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Abstract

We address the problem of allocating the capacity of a machine among jobs of different
classes when the machine processing rate varies stochastically over time. We establish that
the policy that always allocates the maximum available processing rate to the class having the
maximum weight minimizes, pathwise, a weighted sum of the remaining service requirements of
the different classes, at any point in time. This result is based on the application of elementary
forward induction arguments and holds over the class of all policies (e.g., including randomized
policies). As an easy corollary of this result we generalize a recent work by Hirayama and Kijima
[5] on the optimality of the uc-rule in a multiclass G/M/1 queueing system in which the server
processing rate varies stochastically with time. To the best of our knowledge, our proof is the
first one in this context that only uses direct pathwise arguments.
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1 Mathematical Formulation

There are K classes of jobs to be processed on a machine whose processing rate varies stochastically
over time. Each arriving job carries with it a random service requirement and leaves the machine
as soon as it completes service.

At point in time a controller has to decide which fraction of the machine processing rate should
be allocated to each class of job. The way the processing rate allocated to a class is split among
the jobs of this class is irrelevant here because of the cost functions to be considered. Therefore,
we shall assume without loss of generality that the oldest job of each class present in the system
receives all of the processing rate allocated to the class it belongs to (i.e., first-in-first out service
discipline; see Remark 3.2).

The objective is to find an allocation policy of the processing rate that minimizes some weighted
cost function, namely, a weighted sum of the remaining service requirements and a weighted sum
of the expected number of jobs in the different classes.

We now give a precise description of the mathematical model. Consider the spaces Q) = Q2 =
[0,+0c]N, & = 1,2,...,K, where N is the set of all nonnegative integers. Let (A, )52, and
(Sp.k)52 1 be the coordinate processes of 2, and Q% respectively, namely A, x((zn)n) = Snk((Tn)n) =
z, for all (z,), € [0,+c0)N, k=1,2,... K. A, and S, j will represent the arrival time and ser-
vice requirement, respectively, of the nth job of class k. We also introduce 3 to be the set of all
measurable mappings from [0, +00) into [0,1]. Let R := {R;,t > 0} be the coordinate process of

Q3 defined by Ri(f) = f(t) € [0,1] for all f € Q3, ¢t > 0. In the following, R; will represent the
processing rate available at time t.

We assume that Q' := xX_ Qi i =1,2, is endowed with the o-algebra A’, i = 1,2, of its Borel sets
and that Q3 is endowed with the smallest o-algebra A® := o(R;, t > 0) with respect to which every
R, is measurable (see [10, Ch. III, Sec. 3]).

Let P be any probability measure on the measurable space (2, F) := (x3_,; Q% ®3_,.A") such that

(1) 0 < Al,lc < Ag’k <. < An,k < An+1,k <---a.s. for k = 1,2,...,K’
(2) limy—oo Ap g = +00 as. for k=1,2,..., K
(3) Spk <+ooas. fork=1,2,....,K,n=12,....
Let B be the Borel g-algebra of [0, +00). A Resource Allocation Policy (RAP) is a B®F -measurable

mapping 7 : [0, +00) x Q — [0, 1]¥ with 7(¢,w) := (71(t,w), ..., 7Tk (t,w)), such that YK  mp(¢,.) <
1 for every ¢t > 0.

For every k =1,2,..., K, m(t,w) € [0,1] will represent the fraction of processing rate allocated to

the oldest job of class k (if any) at time ¢ on the path w. So, if w = (w1, ws,w3), w; € QF, i =1,2,3,



then [ mg(u,w)ws(u)du will give the total processing rate allocated to jobs a class k in the interval

of time (s,t) on the path w under policy .
We shall denote by II the set of all RAP’s.

It is worth observing from the definition of a RAP that a new allocation of the machine processing
rate may be made at any time. For instance, the process 7 defined by 7 (t,w) = |sin(t g(w))|/K
for k = 1,2,..., K, where g is a F-measurable mapping from Q into (—o0,4+00), and where the
allocation of the machine processing rate changes continuously over the time, belongs to II. Also
observe that at any point in time, a RAP can use information regarding future arrivals, service
times of future jobs as well as service times of jobs presently in the system.

We shall assume without loss of generality that the machine is empty at time ¢t = 0~. Then, any RAP
7 defines the B @ F-measurable processes Q™ = (Q7,...,Q%) € N¥ and V™ := (V[,...,VE) €
[0, +00]%, where Q7 (¢,w) and V;7(t,w) represent the number of jobs of class k = 1,2,..., K at time
t and the total remaining service requirement of jobs of class k at time ¢, respectively, on the path
w. We shall assume that the (piecewise continuous) sample-paths of Qf and V", k = 1,2,..., K,

are right-continuous. The construction of both processes Q™ and V™ is a standard exercise that is
left to the reader.

In Section 2 we consider a weighted sum of the remaining service requirements of the different
classes. We establish that the RAP that always gives the maximum available processing rate
to the class with the highest weight minimizes pathwise the cost function & ; 7y V7 (¢) when

ry > 19 > -+ > 1K > 0. The proof relies on elementary forward induction arguments.

In Section 3 we derive a new proof of the optimality of the celebrated pc-rule (see for instance [1], |2],
[3], [4], [5], [6]) for G/M/1 queueing systems (i.e., when job service requirements are exponentially
distributed) with randomly varying processing rates as an easy corollary of the result in Section 2.
More precisely, we show that the cost function Y5, ¢x E[QF (t)] where ¢1, ca, . . ., cx are nonnegative
constants is minimized by the RAP that always allocates the maximum available processing rate
to the class with the highest value of ugcr where 1/uy is the expected service requirement for jobs
of class k. The minimization is over the set I' C II of policies that do not know present and future
service requirements (see Section 3). This generalizes a recent result by Hirayama and Kijima [5]
(in [5, Theorem 5| only nonidling policies are considered and R; = 0 or 1; note, however, that

non-exponential service requirement distributions are considered in [5]).

To the best of the authors’ knowledge this is the first time that the optimality of the uc-rule is
established via direct pathwise arguments as opposed to all previous proofs that are based either
on interchange arguments [1], [2], [5], [8], [9], [11], dynamic programming arguments [1], [4] or on

polymatroid theory [12].

We conclude this paper (Section 4) by extending the above mathematical model to randomized
policies. We shall observe that the policies found optimal in Sections 2 and 3 yet remain optimal
over the set II extended to randomized policies.



2 Optimizing a Weighted Sum of the Remaining Processing Re-
quirements

In this section we consider the cost function Sk ; 74 V7 (t) where the weights ()i, satisfy r1 >
r9 > --- > rg > 0. Denote by v the policy that gives at any time the maximum available processing
rate to the class with the highest weight. In other words, if ng is the number of jobs of class &
at a reallocation time then all of the available processing rate is allocated to class j = min{k =
1,2,..., K, ng > 0}. The proof that v belongs to II is left to the reader.

The main result of this section is the following:

Proposition 2.1
K k
Z eV, (1) < Z e Vi (t) a.s. (2.1)
k=1 k=1

forallt > 0 and 7 € II.

Proposition 2.1 follows from the following two lemmas:

Lemma 2.1 Let (ay,...,ax) and (b1, ..., bx) be [0,00) -valued vectors such that X% | a; < 3% | b;
fork=1,2,..., K. Then,

K K
Z Tk ap < Z Tk bg- (2.2)
k=1 i=1
Proof. With rx,1 = 0 one has
K K k
Z Tk G = Z(Tk — Tht1) Zai
k=1 k=1 =1
from which the result follows.
| ]
Lemma 2.2
k k
V<Y V) as. (23)
=1 =1

fork=1,2,..., K, t>0 and for all 7 € 1L

Proof. Let m € II be an arbitrary RAP. Let (¢,)22,, 0 < t; < t3 < --- be the sequence resulting

n=1»

from the superposition of the K arrival processes (A, i )n i, of the K departure processes in the



system governed by policy -, and of the K departure processes in the system governed by policy 7
(simultaneous events are allowed). Observe that lim, .. ¢, = +00 a.s. thanks to condition (2) in
Section 1.

Fix w in Q. The proof is by induction on the times of events.
Basis step. Because the machine is empty at time ¢ = 07, (2.3) trivially holds for 0 < ¢ < ¢;.

Induction step. Assume that (2.3) holds for 0 < ¢ < ¢, and let us show that it is still true for
tn <t <tn41. There are two steps.

Step 1: t, <t < tpt1.
If YK, V(t,) = 0 then (2.3) clearly holds for t, < t < t,;1.
Consider the case that Y%, V(t,) > 0 and let [ = min{i = 1,2,..., K : V/(t,) > 0}. By the

definition of v and of the sequence (¢,,)5>; we have

V@), V() = (o,...,o,vﬂ(tn) _ /tt R, ds,vgl(tn),...,v;(tno . (2.4)

For k =1,2,...,01 —1, it is seen from (2.4) that

On the other hand, we have for k =1,1+1,..., K, cf. (2.4),

k k

t k t k
Z V;'fy(t) = Z V;y(tn) _/ Rs ds < Z ‘/;ﬂ-(tn) _/ RS ds < Z V;_ﬂ’(t)

i=1 i=
where the first inequality follows from the induction hypothesis.
Step 2: t =tpy1.

Clearly, for 6 =y and 6 =«
Wé(tn'f'l) = ‘/jlé(t;—kl) + Z Sl(Z) 1{Al,i:tn+1}
=1

fori =1,2,..., K. Here 14 stands for the indicator function of any event A € F. Inequality (2.3)
at time ¢,,41 then follows from Step 1.



3 Optimizing a Weighted Sum of the Expected Number of Jobs

In this section we address the minimization of the cost function Y0 ; ¢ E [QF(t)] where c;’s are

arbitrary nonnegative constants.

We shall restrict the analysis to policies in II that do not know present and future service require-
ments. More precisely, we now consider the set of policies I' C II such that for all ¢ > 0 the mapping

(5,w) — m(s,w) from [0,¢] x Q into [0, 1]¥ is B([0,t]) ® F(t)-measurable, where B([0,¢]) denotes the
Borel o-algebra on [0,t] and F(t) := A' @ A* ® 0 ((QF(s),s € [0,t]),k =1,2,...,K).

Observe that the policy 7 introduced in Section 2 belongs to I'. We assume that the sequences of
service requirements (Sp i)p=1, K = 1,2,..., K, are mutually independent i.i.d. sequences of r.v.’s
such that P(S,r < ) = 1 —exp(—pux ) (exponential service requirements), further independent of
(Apk)nk and (R(t), t > 0).

Lemma 3.1 For any policy m € T
EQr(t)] = e E [V (1)) (3.1)

fork=1,2,...,K,t>0.

Proof. Fix k € {1,2,...,K},t >0 and 7 € I". Clearly,

Qr (1)
Ve = Y o) (32)

where U;-:k(t) is the remaining processing requirement of the jth oldest customer of class k£ in the

system at time ¢. Because of the memoryless assumption on the service requirements and because 7
does not know present and future service requirements it is seen that E[o7 ,(t) | QF(t) =n] =1/

foralln=1,2,..., 7 =1,2,...,n, which yields (3.1) from (3.2). 1

Combining Proposition 2.1 (with 7 = pgck, k =1,2,..., K) and Lemma 3.1 yields the following

Proposition 3.1 Assume that puic1 > pace > --- > pxcg > 0. Then, the RAP that allocates, at
any time, the mazimum available processing rate to the nonempty class with the highest uycy (the

so-called puc-rule) minimizes the cost function Y0, ¢, E [QF(t)] over the policies in T, for all t > 0.

Proposition 3.1 says that the pc-rule is optimal out of the policies that may know future arrival
times and future processing rates but not present and future service requirements in a multiclass
G/M/1 queueing system with stochastic time-varying processing rate.



Remark 3.1 The discrete-time version of the problem (see [1] and [2]) can be addressed using the
approach developed in this section.

Remark 3.2 Proposition 2.1 holds for any service discipline within classes. The same is true for
Lemma 3.1 provided that the rule that determines which customer(s) should get served within the
class selected by the RAP does not depend on present and future service requirements.

4 Extension of the Mathematical Setting to Randomized Policies

Although the set of policies II that has been considered so far is fairly large, it however does not
allow one to make randomized allocations (hereafter referred to as randomized decisions) of the
machine processing rate. The aim of this section is to extend the mathematical setting introduced
in Section 1 so that randomized decisions may be generated.

We shall first introduce the extended setting. Then, we shall explain in what sense randomized
decisions may be made within this setting.

Let Q% be the set of all measurable mappings from [0, +00) — [0, 1]% and let £ := (& := (&},...,&5), t >
0) be the coordinate process of Q% defined by &F(f) = fi(t) for k = 1,2,..., K, where f(t) :=
(f1(t), fa(t), ..., fx(t)) € [0,1]K. Let A* := o(&, t > 0) be the smallest o-algebra with respect

to which every ¢; is measurable. Define F(t) := F @ (&, 0 < s < t) where F was introduced in
Section 1.

Let P be any probability measure on the measurable space (Q, F) := (Q x Q* F ® A?) such that

conditions (1)-(3) in Section 1 along with the following conditions:

(4) for any 0 < t1 < tg < -+ < tp, n = 1,2,.., (gé,i = 1,2,...,n)K | is a collection of

independent r.v.’s uniformly distritued on (0, 1)

(5) ¢ is independent of (Ay k)n ks (Snk)nk and R.

We define a Randomized RAP (R-RAP) as a mapping 7 : [0, +00) x Q@ — [0,1]¥ such that for all
t > 0 the mapping (s,w) — w(s,w) from [0,¢] x Q into [0,1]¥ is B([0,t]) ® F(t)-measurable, and
such that YK | m(t,-) < 1 for all ¢ > 0.

Let us now comment on what we mean by randomized decisions. Let F4(t,z1,...,2x) be the
conditional probability distribution function (c.p.d.f.) that the processing rate allocated to classes
1,..., K at time t is less than or equal to x1,..., Tk, respectively, given the event (history) A €
F(t™) = F®o0(&, 0 < s < t). We shall assume that Fy(t,z1,...,2x) =1 when YK, 2, > 1 so
as to reflect the constraint that "5 | mp(t,+) < 1.



From F4(t,-) we may determine the c.p.d.f. G4z, . 2. ,(t,z) that the processing rate allocated to
class k at time ? is less than or equal to = given that the processing rates allocated to classes 1,...,k—
1 at time ¢ are less than or equal to &1, ..., Tx_1, respectively, and given the event A € F(t~). Then,

thanks to conditions (4) and (5) above it is easily seen that the r.v.’s (7 (¢))K_, recursively defined by

Te(t) = G;}m(t)’___ﬂ_l(t)(t,Ef)) with G,Z,lml,...,mk,l(t’y) = inf {z >0:Gapy,. 2, (t,x) > y} have
p.df. F4(t,-) on the event A € F(¢t~). (This construction is known as the inversion transform

method; cf. [13].)

In other words, we have shown that it is always possible to choose the process 7 such that decisions
may be generated according to fixed p.d.f.’s.

If we now define I to be the set of all R-RAP’s it is seen that the results in Sections 2 and 3 still
hold with II replaced by II. In particular (see Section 3), this shows that the uc-rule minimizes
the cost function F [Zle Ck QZ(t)] over the policies in IT that do not know present and future

processing requirements.
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