of high value, the warning message will be

generated too early. To overcome the fluctuations of the received signal power due to channel fading and multipath

effects, that may trigger a preemptive route warning and cause unnecessary route request floods, the authors use a

repeated short message probing to verify the correctness of the warning message. For example in Figure 7, when

the signal power of the packet sent from node5 and received at node4 drops under the preemptive threshold, node

4 sends a ping message to node5. On receiving this message, node5 replies with a pong message. On receiving

the pong message, node4 checks the signal power of the pong message to verify that the link4 − 5 is going to

fail. The ping-pong handshake is repeated several times.

AODV

MAC

AODV

MAC

1 2 3 4

AODV AODV AODV Info
Phy. layer

Phy. layer
Info

MACMACMAC

Source

AODV

Destination

Ping

AODV

MACMAC

5 6 7
Pong

Fig. 7. Network and physical cross layer

Using simulations the authors show that their scheme yields a reduction of the number of route failures and

decreases the latency by30%. It should be noted that this scheme is “packet receipt event-driven” and that failures

cannot be detected if no packets are transmitted.

Signal strength based link management in Ad hoc network:This algorithm [36] is similar to the previous

one. However, in this algorithm each node keeps a record of the received signal strengths of 1-hop neighboring

nodes. Using these records, the routing protocol predicts link break event in the immediate future6; this prediction

is called Proactive Link Management. On detecting this event, the source’s routing agent is notified by a Going

Down message – see Figure 7. On receiving this message the source’s routing agent stops sending packets, and

initiates a route discovery procedure. The novelty of this proposal is the Reactive Link Management mechanism. This

mechanism increases the transmission power to re-establish a broken link. Reactive and Proactive Link Management

mechanisms can be coupled in the following way: on predicting that a link is going to be down, the node’s routing

agent notifies the source to stop sending, and this node increases its transmitting power to handle packets in transit

that use this link.

6Immediate future means after0.1sec.



21

The authors use simulations to show that their scheme yields45% improvement in TCP performance. Note that

only light load scenarios are considered.

3) Network layer proposal:

Backup path routing: This proposal [44] aims to improve the path availability of TCP connections using multipath

routing. The authors found that the original multipath routing deteriorates TCP performance. This is due to

inaccuracy in average RTT measurement and out-of-order packet delivery. Thus, they introduce a new variation

of multipath routing, called backup path routing. The backup path routing proposal maintains several paths from

source to destination, but it only uses one path at any time. When the current path breaks, it can quickly switch to

an alternative path. Using simulations, the authors observed that maintaining one primary path and one alternative

path for each destination reports the best TCP performance. For the selection criteria of paths, the authors consider

two schemes. The first scheme consists of selecting the shortest-hop path as primary and shortest-delay path as

alternative. The second scheme consists of selecting the shortest-delay path as primary and maximally disjoint path

as alternative. The alternative maximally disjoint path is the path which has the fewest overlapped intermediate nodes

with the primary path. Comparing the two selection schemes, they found that the first scheme outperforms the second

one. Because using the second scheme, routes tend to be longer in number of hops. Comparing TCP performance

over the DSR routing protocol with backup routing, the authors report an improvement in TCP throughput of up to

30% with a reduction in routing overheads. These results are based on various mobility and traffic load scenarios.

However, the authors did not evaluate the scheme where the shortest-path is selected as primary and maximal

disjoint as alternative.

4) Comparison:

Four proposals have been presented. These proposals address the problem of frequent route failures that induce

long idle time. The authors of these proposals proceed with a TCP and network cross layer solution, like Split

TCP, or a network and physical cross layer solution, like Preemptive routing, and Signal strength based link, or a

network layer solution, like Backup routing. The main cause of route failures in MANETs is node mobility. Split

TCP is based on splitting long TCP connections, in term of hops, into short segments to decrease the number

of routing failures. However, this generates more overheads. In Preemptive routing and Signal strength based link

management, the problem is addressed by predicting link failures and initiating a route reconstruction before the

current route breaks. Signal strength based link management proposal uses a more robust approach to predict failures

than Preemptive routing. Backup routing improves the TCP path availability by storing an alternative path. This

path is used when a routing failure is detected. Backup routing reports an improvement in TCP throughput of up

to 30% with a reduction in routing overheads. But, further evaluations are needed especially for the route selection



22

criteria.

C. Proposals to reduce the wireless channel contention

The proposals that address the problem of the contention on the wireless channel in SANETs can be classified

to three categories: TCP layer proposals, network layer proposals, and link layer proposals.

1) TCP layer proposals:

Dynamic delayed Ack: This approach [20] aims to reduce the contention on wireless channel, by decreasing

the number of TCP ACKs transmitted by the sink. It is a modification of the delayed ACK option (RFC 1122) that

has a fixed coefficientd = 2. In fact, d represents the number of TCP packets that the TCP sink should receive

before it acknowledges these packets. In this approach, the value ofd is not fixed and it varies dynamically with

the sequence number of the TCP packet. For this reason, the authors define three thresholdsl1, l2, and l3 such

that d = 1 for packets with sequence numberN smaller thanl1, d = 2 for packets withl1 ≤ N ≤ l2, d = 3 for

l2 ≤ N ≤ l3 andd = 4 for l3 ≤ N . In their simulations, they study the packet loss rate, throughput, and session

delay of TCP New Reno, in the case of short and persistent TCP sessions on a static multihop chain. They show

that their proposal, withl1 = 2, l2 = 5, and l3 = 9, outperforms the standard TCP as well as the delayed ACK

option for a fixed coefficientd = 2, 3, 4. They suggest that better performance could be obtained by makingd a

function of the sender’s congestion window instead of a function of the sequence number.

2) Network layer proposals:

COPAS: COntention-based PAth Selection proposal [63] addresses the TCP performance drop problem due to

the contention on the wireless channel. It implements two techniques: the first one is disjoint forward and reverse

routes, which consists of selecting disjoint routes for TCP data and TCP ACK packets. The second one is dynamic

contention-balancing, which consists of dynamically update disjoint routes. Once the contention of a route exceeds a

certain threshold, called backoff threshold, a new and less contented route is selected to replace the high contended

route. In this proposals, the contention on wireless channel is measured as a function of the number of times that a

node has backed off during each interval of time. Also at any time a route is broken, in addition to initiating a route

re-establishment procedure, COPAS redirects TCP packets using the second alternate route. Comparing COPAS

and DSR, the authors found that COPAS outperforms DSR in term of TCP throughput and routing overheads.

The improvement of TCP throughput is up to90%. However, the use of COPAS, as reported by the authors, is

limited to static networks or networks with low mobility. Because, as nodes move faster using a disjoint forward

and reverse routes increases the probability of route failures experienced by TCP connections. So, this may induce

more routing overheads and more packet losses.



23

3) Link layer proposals:

Link RED: Link Random Early Detection (RED) [21] aims to reduce the contention on the wireless channel.

This is done by monitoring the average number of retransmissions (avg) at the link layer. Whenavg number

becomes greater than a given threshold, the probability of dropping/marking is computed according to the RED

algorithm [51]. Since it marks packets, Link RED can be coupled with ECN in order to notify the TCP sender

about the congestion level [58]. However, instead of notifying the TCP sender about congestion level, the authors

increase the backoff time at the MAC layer.

Adaptive pacing: The goal of this proposal [21] is to improve spatial channel reuse. In the current IEEE 802.11

protocol, a node is constrained from contending for the channel by a random backoff period, plus a single packet

transmission time that is announced by RTS or CTS frame. However, the exposed receiver problem persists due

to the lack of coordination between nodes that are two hops away from each other. Adaptive pacing solves this

problem by increasing the backoff period by an additional packet transmission time. This proposal works together

with Link RED as follows. Adaptive pacing is enabled by Link RED. When a node finds its average number of

transmission retries to be less than a threshold, it calculates its backoff time as usual. When the average number

of retries goes beyond this threshold, adaptive pacing is enabled and the backoff period is increased by a duration

equal to the transmission time of the previous packet. Working together, Link RED and Adaptive pacing have

reported an improvement in TCP throughput as well as the fairness between multiple TCP sessions. However in

this proposal, the additional backoff time is based on the packet size. So the existence of different data packets

size in the network should be inspected.

4) Comparison:

Three proposals have been presented. These proposals address the problem of contention on wireless channel,

which is the main cause of TCP performance degradation in SANETs. The authors of proposals proceed with a

TCP layer proposal, like Dynamic delayed ACK, or with a network layer proposal, like COPAS, or with a link

layer proposals, like LRED/Adaptive pacing. Dynamic delayed ACK is a simple approach that aims to reduce the

contention on wireless channel by decreasing the number of TCP ACKs transmitted by the sink. However, COPAS

attacks this problem by using disjoint forward and reverse routes, and dynamic update of disjoint routes basing one

contention level. COPAS reports an improvement in TCP throughput up to90%. LRED and Adaptive pacing attack

the contention problem from its origin at the link layer. This is done by detecting the contention and increasing

the backoff time at the link layer before packets transmission. However, these two proposals is based on the packet

size to compute the backoff time, and this may generate problems in case of networks that supports multiple packet



24

sizes.

D. Proposals to improve TCP fairness

The proposals that address the problem of TCP unfairness in SANETs can be classified to one category link

layer proposals.

1) Link layer proposals:

Non work-conserving scheduling:The goal of this proposal [64] is to improve fairness among TCP flows crossing

wireless Ad hoc and wired networks. The authors adopt the “non work-conserving scheduling” policy for Ad hoc

networks instead of the “work-conserving scheduling”. This is done as follows. The link layer queue7 sets a timer

whenever it sends a data packet to the MAC. The queue only outputs another packet to the MAC when the timer

expires. The duration of the timer is updated according to the queue output rate value. Specifically, the duration of

the timer is a sum of three partsD1, D2, andD3. D1 is equal to the data packet length divided by the bandwidth

of the channel.D2 is a delay, the value of which is decided by the recent queue output rate.D3 is a random value

uniformly distributed between0 and D2. D3 is used to avoid synchronization problem and to reduce collisions.

The queue calculates the output rate by counting the number of bytes,C, it outputs in every fixed intervalT . To

decide on the value ofD2, the authors set three thresholdsX, Y , and Z (X < Y < Z) for C, and four delay

valuesD21, D22, D23, andD24 (D21 < D22 < D23 < D24) for D2, as shown in (1). The heuristic behind (1) is to

penalize greedy nodes with high output rate by increasing their queuing delayD2 and to favor nodes with small

output rates. By means of simulations, the authors report that their scheme greatly improves the fairness among

TCP connections at the cost of moderate total throughput degradation.





D2 = D21 for C ≤ X

D2 = D22 for X < C ≤ Y

D2 = D23 for Y < C ≤ Z

D2 = D24 for C > Z

0 ≤ D21 < D22 < D23 < D24

(1)

Neighborhood RED: This proposal [50] aims to enhance TCP fairness in MANETs. Unlike in wired networks,

the authors show that RED does not solve TCP’s unfairness in MANETs, because the congestion does not happen

in a single node, but in an entire area involving multiple nodes. The local packets queue at any single node cannot

completely reflect the network congestion state. For this reason, the authors define a new distributed queue, called

neighborhood queue. At a node, the neighborhood queue should contain all packets whose transmissions will affect

7In NS-2, Link layer queue is called InterFace queue (IFq).



25

its own transmission in addition to its packets8. Since it is difficult to get information about all these packets without

introducing significant communication overhead, which may need 2-hop information exchange, a simplified node

neighborhood queue is introduced. It aggregates the node’s local queue, and the upstream and downstream queues

of its 1-hop neighbors. Now, the RED algorithm is based on the average queue size of the neighborhood queue.

The authors use a distributed algorithm to compute the average queue size. In this algorithm, the time is slotted.

During each time slot, the idle period of the channel is measured. Using this measurement, a node estimates the

channel utilization and the average neighborhood queue size. The accuracy of the estimation is controlled by the

duration of the slots. Using simulations of SANETs, they verify the effectiveness of their proposal and the fairness

improvement of TCP.

2) Comparison:

Two proposals have been presented. These proposals address the problem of TCP unfairness SANETs. To deal with

the TCP unfairness problem, the authors of proposals proceed with a link layer proposals, like Non work-conserving

scheduling, and Neighborhood RED. In Non work-conserving scheduling proposal, this is done through penalizing

greedy nodes of high output rate, by increasing their queuing delays at the link layer. However, in Neighborhood

RED it is up to TCP to regulate its transmission rate when it senses packets drop. The RED algorithm in this

proposal is applied to a distributed queue, called neighborhood queue, that does not contain only the node local

queue but also the upstream and downstream queues of its 1-hops neighbor. Neighborhood RED is better than Non

work-conserving as it does not cause degradation in total throughput.

V. GENERAL COMPARISON AND DISCUSSION

It is difficult to compare the different proposals that aim to improve TCP’s performance in MANETs. Some of

them have been designed to solve different problems. By examining all these proposals, we identify four major

problems: the first one is “TCP is unable to distinguish between losses due to route failures and network congestion”,

the second one is “frequent route failures”, the third one is “wireless channel contention”, and the fourth one is

“TCP unfairness”. We note that the first two problems are the main causes of TCP performance degradation in

MANETs. However, the second two problems are the main causes of TCP performance degradation in SANETs.

To solve these problems, the authors of the proposals proceed with a cross layer solution or a layered solution. In

terms of complexity, cross layer solutions are more complex to implement and to design than layered solutions.

Because, the implementation of cross layer solutions requires at least modification of two OSI layers. Also, as they

break the concept of designing protocols to be independent of other layer protocols, their design requires that we

8Affect means : prevent a node from transmitting because of channel capturing, or to induce transmission failure to carrier sensing MAC

protocols.



26

consider the system in its entirety. In the following, we compare the proposals that share a common problem, and

Table II contains a detailed comparison of these proposals. The comparison is based on five features: the first one

is the solution type that can be: cross layer or layered, the second one is the degree of complexity, the third one

is the network type, the fourth one is TCP connections load and type, and the fifth one is the evaluation basis. For

the degree of complexity, we identify three dergrees: high, medium, and low. Layered solutions are considered to

be medium or low complexity, whereas cross layer solutions are considered to be medium or high complexity.

Problem Proposal Solution type Complexity Network type TCP connections Evaluation

degree load/type

TCP is unable to distinguish ELFN [16] TCP-net. cross medium random mobile one persistent simulation

between losses due to route layer no routing

failures and due congestion

ATCP [17] TCP-net. cross high random mobile one persistent experimental

layer no routing

TCP-BuS [19] TCP-net. cross high random mobile multiple persistent simulation

layer no routing

TCP-F [55] TCP-net. cross medium random mobile one persistent emulation

layer no routing

TCP-DOOR [18] TCP layer low random mobile one persistent simulation

TCP-RTO [42] TCP layer low random mobile one persistent simulation

Frequent route Split TCP [61] TCP-net. cross medium random mobile one persistent simulation

failures layer

Preemptive routing Net.-phy. cross medium random mobile no TCP load simulation

[62] layer

Signal strength Net.-phy. cross high random mobile two persistent simulation

based link [36]

Backup routing [44] Network layer low random mobile one persistent simulation

Contention on wireless Dynamic delayed TCP layer low static chain one persist./short simulation

channel ACK [20]

COPAS [63] Network layer medium static random multiple persistent simulation

LRED/Adaptive Link layer low static multiple persistent simulation

pacing [21]

TCP unfairness Non Work conserving Link layer low static chain multiple persistent simulation

[64]

Neighborhood RED Link layer low static/mobile multiple persistent simulation

[50]

TABLE II

GENERAL COMPARISON OF PROPOSALS



27

VI. CONCLUSION

We have presented the state-of-the-art of TCP over static and mobile Ad hoc networks (SANETs and MANETs).

The principal problem of TCP in this MANETs environment is clearly its inability to distinguish between losses

induced by network congestion and others types of losses. TCP assumes that losses are always due to network

congestion. But while this assumption in most cases is valid in wired networks, it is not true in MANETs. In

MANETs, there are indeed several types of losses, including losses cause by routing failures, by network partitions,

and by high bit error rates. Performing congestion control in these cases, like TCP does, yields poor performance.

In static multi-hop Ad hoc networks the principal problem of TCP is the contention on wireless channel that induces

routes failures and losses. In order to solve these problems, several proposals have been made in the litterature. We

classified these proposals as layered and cross layer proposals. In cross layer proposals, TCP and the underlying

protocols cooperate to improve Ad hoc network performance. For example, TCP and network cross layer proposals

use explicit notification to inform TCP about route failures, which requires cooperation from intermediate nodes like

in TCP-F, TCP-ELFN, ATCP, TCP-BuS. In layered proposals, one OSI layer is adapted. For example, TCP layer

proposals require only the cooperation of the sender and receiver, like in TCP-DOOR and Fixed-RTO. However,

cross layer proposals yield higher improvement than layered ones.

The frequent route failures and route re-establishments in MANET environment introduce a new challenge to

TCP congestion control algorithm, and leads us to pose the following questions: does the actual congestion control

algorithm behave efficiently in dynamic environments such as MANETs? Are the parameters values, that are used

in TCP to compute the retransmission timeout after a route re-establishment, valid in MANETs? So, as an extension

of this work we intend to answer these questions.

AKNOWLEDEGMENTS

We would like to thank Daniele Miorandi and Urtzi Ayesta for their help. This work was supported in part by

the EuroNGI Network of Excellence (NoE).

APPENDIX I: OVERVIEW OF TCP VERSIONS

TCP is a window-based acknowledgement-clocked flow control protocol. It uses additive-increase multiplicative-

decrease strategy for changing its window as a function of network conditions. Packets of a TCP connection are sent

with increasing consecutive sequence numbers. In the simplest operation of TCP, at each arrival of a packet at the

destination, an ACK is sent back to the source with the information of the next sequence number that is expected.

Thus if all packets up to packetn− 1 have reached the destination, then the last arrival will trigger an ACK with

sequence numbern. If a packetn is lost in the network and packetn + i, i = 1, 2, 3, arrives at the destination,

then each of these packets will trigger an Acknowledgement indicating that the destination is expecting packetn.

These are called dupplicated ACKs. In the absence of losses, starting from one packet or from a larger value, the



28

window is increased exponentially by one packet every non-duplicate ACK until the source estimate of network

capacity is reached. This is the Slow Start (SS) phase, and the capacity estimate is called the slow start threshold

(ssthresh). In most versions of TCP (Tahoe, Reno and New Reno) once ssthresh is reached, the source switches to

a slower increase in the window by one packet for every window’s worth of ACKs. This phase is called Congestion

Avoidance (CA) phase. The window increase is interrupted when a loss is detected. Two mechanisms are available

for the detection of losses: the expiration of a retransmission timer (timeout), or the receipt of three duplicate

ACKs (the latter is called the fast retransmit (FRXT) phase. The source then sets its estimation of the capacity

to half the current window; this action is due to the fact that when these TCP versions have been developped,

losses were indication of congestion as TCP was then deployed only over wireline networks. Tahoe [65], the first

version of TCP to implement congestion control, at this point sets the window to one packet and enter the slow

start phase to reach the new sstresh. Slow starting after every loss detection deteriorates the performance given the

low bandwidth utilization during SS. When the loss is detected via timeout a more drastic reaction is taken as a

more drastic congestion is understood to occur, since the ACK stream has stopped. In the FRXT case, ACKs still

arrive at the source, and losses are recovered without SS. This is the behavior of the newer versions of TCP (Reno,

NewReno, SACK, etc.) that call a Fast Recovery (FRCV) algorithm to retransmit the losses while maintaining

enough packets in the newtork to preserve the ACK clock. Once the losses are recovered, this algorithm ends and

normal CA is called. If FRCV fails (to recover the losses), the ACK stream stops, a timeout occurs, and the source

resorts to SS as with Tahoe. Among the TCP versions that use the FRCV, the difference is in the estimation of the

number of packets in the flight during FRCV. Reno [66] considers every duplicate ACK a signal that a packet has

left the network. The problem of Reno is that it leaves FRCV when an ACK for the first loss window is received.

This prohibits the source from detecting the other losses with FRXT. A long timeout is required to detect the other

losses. NewReno [67] has been proposed to overcome this problem. The idea is to stay in FRCV until all the losses

in the same window are recovered. Another problem of Reno and newreno is that they rely on ACKs to estimate

the number of packets in flight. ACKs can be lost on the return path, which results in an underestimation of the

number of packets that have left the network. More information is needed to estimate more precisely the number

of packets in the pipe. This information is provided by the selective ACK (SACK) [68], a TCP option containing

the three blocks of contiguous data most recently received at the destination. Finally, we mention TCP Vegas that

aims to decouple congestion detection from losses. In TCP Vegas, the RTT of the connection and the window size

are used to compute the number of packets in the network buffers. The window is decreased when this number

exceeds a certain threshold and is increased when it is below some threshold. In other words, Vegas also uses delay

as a congestion indication and then reacts to reduce its throughput.

REFERENCES

[1] “Bluetooth Special Interest Group,” Web site: http://www.bluetooth.com.

[2] “IEEE 802.11 WLAN standard,” Web site: http://standards.ieee.org/getieee802.



29

[3] “Broadband radio access networks (BRAN): High performance Local Area Network (HiperLAN) type 2,” Tech. Rep. 101 683 V1.1.1,

ETSI.

[4] “Transmission Control Protocol,” RFC 793, Sep. 1981.

[5] L. Andrew, S. Hanly, and R. Mukhtar, “CLAMP: Differentiated capacity allocation in access networks,” inProc. of IEEE Int.

Performance Computing and Communications Conf., Phoenix, AZ, USA, Apr. 2003, pp. 451–458.

[6] H. Balakrishnan, V. Padmanabhan, S. Seshan, and R. Katz, “A comparison of mechanisms for improving TCP performance over

wireless links,” IEEE Transactions on Networking, vol. 5, no. 6, pp. 756–769, Dec. 1997.

[7] H. Balakrishnan, S. Seshan, E. Amir, and R. Katz, “Improving TCP/IP performance over wireless networks,” inProc. of ACM

MOBIHOC, Berkeley, CA, USA, 1995, pp. 2–11.

[8] A. V. Bakre and B.R. Badrinath, “Implementation and performance evaluation of indirect TCP,”IEEE Transactions on Networking,

vol. 46, no. 3, pp. 260–278, Mar. 1997.

[9] K. Brown and S. Singh, “M-TCP: TCP for mobile cellular networks,”ACM SIGCOMM Computer Communication Review, vol. 27,

no. 5, pp. 19–43, Oct. 1997.

[10] H. Balakrishnan, S. Seshan, and R. Katz, “Improving reliable transport and handoff performance in cellular wireless networks,”ACM

Wireless Networks, vol. 1, no. 4, pp. 469–481, Dec. 1995.

[11] R. Durst, G. Miller, and E. Travis, “TCP extensions for space communications,” inProc. of ACM MOBICOM, Rye, NY, USA, 1996,

pp. 15–26.

[12] T. Henderson and R. Katz, “Transport protocols for Internet-compatible satellite networks,”IEEE JSAC, vol. 17, no. 2, pp. 345–359,

Feb. 1999.

[13] S. Xu and T. Saadawi, “Performance evaluation of TCP algorithms in multi-hop wireless packet networks,”Journal of Wireless

Communications and Mobile Computing, vol. 2, no. 1, pp. 85–100, 2002.

[14] C. Barakat, E. Altman, and W. Dabbous, “On TCP perfromance in heterogeneous networks: a survey,”IEEE Communications Magazine,

vol. 38, no. 1, pp. 40–46, Jan. 2000.

[15] K. Chandran, S. Raghunathan, S. Venkatesan, and R. Prakash, “A Feedback based scheme for improving TCP performance in ad hoc

wireless networks,” inConference on Distributed Computing Systems, Amsterdam, Netherlands, May 1998, pp. 472–479.

[16] G. Holland and N. Vaidya, “Analysis of TCP performance over mobile ad hoc networks,”ACM Wireless Networks, vol. 8, no. 2, pp.

275–288, Mar. 2002.

[17] J. Liu and S. Singh, “ATCP: TCP for mobile ad hoc networks,”IEEE JSAC, vol. 19, no. 7, pp. 1300–1315, Jul. 2001.

[18] F. Wang and Y. Zhang, “Improving TCP performance over mobile ad hoc networks with out-of-order detection and response,” inProc.

of ACM MOBIHOC, Lausanne, Switzerland, Jun. 2002, pp. 217–225.

[19] D. Kim, C. Toh, and Y. Choi, “TCP-BuS: Improving TCP performance in wireless ad hoc networks,”Journal of Communications and

Networks, vol. 3, no. 2, pp. 175–186, Jun. 2001.

[20] E. Altman and T. Jiḿenez, “Novel delayed ACK techniques for improving TCP performance in multihop wireless networks,” inProc.

of the Personal Wireless Communications, Venice, Italy, Sep. 2003, pp. 237–253.

[21] Z. Fu, P. Zerfos, H. Luo, S. Lu, L. Zhang, and M. Gerla, “The impact of multihop wireless channel on TCP throughput and loss’,” in

Proc. of IEEE INFOCOM, San Francisco, USA, Apr. 2003.

[22] K. Chin, J. Judge, A. Williams, and R. Kermode, “Implementation experience with MANET routing protocols,”ACM SIGCOMM

Computer Communication Review, vol. 32, no. 5, pp. 49–59, Nov. 2002.

[23] C. Perkins and T. Watson, “Highly dynamic Destination-Sequenced Distance-Vector routing (DSDV) for mobile computers,” inProc.

of ACM SIGCOMM, London, UK, 1994.

[24] C. Perkins, E. Belding-Royer, and S. Das, “Ad hoc On-Demand Distance Vector (AODV) Routing,” RFC 3561, Category: Experimental,

Jul. 2003.

[25] F. Tobagi and L. Kleinrock, “Packet switching in radio channels: Part ii - the hidden terminal problem in Carrier Sense Multiple-Access

modes and the busy-tone solution,”IEEE Transactions on Networking, vol. 23, no. 12, pp. 1417–1433, 1975.



30

[26] V. Bharghavan, A. Demers, S. Shneker, and L. Zhang, “MACAW: a media access protocol for wireless LAN’s,” inProc. of ACM

SIGCOMM, London, UK, 1994, pp. 212–225.

[27] K. Xu, M.Gerla, and S. Bae, “Effectiveness of RTS/CTS handshake in IEEE 802.11 based ad hoc networks,”Ad Hoc Networks Journal,

Elsevier, vol. 1, no. 1, pp. 107–123, Jul. 2003.

[28] “The Network Simulator NS-2,” Web site: http://www.isi.edu/nsnam/ns/index.html.

[29] “Global Mobile Information Systems Simulation Library GloMoSim,” Web site: http://pcl.cs.ucla.edu/projects/glomosim/.

[30] A. Kamerman and L. Monteban., “Wavelan ii: A high-performance wireless lan for the unlicensed band,”Bell Labs Technical Journal,

pp. 118–133, Summer 1997.

[31] V. Jacobson, “Compression TCP/IP headers for low speed serial links,” RFC 1144, Category: Proposed Standard, Feb. 1990.

[32] H. Balakrishnan and V. Padmanabhan, “How network asymmetry affects TCP,”IEEE Communications Magazine, pp. 2–9, Apr. 2001.

[33] V. Paxson and M. Allman, “Computing TCP’s retransmission timer,” RFC 2988, Category: Standard Track, Nov. 2000.

[34] H. Lundgren, E. Nordstro, and C. Tschudin, “Coping with communication gray zones in IEEE 802.11b based ad hoc networks,” in

Proc. of the ACM Workshop on Wireless Mobile Multimedia, Atlanta, GA, USA, Sep. 2002, pp. 49–55.

[35] C. Jones, K. Sivalingam, P. Agarwal, and J. Chen, “A survey of energy efficient network protocols for wireless and mobile networks,”

ACM Wireless Networks, vol. 7, no. 4, pp. 343–358, 2001.

[36] F. Klemm, S. Krishnamurthy, and S. Tripathi, “Alleviating effects of mobility on tcp performance in ad hoc networks using signal

strength based link management,” inProc. of the Personal Wireless Communications, Venice, Italy, Sep. 2003, pp. 611–624.

[37] M. Chiang, “Balancing transport and physical layers in wireless ad hoc networks: jointly optimal TCP congestion coontrol and power

control,” IEEE JSAC, vol. 23, no. 1, pp. 104–116, Jan 2005.

[38] M. Abolhasan, T. Wysocki, and E. Dutkiewicz, “A review of routing protocols for mobile ad hoc networks,”Journal of Ad Hoc

Networks, Elsivier, vol. 2, no. 1, pp. 1–22, Jan. 2004.

[39] I. Chlamtac, M. Conti, and J. Liu, “Mobile ad hoc networking: imperatives and challenges,”Ad Hoc Networks Journal, Elsevier, vol.

1, no. 1, pp. 13–64, Jul. 2003.

[40] D. Johnson, D. Maltz, and Y. Hu, “The Dynamic Source Routing Protocol for Mobile Ad Hoc Networks (DSR),” Internet draft, Apr.

2003.

[41] V. Anantharaman, S.-J. Park, K. Sundaresan, and R. Sivakumar, “TCP performance over mobile ad hoc networks: A quantitative study,”

Journal of Wireless Communications and Mobile Computing, vol. 4, no. 2, pp. 203–222, Mar. 2004.

[42] T. Dyer and R. Boppana, “A comparison of TCP performance over three routing protocols for mobile ad hoc networks,” inProc. of

ACM MOBIHOC, Long Beach, CA, USA, 2001, pp. 56–66.

[43] R. Boppana and S. Konduru, “An adaptive distance vector routing algorithm for mobile, ad hoc networks,” inProc. of IEEE INFOCOM,

Anchorage, Alaska, USA, Apr. 2001.

[44] H. Lim, K. Xu, and M. Gerla, “TCP performance over multipath routing in mobile ad hoc networks,” inProc. of IEEE ICC, Anchorage,

Alaska, May 2003.

[45] S. Lu and M. Gerla, “Split multipath routing with maximally disjoint paths in ad hoc networks,” inProc. of IEEE ICC, Helsinki,

Finland, Jun. 2001.

[46] S. Xu and T. Saadawi, “Does the IEEE 802.11 MAC protocol work well in multihop wireless ad hoc networks?,”IEEE Communications

Magazine, vol. 39, no. 6, pp. 130–137, Jun. 2001.

[47] M. Gerla, K. Tang, and R. Bagrodia, “TCP performance in wireless multi-hop networks,” inProc. of the IEEE WMCSA, New Orleans,

LA, USA, 1999.

[48] K. Tang and M. Gerla, “Fair sharing of MAC under TCP in wireless Ad Hoc networks,” inProc. of IEEE Multiclass Mobility and

Teletraffic for Wireless Communications Workshop, Venice, Italy, Oct. 1999.

[49] K. Xu, S. Bae, S. Lee, and M. Gerla, “TCP behavior across multihop wireless networks and the wired internet,” inProc. of the ACM

Workshop on Wireless Mobile Multimedia, Atlanta, GA, USA, Sep. 2002, pp. 41–48.



31

[50] K. Xu, M. Gerla, L. Qi, and Y. Shu, “Enhancing TCP fairness in ad hoc wireless networks using neighborhood red,” inProc. of ACM

MOBICOM, San Diego, CA, USA, Sep. 2003, pp. 16–28.

[51] S. Floyd and V. Jacobson, “Random early detection gateways for congestion avoidance,”IEEE Transactions on Networking, vol. 1,

no. 4, pp. 397–413, Aug. 1993.

[52] G. Anastasi, M. Conti, and E. Gregori, “IEEE 802.11 ad hoc networks: performance measurements,” inProc. of the Workshop on

Mobile and Wireless Network (MWM 2003) in conjuction with ICDCS 2003, May 2003.

[53] K. Chen, Y. Xue, and K. Nahrstedt, “On setting TCP’s congestion window limit in mobile Ad Hoc networks,” inProc. of IEEE ICC,

Anchorage, Alaska, USA, May 2003.

[54] V. Kawadia and P. Kumar, “A cautionary perspective on cross layer design,”IEEE Wireless Communication Magazine, vol. 12, no. 1,

pp. 3–11, Feb. 2005.

[55] K. Chandran, S. Raghunathan, S. Venkatesan, and R. Prakash, “A feedback based scheme for improving TCP performance in Ad-Hoc

wireless networks,” inProc. of the International Conference on Distributed Computing Systems (ICDCS’98), Amsterdam, Netherlands,

May 1998.

[56] T. Clausen and P. Jacquet, “Optimized Link State Routing Protocol (OLSR),” RFC 3626, Category: Experimental, Oct. 2003.

[57] J. Monks, P. Sinha, and V. Bharghavan, “Limitations of TCP-ELFN for ad hoc networks,” inProc. of Mobile and Multimedia

Communications, Tokyo, Japan, Oct. 2000.

[58] K. Ramakrishnan, S. Floyd, and D. Black, “The addition of explicit congestion notification (ECN) to IP,” RFC 3168, Category:

Standards Track, Sep. 2001.

[59] C. Toh, “Associativity-based routing for ad hoc mobile networks,”Journal of Wireless Personal Communications, vol. 4, no. 2, pp.

103–139, Mar. 1997.

[60] C. Perkins,AD HOC Networking, Adison-Wesly, Upper Saddle River, NJ, USA, 2001.

[61] S. Kopparty, S. Krishnamurthy, M. Faloutous, and S. Tripathi, “Split TCP for mobile ad hoc networks,” inProc. of IEEE GLOBECOM,

Taipei, Taiwan, Nov. 2002.

[62] T. Goff, N. Abu-Ghazaleh, D. Phatak, and R. Kahvecioglu, “Preemptive routing in ad hoc networks,” inProc. of ACM MOBICOM,

Rome, Italy, 2001, pp. 43–52.

[63] C. Cordeiro, S. Das, and D. Agrawal, “COPAS: Dynamic contention-balancing to enhance the performance of tcp over multi-hop

wireless networks,” inProc. of IC3N, Miami, USA, Oct. 2003, pp. 382–387.

[64] L. Yang, W. Seah, and Q. Yin, “Improving fairness among TCP flows crossing wireless ad hoc and wired networks,” inProc. of ACM

MOBIHOC, Annapolis, Maryland, USA, Jun. 2003, pp. 57–63.

[65] V. Jacobson, “Congestion avoidance and control,” inProc. of ACM SIGCOMM, Vancouver, Canada, Aug. 1998.

[66] K. Fall and S. Floyd, “Simulation based comparisons of Tahoe, Reno, and Sack TCP,” inComputer Communications reveiw, Jul.

1996.

[67] J. Heo, “Improving the start up behavior of a congestion control scheme for tcp,” inProc. of ACM SIGCOMM, CA, USA, Aug. 1996.

[68] M. Allman, D. Glover, and L. Sanchez, “Enhancing TCP over satellite channels using standard mechanisms,” RFC 2488, Jan. 1999.



32

ABBREVIATIONS AND ACRONYMS

ABR Associativity Based Routing protocol

ACK Acknowledgment

ADSN Acknowledgment Duplication Sequence Number

ADV Adaptive Distance Vector

AODV Ad hoc On-demand Distance Vector

ARF Automatic Rate Fallback

ARQ Automatic Repeat Request

ATCP Ad hoc TCP Proposal

BWD Bandwidth Delay Product

CDMA Code Division Multiple Access

CTS Clear To Send

CW TCP Congestion Window

CWL Maximum TCP Transmission Window

DCF Distributed Coordination Function

DSDV Dynamic destination Sequenced Distance Vector

DSR Dynamic Source Routing

ECN Explicit Congestion Notification

ELFN Explicit Link Failure Notification

ERDN Explicit Routing Disconnection Notification

ERSN Explicit Routing Successful Notification

FEC Forward Error Correction

ICMP Internet Control Message Protocol

IFq Link Layer Interface Queue

IP Internet Protocol

JOCP Jointly Optimal Congestion Control and Power Control

LACK Local Acknowledgment

LAN Local Area Network

LQ Localized Query

Link RED Link Layer Random Early Detection

MAC Medium Access Control

MANETs Mobile Ad Hoc Networks

OLSR Optimized Link State Routing

OOO Out-Of-Order Event

PN Pivoting Node



33

RED Random Early Detection

RRC Route Reconstruction

RTHC Round Trip Hop Count

RTO Retransmission TimeOut

RTS Ready To Send

RTT Round Trip Time

SANETs Static Ad hoc Netorks

SNR Signal to Noise Ratio

TCP Transmission Control Protocol

TCP-BuS TCP Buffering Capability and Sequence Information

TCP-DOOR TCP Detection Of Out-Of-Order and Response

TCP-F TCP Feedback Proposal

TORA Temporally Ordered Routing Algorithm

TPSN TCP Packet Sequence Number

WLAN Wireless Local Area Network


