
1

Performance Analysis of a Client-Side Caching/Prefetching System for
Web Traffic

Abdullah Balamash and Marwan Krunz
Department of Electrical & Computer Engineering

University of Arizona
Tucson, AZ 85721

{balamash,krunz}@ece.arizona.edu

Philippe Nain
INRIA

06902 Sophia Antipolis, France
nain@sophia.inria.fr

Abstract

Network congestion remains one of the main barriers to the continuing success of the Internet. For Web users,
congestion manifests itself in unacceptably long response times. One possible remedy to the latency problem is
to use caching at the client, at the proxy server, or within the Internet. However, Web documents are becoming
increasingly dynamic (i.e., have short lifetimes), which limits the potential benefit of caching. The performance of a
Web caching system can be dramatically increased by integrating document prefetching (a.k.a. “proactive caching”)
into its design. Although prefetching reduces the response time of a requested document, it also increases the network
load, as some documents will be unnecessarily prefetched (due to the imprecision in the prediction algorithm). In
this study, we analyze the confluence of the two effects through a tractable mathematical model that enables us
to establish the conditions under which prefetching reduces theaverageresponse time of a requested document.
The model accommodates both passive client and proxy caching along with prefetching. Our analysis is used to
dynamically compute the “optimal” number of documents to prefetch in the subsequent client’s idle (think) period.
In general, this optimal number is determined through a simple numerical procedure. Closed-form expressions for
this optimal number are obtained for special yet important cases. We discuss how our analytical results can be used
to optimally adapt the parameters of an actual prefetching system. Simulations are used to validate our analysis
and study the interactions among various system parameters.

keywords — Web modeling, caching, proxy, prefetching, multi-fractal traffic.

I. I NTRODUCTION

A. Motivation and Related Work

Web users can experience response times in the order of several seconds. Such response times are

often unacceptable, causing some users to request the delayed documents again. This, in turn, aggravates

This work was supported by the National Science Foundation through grant ANI-0095626. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science
Foundation.

2

the situation and further increases the load and the perceived latency. Caching is considered an effective

approach for reducing the response time by storing copies of popular Web documents in a local cache,

a proxy server cache close to the end user, or even within the Internet. However, the benefit of caching

diminishes as Web documents become more dynamic [21]. A cached document may be stale at the time

of its request, given that most Web caching systems in use today arepassive(i.e., documents are fetched

or validated only when requested).

Prefetching (or proactive caching) aims at overcoming the limitations of passive caching by proactively

fetching documents in anticipation of subsequent demand requests1. Several studies have demonstrated

the effectiveness of prefetching in addressing the limitations of passive caching (e.g., [14], [17], [22],

[23], [27], [31], [32], [35], [42], [46], [49]). Prefetched documents may include hyperlinked documents

that have not been requested yet as well as dynamic objects [37], [42]. Stale cached documents may

also be updated through prefetching. In principle, a prefetching scheme requires predicting the documents

that are most likely to be accessed in the near future and determining how many documents to prefetch.

Most research on Web prefetching focused on the prediction aspect. In many of these studies (e.g.,

[14], [35]), a fixed-threshold-based approachis used, whereby a set of candidate files and their access

probabilities are first determined. Among these candidate files, those whose access probabilities exceed a

certain prefetching threshold are prefetched. Other prefetching schemes involve prefetching a fixed number

of popular documents [32]. Teng et. al [43] proposed the Integration of Web Caching and Prefetching

(IWCP) cache replacement policy, which considers both demand requests and prefetched documents for

caching based on a normalized profit function. The work in [30] focuses on prefetching pages of query

results of search engines. In [47], the authors proposed three prefetching algorithms to be implemented

at the proxy server: (1) thehit-rate-greedy algorithm, which greedily prefetches files so as to optimize

the hit rate; (2) thebandwidth-greedy algorithm, which optimizes bandwidth consumption; and (3) the

H/B-greedy algorithm, which optimizes the ratio between the hit rate and bandwidth consumption. The

negative impact of prefetching on the average access time was not considered.

1The termdemand requestis used throughput the paper to refer to a user’s request for a document that needs to be displayed right away.

3

Most of the above works rely on prediction algorithms that compute the likelihood of accessing a given

file. Such computation can be done by employing Markovian models [20] [35] [41][36]. Other works rely

on data mining for prediction of popular documents [38] [48] [29] [34].

Numerous tools and products that support Web prefetching have been developed [1]–[4], [6], [7], [9],

[10]. Wcol [3] prefetches embedded hyperlinks and images, with a configurable maximum number of

prefetched objects. PeakJet2000 [10] is similar to Wcol with the difference that it prefetches objects only

if the client has accessed the object before. NetAccelerator [9] works as PeakJet2000, but does not use a

separate cache for prefetching as in PeakJet2000. Google’s Web accelerator [4] collects user statistics, and

based on these statistics it decides on what links to prefetch. It also can take a prefetching action based

on the user’s mouse movements. Web browsers based on Mozilla Version 1.2 and higher also support

link prefetching [1]. These include Firefox [6], FasterFox [2], and Netscape 7.01+ [7]. In these browsers,

Web developers need to include html link tags or html meta-tags that give hints on what to prefetch.

In terms of protocol support for prefetching, Davison et al. [19] proposed a prefetching scheme that uses

a connectionless protocol. They assumed that prefetched data are carried by low-priority datagrams that

are treated differently at intermediate routers. Although such prioritization is possible in both IPv6 and

IPv4, it is not yet widely deployed. Kokku et al. [26] proposed the use of the TCP-Nice congestion control

protocol [45] for low-priority transfers to reduce network interference. They used an end-to-end monitor

to measure the server’s spare capacity. The reported results show that careful prefetching is beneficial, but

the scheme seems to be conservative because it uses an additive increase (increase by 1), multiplicative

decrease policy to decide on the amount of data to prefetch. Crovella et. al [17] showed that a rate-control

strategy for prefetching can help reduce traffic burstiness and queuing delays.

Most previous prefetching designs relied on astaticapproach for determining the documents to prefetch.

More specifically, such designs do not consider the state of the network (e.g., traffic load) in deciding

how many documents to prefetch. For example, in threshold-based schemes,all documents whose access

probabilities are greater than the prefetching threshold are prefetched. As shown in this paper, such a

strategy may actually increase the average latency of a document.

4

B. Contributions and Paper Organization

In this paper, we advocate adynamicprefetching approach, in which the prefetching threshold and the

number of documents to prefetch are dynamically optimized (on a per idle/active period) so as to minimize

the averageresponse time for a demand requested document. Our analytical framework accounts for the

impact of prefetching on the traffic load, and hence on network delays. It also incorporates the effects of

client and proxy caching. The objective function of our optimization ensures that prefetching is performed

only when it leads to a reduction in the average response time (compared with no prefetching).

Dynamic threshold-based prefetching was also considered in [24], [44] under a similar setup to the

one assumed in this paper, but with only a single level of caching (browser cache). In our work, we also

consider proxy caching, which is becoming commonplace in today’s Internet access. Furthermore, in [24],

[44], it was implicitly assumed that clients have high-bandwidth connections relative to the capacity of the

shared access link (C). Consequently, the authors concluded that it is beneficial to prefetchall documents

whose access probabilities exceed a given, network-state-dependent threshold. In our work, we consider

a more generic model than [24], [44], with no assumptions on the predictor or caching policies (in [44],

the authors assumed an LRU caching policy). In contrast to [24], [44], our model accommodates various

connection speeds, including dialup connections in which the client-proxy link rate can be lower thanC.

Using this model, we find that it isnot always good to prefetch all documents with access probabilities

greater than some threshold value, irrespective of what this value is. More specifically, there exists an

“optimal” number (N∗
p) of documents to prefetch in a given OFF period and for a given client. We provide

a simple numerical procedure for determiningN∗
p dynamically. For special cases, we expressN∗

p is closed-

form as a function of various system parameters (access speed, average document size, cache hit rate,

etc.). We discuss how to integrate our optimization results into the design of a real prefetching protocol.

Extensive simulations of such an optimization-based protocol are conducted. From these simulations, we

observe that due to the variability of file sizes, the file hit ratio of the combined prefetching/caching

system is not a good measure of the likelihood of finding an arbitrary file in the cache. A better measure

is found in thebyte hit ratio. Contrary to common belief, we observe that prefetching never degrades the

5

effectiveness of passive caching, so both can beneficially coexist in the same system.

The rest of the paper is organized as follows. In Section II, we present the network access model and

derive an expression for the prefetching gain as a function of the system parameters. In Section III, we

optimize the prefetching gain and determine the optimal number of prefetched documents that minimizes

the average response time of a demand request. We use our analysis to study the effect of caching on the

prefetching gain. In Section IV, we discuss how our analytical findings can be integrated into the design

of a practical prefetching protocol. Simulations results are reported in Section V, followed by conclusions

in Section VI.

II. M ODELING FRAMEWORK

A. System Architecture

As shown in Figure 1, we considern homogeneousWeb clients who are connected to a proxy server

through dedicated lines (i.e., dial-up modems, cable, DSL, etc.), each of capacityr bits per second2.

The proxy server is connected to the Internet via an access link of capacityC bps. A client is assumed

to run one browsing session at a time. The case of multiple sessions will be treated in a future work.

Each client maintains a local cache that implements an arbitrary cache replacement policy. Lethc be the

file hit ratio of the cache. A very small portion of the client cache is reserved for prefetching, and is

called theprefetching cache. The remaining portion is called theregular cache. It was reported in several

studies (e.g., [11], [15], [16], [18]) that the hit ratio is proportional to the logarithm of the cache size.

Hence, reserving a small portion of the cache for prefetching should have a negligible effect on the hit

ratio of the regular cache, making this hit ratio almost independent of prefetching. The regular cache

stores demand-requested documents, whereas the prefetching cache stores prefetched documents. When

a document that happens to be in the prefetching cache is demand-requested, it is moved to the regular

cache. Accordingly, a document cannot be in both caches at the same time. Prefetched documents are

brought to the client from either the proxy server (if available) or are retrieved from the original Web

server. The proxy server maintains a cache for demand-requested documents, which is parameterized by

2In Appendix A, we show how our model can be extended to clients with heterogeneous characteristics.

6

its hit ratio hproxy. We assume thathproxy is independent of prefetching (the proxy server does not cache

any prefetched files). We verify this point later in the simulations. Each client alternates between active

(ON) periods, during which the client demand-requests documents, and idle (OFF) periods, during which

the retrieved information is read by the user (see Figure 2). An ON period starts with the retrieval of an

html file (themain document), which is usually followed by the retrieval of its inline objects.

�
�
�
�

�
�
�

Internet

Proxy server

Client

Proxy cache

Shared
C bits/sec

r bis/sec

r bits/sec

r bits/sec

Web server

Prefetcher

Predictor

access
link

Client

Regular cache

Prefetching cache

�
�
�
�

�
�
�

�
�
�

�
�
�

Fig. 1. Components of the prefetching system.

ON period

Prefetching period

OFF (think period)

Prediction algorithm starts

Main/proxy server hints

Inline objects

Main document

time

Fig. 2. Client behavior.

Each client runs a prediction algorithm that predicts future requests using the history of the client’s

requests along with hints from the proxy and original servers. The incorporation of such hints in the HTTP

protocol is often done through the addition of new headers. These headers can have several directives

that can be used by servers and clients to agree on the level of cooperation and to exchange information

[22]. For example, theHTTP link header, specified in RFC 2068 [5], provides the means for describing a

relationship between two resources (e.g., the requested file and other files). Other techniques for exchanging

information includeprefetching agents, which communicate with servers via separate HTTP requests for

files that contain statistical information [32].

Typically, the outcome of the prediction algorithm becomes available right after the receipt of the main

document. We assume a generic prediction model, where the predictor computes a set ofk candidate files

7

D1, D2, . . . , Dk, and the probabilities of accessing them in the next user’s active period (P1, P2, . . . , Pk).

For example, one can adopt the scheme in [24] with a straightforward modification to account for hints

from the proxy server (the details of such a modification are described in Section IV-B). Note that the

events of requesting any two or more files in an ON period are not necessarily mutually exclusive,

i.e.,
∑k

i=1 Pi can be greater than one. The prefetcher uses the information provided by the predictor to

prefetch files in the subsequent OFF period of the underlying client, starting with the file that has the

highest access probability. The number of prefetched files depends on the length of the OFF period and

the state of the network. If the OFF period is long enough, prefetching ends before the start of the next

ON period. Otherwise, if a demand-request is issued before the prefetching of a file has completed, the

client instructs the proxy to stop forwarding the prefetched file in progress. Any partially prefetched file

is kept in the prefetching cache to be used in any future access to such a file. A demand-request is first

served from the local cache (regular or prefetching cache), if the file is available. Otherwise, the request is

forwarded to the proxy server. If the proxy server does not have the requested file in its cache, it retrieves

it from the original server.

B. Prefetching Gain

In this section, we study the benefit of client-side prefetching when the average access delay is used

as the performance metric of interest. The improvement in the access delay is indicated by the ratio

of the average access time of an arbitrary demand-requested file under prefetching (Ap) to the average

access time of such a file without prefetching (Anp). We call this ratiothe access improvement index(I).

Prefetching is advantageous whenI < 1. In the absence of client caching and prefetching, the proxy

server is assumed to retrieve files from the original servers at a rateλ files per second in response to

requests from all clients. Note that caching and prefetching can impact the rate of bringing files from

their respective servers.

Prefetching always increases the hit ratio of the overall client cache system because prefetched files do

not replace files in the regular cache (they are stored in the prefetching cache). Suppose that, on average,

8

a client prefetchesNp files in a given OFF period. Then, the average number of “useful” files is:

m = NpP (1)

whereP
def
=

∑Np
i=1

Pi

Np
(0 ≤ P̄ ≤ 1) is called theprefetching precision[39]. The increase in the client-cache

hit ratio due to prefetching is given by:

∆h =
m

Non

(2)

whereNon is the average number of files in an ON period. This says that for each demand-requested file,

there are m
Non

useful prefetched ones.

If a client does not employ prefetching, a requested file will be brought from the local cache, the proxy

cache, or the original server. The corresponding access times for a file of an average sizes are0, tprox(s),

and tserv(s), respectively. Accordingly, the average access time without prefetching is

Anp = (1− hc). {hproxytprox(s) + (1− hproxy)tserv(s)} . (3)

We will come back to the determination oftprox(s) and tserv(s). Consider now the situation under

prefetching. Because prefetching is performed on a per-client basis during the OFF periods and because

clients communicate with the proxy via dedicated links,tprox(s) will be the same as in the no-prefetching

case. Lett′serv(s) be the average access time from the original server when prefetching is employed. Note

that t′serv(s) 6= tserv(s) because prefetching files for a given client increases the traffic seen by other

clients that share the same access link, which as a result affects the average access delay for all clients.

Accordingly,

Ap = (1− hc −∆h).(hproxytprox(s) + (1− hproxy)t
′
serv(s)). (4)

From (3) and (4), the access improvement index becomes:

I =
(1− hc −∆h).(hproxytprox(s) + (1− hproxy)t

′
serv(s))

(1− hc).(hproxytprox(s) + (1− hproxy)tserv(s))
. (5)

We now turn our attention to the computation oftprox(s), tserv(s), and t′serv(s). The queuing delay

9

at the (dedicated) proxy-client link can be safely ignored, sotprox(s) = s
r
. For tserv(s) and t′serv(s), we

assume they are dominated by the queueing/service delays at the (downlink) shared access link from

the Internet to the proxy server. This assumption is justified when the pool of clients that share the

access link is large, as is often the case in ISP networks. To computetserv(s) and t′serv(s), we model

the queueing/service delays at the proxy as an M/G/R Processor Sharing (M/G/R-PS) system. Riedl et al.

[40] suggested the use of this model for the dimensioning of IP access networks with elastic traffic and

concluded its suitability for Web delivery systems, particularly when file sizes are large. The rationale

behind employing the M/G/R-PS approximation is that in the underlying Web delivery system, multiple

file downloads occur simultaneously over different connections (clients). These downloads are serviced

by a shared link (processor) of capacityC. In our case, a client is limited by the bandwidthr of the

dedicatedaccess link, which can be less thanC. The shared link behaves approximately as a queuing

system withR = C/r servers. If there aren customers in the system, then each customer gets a fraction

of the capacityC that depends onn. If n ≤ R, then each customer gets a fixed fractionr/C, i.e., up to

R flows can be served simultaneously, each at a rater bps. If n > R, then each customer gets a fraction

1/n of the total capacity. A special case of the M/G/R-PS system is whenR = 1. In this case, a single

client can fully utilize the capacity of the shared access link.

For the M/G/R-PS system, the mean file transfer time is given by [40]:

t =
s

r
fR(ρ) (6)

whereρ
def
= λs/C is the traffic load over the access link andfR is called thedelay factor, a measure of

how link congestion affects the response time. It is given by

fR(ρ)
def
= 1 +

E2(R, ρ)

R(1− ρ)
(7)

E2(R, ρ)
def
=

(Rρ)R

R!
1

1−ρ∑R−1
i=0

(Rρ)i

i!
+ (Rρ)R

R!
1

1−ρ

. (8)

Equation (8) is the familiar Erlang-C formula.

To apply the above model, we need to compute the traffic load with and without prefetching (ρp and

10

ρnp, respectively). The average load in the case of no prefetching (with caching only) is given by:

ρnp =
(1− hproxy)(1− hc)λs

C
. (9)

This represents the downlink traffic in response to client requests that cannot be satisfied from the client’s

regular cache or the proxy cache.

When prefetching is implemented, an average ofNp files are retrieved during the OFF period. Hence,

ρp =
(1− hproxy)(1− hc −∆h + Np/Non)λs

C
. (10)

This is the load on the downlink in response to requests that cannot be satisfied from the regular, the

prefetching, or the proxy caches, plus the extra prefetched traffic (Npλs
Non

). Note that for each demand-

requested file, there are on averageNp/Non prefetched ones.

From (5) and (6), the improvement index reduces to:

I =
(1− hc −∆h).(hproxy + (1− hproxy)fR(ρp))

(1− hc).(hproxy + (1− hproxy)fR(ρnp))
. (11)

III. O PTIMIZATION OF PREFETCHINGGAIN

In this section, we study the performance of a generic prefetching system. We use the analysis in

Section II to optimize the prefetching parameters. Intuitively, prefetching impacts the mean access time

of a demand-requested file in two ways. It improves the overall cache hit ratio of the given client and,

as a result, reduces the number of files that need to be retrieved from the remote servers. At the same

time, prefetching increases the load on the shared access link, which affects the retrieval time of demand-

requested files destined to other clients (such files are retrieved from their original servers following a

miss at the local and proxy caches). Hence, a client should be careful not to prefetch every file suggested

by the predictor, as this may lead to increasing the overall average access time.

Accordingly, we seek to compute the optimal number of files to prefetch in an OFF period. Before

trying to find this optimal value, we need to study the behavior ofI as a function ofNp. It can be

mathematically shown (see below) that if prefetching a single file or a fraction of a file does not lead

11

to any gain, then prefetching more files can only worsen the performance. On the other hand, if there

is a gain out of prefetching a single file or a fraction of a file, then there is a unique optimal value for

the average number of prefetched files in an OFF period. The following theorem describes the general

relationship betweenI andNp. It also specifies the condition under which prefetching is beneficial.

Theorem 3.1:Suppose that files are prefetched in a decreasing order of their access probabilities,

starting from the most likely one. Then the following holds:

1) Let P̄ (Np = 1) be the prefetching precision when, on average, only one document is prefetched

in an OFF period. In other words,̄P (Np = 1) is the average access probability of the first file to

prefetch in the list of candidate files. For prefetching to be of a value, the following condition must

be satisfied:

P̄ (Np = 1) > Pth
def
=

MρR
np

(1 + MρR
np)

(12)

where

M
def
=

(1− hproxy)R

(1− ρR
np)(1− hproxyρR

np)
(13)

2) If prefetching a single file or a fraction of a file does not improve the mean file access time, then

increasing the number of prefetched files does not do any better.

3) If there is a gain out of prefetching, then the functionI is convex inNp, with its minimum point

achieved at the optimalNp (denoted byN∗
p).

Proof: See Appendix B.

It is clear from Theorem 3.1 that the prefetching protocol must first decide whether to prefetch or

not based on the prefetching thresholdPth. If prefetching is deemed beneficial, thenN∗
p is computed by

solving dI
dNp

= 0 for Np. The convexity of the functionI (part 2 of Theorem 3.1) gives a simple numerical

recipe for computingN∗
p using a logarithmic-time binary search over the set of possible (integer) values

that Np can take. For some special cases, a closed-form expression forN∗
p can be obtained, as described

next.

12

A. Prefetching Precision Independent ofNp

Consider the special case whenP̄ is independent ofNp, i.e., all files have the same access probabilities.

Accordingly, the condition in (12) translates into having the file access probability greater thanPth. In

this case,N∗
p can be computed analytically for two special cases, as described in the following theorem.

Theorem 3.2:Consider the case when̄P is independent ofNp, P̄ > Pth, andR = 1. Then,

1)

N∗
p =





−B−√B2−4AC
2A

, if B2 − 4AC > 0

Largest value forNp s.t. ρp < 1, otherwise
(14)

where

A
def
=

(
ρnp(1− P̄)

Non(1− hc)

)2

(15)

B
def
=

−2ρnp(1− P̄)(1− ρnp)

(1− hc)Non

(16)

C
def
= (1− ρnp)

2 − 1− hproxy

hproxy

(
ρnp

P̄
− 1

)
(17)

2) If no proxy caching is used (hproxy = 0), then the higher the number of prefetched files, the higher

is the prefetching gain.

Proof: See Appendix C.

Figure 3 depictsI versusNp for the special case when̄P is constant (independent ofNp), with hc = 0

(no regular client cache),C = 500 kbps,λ = 6.25 files/s, s̄ = 40 kbits, andNon = 15 files. In part (a),

we setr = 500 kbps (soR = 1), hproxy = 0, andPth = 0.5. It is clear that whenP̄ > Pth, I decreases

monotonically with the number of prefetched documents. In this case,I can be maximized by prefetching

all documents with access probabilities greater thanPth, in line with [44]. For the other cases,I does not

necessarily decrease monotonically with the number of prefetched files. This is shown in parts (b) and (c).

For example, in part (b), whenP = 0.4, I decreases with the increase inNp up to a certain point, after

which the trend is reversed. Furthermore, whenP À Pth, the trend in the access improvement becomes

monotone. This is because the improvement in the hit ratio is more significant than the loss due to the

increased traffic. Moreover, prefetching cannot go beyond a point where the shared access link is100%

13

loaded.

Note that the threshold value decreases with the increase inR and hproxy, which is intuitive since

increasingR or hproxy moves the delay bottleneck towards the client-proxy link.

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

P=0.1

Np

A
cc

es
s

Im
pr

ov
em

en
t I

nd
ex

 (
I)

P=0.4

P=0.5

P=0.6

P=0.8

(a) R = 1,
hproxy = 0, Pth = 0.5

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

P=0.03

Np

A
cc

es
s

Im
pr

ov
em

en
t I

nd
ex

 (
I)

P=0.1
P=0.3

P=0.4

P=0.5

P=0.6

(b) R = 10, hproxy = 0,
Pth = 0.05

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

P=0.03

Np

A
cc

es
s

Im
pr

ov
em

en
t I

nd
ex

 (
I)

P=0.1

P=0.18

P=0.2

P=0.3

(c) R = 1, hproxy = 0.6,
Pth = 0.102

Fig. 3. I versusNp (C = 500 kbps,λ = 6.25 files/s, s̄ = 40 kbits, Non = 15 files, hc = 0).

B. Prefetching Precision Varying withNp

To study the performance of prefetching whenP̄ depends onNp, we consider the following simple

relationship between∆h andNp:

∆h = K (1− e−a Np) (18)

where0 ≤ K ≤ 1− hc. Based on this relationship, the lowest value for∆h is 0 (no prefetching), while

its highest value is1 − hc, since the overall cache hit ratio (hc + ∆h) cannot exceed one. Accordingly,

the prefetching precision is given by:

P̄ =
H(1− e−a Np)

Np

(19)

whereH
def
= Non K. BecauseP̄ ≤ 1, the constanta is bounded (0 ≤ a ≤ − ln(1− 1

H
)).

Figure 4 shows the performance for the same system shown in Figure 3 but withP varying according

to (19). Consider the caseR = 1 and hproxy = 0. In this case,P̄ > Pth for Np ≤ 7. When Np = 7,

prefetching all seven files with access probabilities greater thanPth improves the performance (I < 1),

but does not necessarily optimize it (e.g., prefetching six files is actually more beneficial than prefetching

14

seven files). For the other two cases shown in Figure 4, we can see that increasing the number of prefetched

files can worsen the performance, sometimes even whenP̄ > Pth.

0 2 4 6 8 10 12 14 16 18 20
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

N
p

A
cc

es
s

tim
e

im
pr

ov
em

en
t i

nd
ex

 (
I)

R=1, h
proxy

=0
R=10, h

proxy
=0

R=1, h
proxy

=0.6

P>P
th

Fig. 4. I versusNp for the caseP̄ = 4.5(1−e−0.24Np)
Np

(C = 500 kbps,λ = 6.25 files/s,s̄ = 40 kbits, Non = 15 files, Pth = 0.5, hc = 0).

Corollary 3.3: Consider the case whenR = 1, hproxy = 0, andP̄ varies withNp. Then, prefetching all

files with access probabilities greater thanPth is guaranteed to reduce the average access time compared

to no prefetching.

Proof: The proof follows readily from part2 of Theorem 3.2.

Theorem 3.4:For givenP̄ andNp, increasingR or hproxy reduces the average access time.

Proof: See Appendix D.

According to Corollary 3.3 and Theorem 3.4, a prefetching system can prefetch all files with access

probabilities greater thanPth. As can be seen in Figure 5, this solution reduces the average access time

but does not necessarily minimize it with respect toNp. This is because for a givenNp, the worst access

delay is whenR = 1 andhproxy = 0.

Effect of Caching on Prefetching Gain

We now use our analytical results to study the interactions between prefetching, on the one hand, and

proxy and client caching, on the other. First, we consider the interactions between prefetching and proxy

caching, settinghc = 0. Intuitively, one may think that proxy caching limits the value of prefetching. It

turns out that this is not always true. Specifically, for clients with low-bandwidth connections (r ¿ C),

15

0 1 2 3 4 5 6 7 8 9 10
0.6

0.7

0.8

0.9

1

1.1

N
p

A
cc

es
s

tim
e

im
pr

ov
em

en
t i

nd
ex

 (
I)

R=1, h
proxy

=0
R=2, h

proxy
=0

R=3, h
proxy

=0
R=1, h

proxy
=0.2

R=1, h
proxy

=0.3
R=1, h

proxy
=0.4

P> P
th

 (R=1, h
proxy

=0)

Fig. 5. Effects ofR andhproxy on I for the caseP̄ = 4.5(1−e−0.18Np)
Np

(C = 500 kbps,λ = 6.25 files/s, s̄ = 40 kbits, Non = 9 files,
Pth(R = 1, hproxy = 0) = 0.5, hc = 0).

the bottleneck is the client-proxy link. In this case, the reduction in the access time due to prefetching a

file from the proxy cache is comparable with the reduction due to prefetching this file from its original

server, especially when the load over the shared access link is light (i.e., smallNp values). This situation

is depicted in Figure 6-a, whereAnp − Ap is observed to be insensitive tohproxy. Note that as the load

over the shared link increases (by increasingNp), thenAnp−Ap starts to become more sensitive tohproxy.

The behavior is different whenr is large (i.e., high-bandwidth user access), as the bottleneck shifts to

the shared access link between the proxy and the Internet. This is shown in part (b) of the figure with

R = C/r = 1. At light load, not much change inAnp − Ap is observed ashproxy increases. However, at

heavy load (e.g.,Np = 12), the time savingAnp −Ap initially increases withhproxy (i.e., the prefetching

gain improves with better proxy caching), up to an optimal pointh∗proxy ≈ 0.1, after which the trend is

reversed.This says that while proxy caching always contributes positively to the prefetching gain (Anp−Ap

underhproxy = 0 is always smaller thanAnp−Ap underhproxy > 0), the amount of positive contribution

due to proxy caching is not always monotone withhproxy.

Similar interactions between prefetching and client caching are observed, as shown in Figure 7. The local

cache limits the number of prefetched files, which in turn limits the prefetching gain. But it also reduces

the load, which is advantageous for prefetching especially for clients with high-bandwidth connections

(R = 1) and for a heavily loaded system.

16

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1

2

3

4

5

6

7

Proxy hit ratio, h
prox

A
cc

es
s

tim
e

sa
vi

ng
, A

np
−

A
p (

se
c)

N
p
=1, ∆

h
=0.05

N
p
=4, ∆

h
=0.22

N
p
=8, ∆

h
=0.43

N
p
=12, ∆

h
=0.65

(a) r = 56 kbps

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Proxy hit ratio, h
prox

A
cc

es
s

tim
e

sa
vi

ng
, A

np
−

A
p (

se
c)

N
p
=12, ∆

h
=0.65

N
p
=8, ∆

h
=0.43

N
p
=4, ∆

h
=0.22

N
p
=1, ∆

h
=0.05

(b) r = 1000 kbps
Fig. 6. Impact of proxy caching on the effectiveness of prefetching (C = 1000 kbps,λ = 20 files/s,s̄ = 40 kbits, Non = 15 files, hc = 0).

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Local cache hit ratio, h
c

A
cc

es
s

tim
e

sa
vi

ng
, A

np
−

A
p (

se
c)

N
p
=1, ∆

h
=0.05

N
p
=3, ∆

h
=0.16

N
p
=6, ∆

h
=0.32

N
p
=9, ∆

h
=0.49

(a) r = 56 kbps

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Local cache hit ratio, h
c

A
cc

es
s

tim
e

sa
vi

ng
, A

np
−

A
p (

se
c)

N
p
=1, ∆

h
=0.05

N
p
=3, ∆

h
=0.16

N
p
=6, ∆

h
=0.32

N
p
=9, ∆

h
=0.49

(b) r = 1000 kbps
Fig. 7. Impact of local (regular) caching on prefetching (C = 1000 kbps,λ = 20 files/s, s̄ = 40 kbits, Non = 15 files, hproxy = 0).

IV. PRACTICAL CONSIDERATIONS

In this section, we discuss how our analytical model can be integrated into the design of a prefetching

protocol. We first address the issue of estimating the model’s parameters and show how such estimates

can be used in performing optimal prefetching.

A. Parameter Estimation and Protocol Support

Initially, each client goes through a no-prefetching warm-up period, during which the client estimates its

own parameters, includinghc andNon (the number of demand-requested files in an ON period). The client

also estimates the relationship betweenP̄ and Np. This can be done by running a prediction algorithm

17

without performing any actual prefetching. Each client reports this information to the proxy server, which

uses it in estimatingPth according to (12), determining the prefetching gainI, and computingN∗
p for

each client. The proxy also estimates its own cache hit ratiohproxy. By the end of the warm-up period,

the proxy will have computed for each client an approximation ofhc, the relationship between̄P andNp,

and the average length of the ON period. Clients periodically update the proxy with estimates of their

parameter values, which the proxy uses along with the estimated load (ρp) to recompute the prefetching

parameters (Pth andNp).

If the proxy determines that prefetching is beneficial (based onPth andP̄), it uses (11) to optimize the

number of files each client can prefetch. The proxy provides each client with itsN∗
p by piggybacking this

information in its response to the client. Once a client has itsN∗
p , it can start prefetching in the subsequent

OFF period. We assume thatN∗
p can take non-integer values, where the fractional part means that only a

part of a file is prefetched using, for example, the HTTPrange requestmessage [8]. This feature is critical

because of the high variability of file sizes in the Web. Upon receiving a demand-request, prefetching

stops, and all prefetched data are saved. When a file that was partially prefetched is demand-requested,

only the remaining portion of this file is retrieved.

Prefetching needs to be implemented fairly for clients with different traffic demands. A reasonable

approach is to assign weights to clients depending on their (downlink) traffic demands. The higher the

weight assigned to a client, the higher the volume of prefetched traffic that is allowed for that client. The

assigned weights can be easily computed by the proxy based on the observed loads of different clients at

the shared link.

B. Forecasting Demand-Requests

Several schemes for Web traffic prediction have been proposed in the literature (e.g., [14], [23], [24],

[32], [35], [42], [49]). Any of these schemes can be integrated into our prefetching protocol. Without

loss of generality, we can consider for our simulations the predictor by Jiang et. al [24], with some

modifications to include hints from the proxy server. In [24], prediction is done at the client side using

the client’s history along with hints from the main server. Two types of counters are maintained at the

18

client for each html document: a page counter and a set of link counters. Any time an html documentX

is accessed, its page counterPX is incremented. IfX has a link to an html documentY andY is accessed

from X, then the link counterLX,Y is incremented. Following each access to documentX, the predictor

computes the probability of accessing every document that is linked fromX. For a linked documentY ,

this probability is given byLX,Y

PX
. If not enough historical information is available for computing this

probability, the client relies on hints from the proxy, which runs a similar prediction algorithm but based

on the aggregate traffic seen by all clients. The proxy also maintains some hints from the original servers

that can be used if the information collected by the proxy is not statistically sufficient. The prediction

algorithm at the proxy requires that clients provide the proxy with information about the html document

from which the request is initiated. The proxy also provides the server with similar information.

Note that the above predictor does not consider dynamically generated files, i.e., files that are generated

by a server-based script whose input parameters are supplied by the client. This does not change the

qualitative nature of our results, since our analysis relies on a generic output for the prediction algorithm

(the k files that are most likely to be demand requested in the next ON period along with their access

probabilities). Predictors for dynamic content have been proposed in the literature (e.g., [28], [37]), and

can be readily integrated into our adaptive prefetching design.

V. SIMULATION RESULTS

The theoretical results in Section III were based on average-case analysis of an idealized queuing model.

To validate the appropriateness of these results, we simulate a generic prefetching protocol that integrates

into its design the optimization of the previous section.

A. Simulation Setup

We consider50 clients who access the Web through a common proxy. The proxy cache implements

an LRU policy with hproxy = 0.4 (the cache hit ratio is controlled by adjusting the cache size). Each

client has a large local cache. One percent of this cache is reserved for prefetching. Local caches also

implement the LRU caching policy.

19

B. Traffic Model

We use model-based synthetic traces to drive our simulations. Although real (measured) traces would

be preferable, we do not rely on them for two reasons. First, most Web traces available in the public

domain are captured at the server, whereas our simulations require client-side traces. The few available

client-side traces are not sufficient to reproduce the behavior of 50independentclients, especially that

they do not contain information about the client’s ON/OFF behavior3. Secondly, when using real traces

it is not possible to control the traffic parameters (e.g., average durations for the ON and OFF periods,

average document size, etc.), which we need to study different scenarios.

To capture the essential statistical properties of Web traffic, we extend the model in [12] to generate

client-side traffic. The model in [12] is based on multifractal processes, which are more flexible than

monofractal (self-similar) models in describing traffic “irregularities” at different time scales. In its original

form, the model in [12] captures the temporal locality, spatial locality, and popularity of the aggregate Web

traffic seen by the proxy server. Such traffic represents responses to requests for main html documents

from all clients. Each html document can have one or more inline files (e.g., images). As suggested in [13],

[33], a heavy-tailed Pareto distribution is used for the number of inline objects in an html document. The

OFF period and the file size are generated according to heavy-tailed lognormal distributions [13], [18],

[33]. The duration of the ON period is specified by the requested main document and the time it takes

the client to retrieve such a document and its inline files. Table I summarizes the distributions used in

traffic generation along with their parameter values (taken from [13], [33]).

The model in [12] was not intended for client-side traffic, but rather to capture the properties of

the aggregate traffic destined to a group of clients. To synthesize client-side traffic, we start with a

no-prefetching simulation run, in which each client is represented by an ON/OFF profile based on the

distributions shown in Table I. The aggregate stream is arranged as a vector. When a client starts a new

ON period, it selects a document from the top of that vector. This document is considered as the main

html document in the current ON period. Each unique document in the vector is assigned a group of

3It is possible to extract multiple sequences from one real trace by arranging this trace as a circular chain and extracting several sequences
by randomizing their starting times within the circular chain. However, this method results in correlated sequences.

20

Component Distribution f(x) Parameters

OFF period Lognormal 1

x
√

2πσ2
e
−(ln(x)−µ)2

2σ2 σ = 1.57

µ = 2.75

File size Lognormal 1

x
√

2πσ2
e
−(ln(x)−µ)2

2σ2 σ = 1.82

µ = 6.78

Files per Pareto f(x) = akax−(a+1) k = 1

Web page a = 1.42

TABLE I

PROBABILITY DISTRIBUTIONS USED IN THE SIMULATIONS.

C

� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �

� � � �
� � � �
� � � �

� � � �
� � � �
� � � �

C0

DA
B D

Aggregate traffic

A
 A0 A1

Client 1

B B0 B1 B2

inline files
Web page C

Client 2

OFF period

Client 0

Time

C

 C3C1 C2

dt

3t

2t

1t

 1

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
	 	 	 	 	 	
	 	 	 	 	 	

� � � � � �
� � � � � �

 2dt

Fig. 8. Client-side traffic generation process.

unique inline files. Moreover, each file (main document or inline file) is assigned a size that is sampled

from the proper distribution. The client retrieves the main document with its inline files from the local

cache, proxy cache, or from the original server if the document has not been cached before. The outcome

of this simulation run is streams of client requests that are saved in several files to be used in the main

simulation experiments. Figure 8 depicts an example with three clients. The three clients start their first

ON periods at timest1, t2, and t3, respectively, wheret3 > t1 > t2. According to these times, Client

2 selects the top document (A) in the vector of aggregate requests. The first and the third clients select

documentsC andB, respectively. It takes the second client a period ofdt1 seconds to retrieve document

A and its preassigned inline files (A0 andA1), and it takes it a period ofdt2 seconds to read the retrieved

information (OFF period). At the end of the OFF period, this client starts a new ON period, while the

other clients are still in their OFF periods. Hence, Client 2 selects documentD as its next main document,

and so on.

21

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

A A0 A1 B1 B2 C0 D D0 D1 D2

Cached

B0

OFF period

Current time

predictor

to control the

Set of probabilities

Future window

Time

Set of Prefetched files

� � �� � �� � �� � �� � �

� � �� � �� � �� � �

� � �� � �� � �� � �� � �

� � �� � �� � �� � �
C� � �� � �� � �� � �� � �

� � �� � �� � �� � �

for prefetching, and with probability

With probability Pi, select the file

1−Pi select a dummy file for prefetching

P3P2P1

cache

cache or in the prefetching

File either in the local

� �� �� �
	 		 		 	

file

Fig. 9. Mechanism for traffic prediction.

C. Prediction Model

Because prediction is not the focus of our work, for our model-validation purposes, we adopt an artificial

predictor whose accuracy can be controlled. The predictor works as follows. Each client is assumed to

know the future with certain accuracy and has a window through which it sees this future. To emulate a

particular relationship between̄P and Np, the client considers a window ofm files (number of files to

prefetch) that are not in the local cache. Theith file in the candidate list is considered for prefetching with

probabilityPi. If a file is not selected for prefetching, it means that the predictor made a wrong decision.

In this case, the client retrieves a dummy file whose size is sampled from the file size distribution. This

dummy file is either retrieved from the proxy or the original server based on the estimated value ofhproxy.

Figure 9 illustrates the main idea behind this artificial predictor. In this figure, the client needs to prefetch

three files in the current OFF period. The first three files that are in the future window and are not locally

cached areB1, B2, andC0. To capture a specific relationship betweenP̄ andNp, the access probabilities

P1, P2, andP3 for the three candidate files to be prefetched are set toPi = iP̄ (i)−∑j=i−1
j=1 Pj, i = 1, 2, 3.

The client prefetches fileB1 with probability P1, and with probability1− P1 an alternative dummy file

is prefetched. The same thing is done for filesB2 and C0. Accordingly, the precision in predicting the

three files is
∑3

i=1
Pi

3
, which reflects the mimicked̄P (Np).

22

D. Validation of∆h and ρp

In this section, we validate our analysis with regard to the effects of prefetching on the client’s overall

cache hit rate and on the system load (ρp). In a given simulation run, each client tries to prefetch a fixed

number of files (n) in every OFF period, if possible. Each run outputs the access improvement index

(I), the average hit ratios for all caches, the average system load, and the average number of prefetched

documents in an OFF period (Np). Note thatNp can be less thann because some OFF periods are not

long enough to retrieve alln files. Figure 10 compares the increase in the client cache hit ratio due to

prefetching with its numerical counterpart computed using (2). It is clear from the figure that the model is

very accurate. The average load versusNp is depicted in Figure 11. Overall, the modeled and simulated

loads are sufficiently close to each other, with a slight deviation whenNp is high. This deviation comes

from the slight change inhproxy due to prefetching, which we assumed in our analysis to be independent

of prefetching. Although we assumed that prefetched documents are not cached at the proxy, prefetching

can affecthproxy as it changes the stream of Web requests seen by the proxy.

0 1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

N
p

In
cr

ea
se

 in
 h

it
ra

tio
 d

ue
 to

 p
re

fe
tc

hi
ng

Model
Simulation

Fig. 10. Increase in the client’s cache hit ratio due to prefetching versusNp when P̄ = 3.5(1−e−0.18Np)
Np

(r = 500 kbps,C = 500 kbps,
λ = 8 files/s, s̄ = 38 kbits, hproxy = 0.39, hc = 0.31).

E. Validating the Access Improvement Index

Figure 12 depictsI versusNp, computed using the analytical model and the simulations. The two plots

depict a similar trend. Surprisingly, the prefetching gain in the simulations is lower than the one obtained

23

0 1 2 3 4 5 6 7
0.3

0.35

0.4

0.45

0.5

0.55

0.6

N
p

S
ys

te
m

 lo
ad

 (
ρ p)

Model
Simulation

Fig. 11. Average system load under prefetching versusNp for the caseP̄ = 3.5(1−e−0.18Np)
Np

(r = 500 kbps,C = 500 kbps,λ = 8 files/s,
s̄ = 38 kbits, hproxy = 0.39, hc = 0.31).

using the analysis. One reason for the difference is that the analysis relies on the average file size, whereas

the file size is highly variable (follows a heavy-tail distribution). To test the effect of the file size on the

average access delay, we reran the simulations, assigning to all files the same size (average file size). The

outcome of this simulation experiment is shown in Figure 13. It is clear that our analysis needs to account

for the high variability in the file size. This can be done by modelling the average access delay for a

single byte of data. Hence, we use the byte hit ratio of the caching system to compute the probability of

finding an arbitrary byte of data in a given cache. Accordingly, the average access time of an arbitrary

byte is computed as:

AP (byte) =
1

r
(1− h̃c − ∆̃h)(˜hproxy + (1− ˜hproxy)fR(ρp)) (20)

whereh̃c is the regular-cachebytehit ratio, ˜hproxy is the proxy cache byte hit ratio, and̃∆h is the increase

in the local cache byte hit ratio due to prefetching. To validate this revised model, we reran the simulations

to compute the byte hit ratios for all caches. Figure 14 shows the numerical results for the original and

revised models, along with the simulation results. It is clear that the results for the revised model are

quite close to the simulations.

Based on the above revised model, we run new simulations using the following adaptive prefetching

mechanism. Each client dynamically adjusts the number of files to prefetch at the beginning of each

24

0 1 2 3 4 5 6 7 8
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

N
p

A
cc

es
s

tim
e

im
pr

ov
em

en
t i

nd
ex

 (
I)

Model
Simulation

Fig. 12. I versusNp (P̄ = 3.5(1−e−0.18Np)
Np

, r = 500 kbps,C = 500 kbps,λ = 8 files/s, s̄ = 38 kbits, hproxy = 0.39, hc = 0.31).

0 1 2 3 4 5 6 7 8
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

N
p

A
cc

es
s

im
pr

ov
em

en
t i

nd
ex

 (
I)

Basic model
Simulation with fixed size files

Fig. 13. I versusNp under fixed-size files (̄P = 3.5(1−e−0.18Np)
Np

, r = 500 kbps,C = 500 kbps,λ = 8 files/s,s̄ = 38 kbits,hproxy = 0.39,
hc = 0.31).

0 1 2 3 4 5 6 7 8
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Average number of prefetched documents, N
p

A
cc

es
s

tim
e

im
pr

ov
em

en
t i

nd
ex

, I

Basic model
Simulation
Revised model

Fig. 14. I versusNp (P̄ = 3.5(1−e−0.18Np)
Np

, r = 500 kbps,C = 500 kbps,λ = 8 files/s, s̄ = 38 kbits, hproxy = 0.39, hc = 0.31).

25

OFF period based on the estimated system load, the prefetching precision, and the proxy and regular

caches’bytehit ratios. As before, these hit ratios are estimated from historical data. The increase in the

local cache hit ratio due to prefetching (∆h) is estimated based on the number of files the client intends

to prefetch. The estimated∆h is used to compute the increase in the local cache byte hit ratio due to

prefetching (̃∆h). This is done by multiplying∆h by a correction factorα, which represents the average

ratio of prefetching cache byte hit ratio to its file hit ratio that can start with one and gets updated during

continual prefetching. Note that for the purpose of optimizingNp, ∆h must be estimated for several values

of Np. Figure 15 shows the simulation results for the adaptive prefetching protocol. In this plot, we also

show the results under non-adaptive prefetching, where we run several simulation experiments and in

each experiment we setNp to a given value. From the non-adaptive prefetching simulation, we found that

N∗
p ≈ 5.3 files. Based on the simulation of the adaptive protocol, the average number of prefetched files

was found to beNp = 5.6, which is very close toN∗
p . Moreover,I for the adaptive protocol is very close

to I(N∗
P).

0 1 2 3 4 5 6 7 8
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

N
p

A
cc

es
s

tim
e

im
pr

ov
em

en
t i

nd
ex

 (
I)

Adaptive
protocol
based on
the revised
model

Non−adaptive
prefetching

Fig. 15. I versusNp (P̄ = 3.5(1−e−0.18Np)
Np

, r = 500 kbps,C = 500 kbps,λ = 8 files/s,S = 38 kbits, hproxy = 0.39, hc = 0.31).

VI. CONCLUSIONS

In this paper, we analyzed the performance of a generic client-side prefetching system. We considered

the access time improvement as the performance metric. Our model considers both proxy and client

caches. Based on our analysis, we obtained an expression for the prefetching threshold that can be set

26

dynamically to optimize the effectiveness of prefetching. We proposed a prefetching protocol that uses our

analytical results for optimizing the prefetching gain. We investigated the effect of the caching system on

the effectiveness of prefetching. We discovered that prefetching all documents with access probabilities

greater than a given threshold value doesnot always lead to the minimum access delay, as was reported

in previous works. This is only true for the case when clients have high access speeds relative to the

access speed of their common proxy. For the other cases, the access delay improves with the increase in

the number of prefetched documents until a certain point, after which the trend is reversed. Moreover,

we found that prefetching is always profitable even with the existence of a good caching system. We also

observed that the high variability in Web file sizes limits the effectiveness of prefetching.

In this work, we assumed that each client runs one browsing session at a time. The one-session

assumption is acceptable for clients with low-bandwidth connections. The case of multiple sessions is

more common for clients with high-bandwidth connections, which we leave for a future work.

APPENDIX

A. Model Extension to Heterogenous Clients

The model in Section II deals with a homogenous environment in which clients have the same access

speedr, the same cache hit ratehc, and the same ON/OFF statistics. In this section, we explain how our

model can be extended to clients with heterogenous characteristics by employing a generalized version

of the M/G/R-PS system. Such a queueing system has recently been studied by Kawahara et al. [25].

According to the extended model, clienti, i = 1, . . . , n, is characterized by an access speedri, a cache hit

ratehci
, an average demandλi, and an average ON durationNoni

(in files). This client getsmin{ri,
Cri∑n

j=1
rj
}

of the shared capacity. We now show how to derived the access improvement index under this model.

First, we determine the mean file transfer time for clienti (ti). Similar to t in (6), ti is given by:

ti =
s

ri

fRi
(ρ) (21)

wherefRi
is the same as the delay factorfR in (7) but withRi

def
= C/ri replacingR. To determineti with

and without prefetching, we need to compute the corresponding loads over the shared access link,ρp and

27

ρnp, respectively, which are given by:

ρnp =
(1− hproxy)

∑n
i=1(1− hci

)λis

C
(22)

ρp =
(1− hproxy) [

∑n
i=1(1− hci

−∆hi
+ Npi

/Noni
)λi] s

C
(23)

where∆hi
= Npi

P/Noni
is the increase in clienti’s hit ratio due to prefetching andNpi

is the average

number of files that clienti prefetches in its next OFF period. Equations (22) and (23) are the counterparts

of (9) and (10) for the homogeneous case. Accordingly, the mean access times without and with prefetching

for an arbitrary file that is demand-requested by clienti are given by:

A(i)
np = (1− hci

). [hproxytprox,i(s) + (1− hproxy)tserv,i(s)] (24)

A(i)
p = (1− hci

−∆hi
).

[
hproxytprox,i(s) + (1− hproxy)t

′
serv,i(s)

]
(25)

wheretprox,i(s), tserv,i(s), andt′serv,i(s) are the same astprox(s), tserv(s), andt′serv(s), but for clienti.

From (24) and (25), we can compute the access improvement index for clienti:

Ii
def
=

A(i)
p

A
(i)
np

=
(1− hci

−∆hi
).

[
hproxytprox,i(s) + (1− hproxy)t

′
serv,i(s)

]

(1− hci
). [hproxytprox,i(s) + (1− hproxy)tserv,i(s)]

. (26)

Note that for i = 1, . . . , n, Ii is a function ofNpi
, which is the parameter to be optimized. For the

underlying heterogenous case, determining the cost function to minimize with respect toNp1 , Np2 , . . . , Npn

requires specifying a notion of fairness. For example, if clients are to be treated equally, then the cost

function to minimize is simply given byI = (
∑n

i=1 Ii)/n. However, it may be argued that such a cost

function is not fair to clients with fast connections, which should, arguably, be allowed to prefetch more

files than clients with slower connections. On the other hand, it may also be argued that slow clients benefit

more from prefetching than fast clients, and so they should be given more weight in the cost function. In

general, all of these notions of fairness can be handled by minimizing a weighted cost function
∑n

i=1 wiIi,

where the weightsw1, . . . , wn are determined based on whatever concept of fairness is being adopted.

Note that similar toI, the function
∑n

i=1 wiIi is convex in the optimization parameters, so it can be easily

minimized using numerical approaches.

28

B. Proof of Theorem 3.1

First, we show that if prefetching a single file or a fraction of a file does not improve the mean file

access time, then increasing the number of prefetched files does not do any better. To do that, we express

I as the product of two functionsf1(x) andf2(x), wherex is the average number of prefetched files in

an OFF period:

I = f1(x).f2(x) (27)

where

f1(x)
def
=

1− hc −∆h(x)

1− hc

≤ 1 (28)

f2(x)
def
= A + BfR(ρp(x)) ≥ 1 (29)

A
def
=

hproxy

hproxy + (1− hproxy)fR(ρnp)
(30)

B
def
=

1− hproxy

hproxy + (1− hproxy)fR(ρnp)
. (31)

We approximatefR(ρ) in (7) by:

fR(ρ) ≈ 1

1− ρR
. (32)

The goodness of this approximation is demonstrated in Figure 16.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.5

2

2.5

3

3.5

4

4.5

5

ρ

f R
(ρ

)

Exact
Approximation

R=2

R=3

R=5

R=7

Fig. 16. Approximation offR(ρ) by 1/(1− ρR).

29

It is easy to show thatf1(x) deceases monotonically withx, sincedf1(x)
dx

=
− d∆h

dx

1−hc
< 0 for all 0 ≤ x < ∞.

Note that d∆h

dx
> 0, as prefetching always increases the overall cache hit ratio.

On the other hand,f2(x) increases monotonically withx, considering that for all0 ≤ x < ∞ we have

df2(x)

dx
= B

dfR(ρp)

dx
= B

RρR−1
p

(1− ρR
p)2

dρp

dx
> 0. (33)

Note thatdρp

dx
> 0, because prefetching always increases the network traffic unless the prediction is100%

accurate.

Now if we can show thatf1(x) decreases at a slower rate than the rate at whichf2(x) increases, then

we can say for sure that there is no gain out of prefetching more files if prefetching a single or a fraction

of a file is not beneficial. This also assures that if there is a gain out of prefetching, then there is a unique

value forN∗
p . Formally, we need to show thatd|f ′1(x)|

dx
< 0 and d|f ′2(x)|

dx
> 0. Consider the first inequality.

Recall that∆h = x P̄ (x)
Non

. Then,

d|f ′1(x)|
dx

=
1

1− hc

d2∆h

dx2

=
1

(1− hc)Non

(P̄
′′
(x)x + 2P̄

′
(x)) < 0. (34)

Note thatP̄
′
(x) < 0 becauseP̄ (x) is a monotonically decreasing function inx. Also, P̄

′′
(x) < 0 since

the popularity of Web files follows a Zipf-like distribution (Pi ∼ 1
iα

, 0 ≤ α ≤ 1). For d|f ′2(x)|
dx

, we have

d|f ′2(x)|
dx

=
BRρR−2

p ((R− 1)(1− ρR
p) + 2ρR

p R(dρp

dx
)2)

(1− ρR
p)2

+

B.RρR−1
p

(1− ρR
p)2

.
d2ρp

dx2
> 0. (35)

Formally, for prefetching to be beneficial, the following condition must be satisfied:

lim
x→0+

∣∣∣∣∣
df1

dx

∣∣∣∣∣ > lim
x→0+

∣∣∣∣∣
df2

dx

∣∣∣∣∣

30

iff lim
x→0+

∣∣∣∣∣
−d∆h

dx

1− hc

∣∣∣∣∣ > lim
x→0+

∣∣∣∣∣
BRρR−1

p

(1− ρR
p)2

dρp

dx

∣∣∣∣∣

iff lim
x→0+

∣∣∣∣∣
−d∆h

dx

1− hc

∣∣∣∣∣ >

lim
x→0+

∣∣∣∣∣
BRρR−1

p

(1− ρR
p)2

(1− hproxy)(
1

Non

− d∆h

dx
)
λs̄

C

∣∣∣∣∣

iff lim
x→0+

∣∣∣∣∣
P̄
′
(x)x + P̄ (x)

Non(1− hc)

∣∣∣∣∣ >

lim
x→0+

∣∣∣∣∣
BRρR−1

p

(1− ρR
p)2

(1− hproxy)(
1

Non

− P̄
′
(x)x + P̄ (x)

Non

)
λs̄

C

∣∣∣∣∣

iff
limx→0+ P̄ (x)

Non(1− hc)
>

BRρR−1
np

(1− ρR
np)

2
(1− hproxy)(

1

Non

− limx→0+ P̄ (x)

Non

)
λs̄

C
.

Note thatlimx→0+ P̄ (x) = P̄ (1). Defining M
def
= BR

(1−ρR
np)2

= (1−hproxy)R
(1−ρR

np)(1−hproxyρR
np)

, we end up with

P̄ (1) >
MρR

np

1 + MρR
np

. (36)

C. Proof of Theorem 3.2

Let x be the number of prefetched files. Then,I can be expressed as

I = Lg(x) +
Mg(x)

1− αg(x)− βx
(37)

where

g(x)
def
= 1− hc −∆h(x) (38)

L
def
=

hproxy

(1− hc)(hproxy + (1− hproxy)fR(ρnp))
(39)

M
def
=

1− hproxy

(1− hc)(hproxy + (1− hproxy)fR(ρnp))
(40)

α
def
= (1− hproxy)ρ (41)

β
def
=

α

Non

. (42)

31

Now to optimizeI, we let dI
dx

= 0 and solve forx:

dI

dx
= Lg′(x) +

Mg′(x)(1− βx) + Mβg(x)

(1− αg(x)− βx)2
= 0. (43)

With ∆h(x) defined according to (18),g′(x) reduces to−P̄
Non

. Solving (43) forx yields

x =





−B−√B2−4AC
2A

, if B2 − 4AC > 0

Largest number of candidate

files subject toρp < 1, otherwise

(44)

where,A, B, andC are given in (15), (16), and (17), respectively.

To prove the second part of Theorem 3.2, we know that for prefetching to be of a value, we must have

I < 1. Therefore,

I < 1

iff
(1− hc −∆h)(hproxy + (1− hproxy)fR(ρp))

(1− hc)(hproxy + (1− hproxy)fR(ρnp))
< 1

iff
(1− hc −∆h)

(1− hc)
<

hproxy + (1− hproxy)fR(ρnp)

hproxy + (1− hproxy)fR(ρp)

iff 1− PNp

(1− hc)Non

<
hproxy + (1− hproxy)fR(ρnp)

hproxy + (1− hproxy)fR(ρp)
.

Taking hproxy = 0, we end up with

1− Px

(1− hc)Non

<
fR(ρnp)

fR(ρp)

< fR(ρnp)(1− ρp).

Becauseρp is linear in x, both sides of the above inequality decrease linearly withx. Hence, if the

rate at which the left-hand side (LHS) decreases atx = 0 is greater than the rate of the right-hand side

(RHS), then increasing the value ofx increases the reduction inI (improvesI).

32

For the rate of the LHS to be greater than the rate of the RHS, we must have the following:

P̄

(1− hc)Non

>
(1− hproxy)(1− P̄)ρ

(1− ρnp)Non

⇒ P̄ > ρnp

which is the threshold value that is necessary for prefetching whenR = 1 andhproxy = 0.

D. Proof of Theorem 3.4

ConsiderAp as defined in (4) andfR(ρ) as defined in (32). Then,

dAp

dR
= (1− hc −∆h)(1− hproxy)

ρR
p ln(ρp)

(1− ρR
p)2

, (45)

which is less than zero becauseln(ρp) < 0. Accordingly, the access time with prefetching decreases with

R.

For hproxy, we have

dAp

dhproxy

= (1− hc −∆h)

(1− 1− (1− hproxy)
RW + R(1− hR

proxy)W

(1− (1− hproxy)RW)2
) (46)

where

W
def
= (1− hc −∆h +

Np

Non

)
λs̄

C
. (47)

But 1 − (1 − hproxy)
RW = (1 − ρR

p) < 1. Therefore,1 − (1 − hproxy)
RW > (1 − (1 − hproxy)

RW)2.

Accordingly,
dhAp

hproxy
< 0 and the access time with prefetching decreases withhproxy.

REFERENCES

[1] http://developer.mozilla.org/en/docs/linkprefetchingfaq.

33

[2] http://fasterfox.mozdev.org/.

[3] http://infonet.naist.jp/products/.

[4] http://webaccelerator.google.com/.

[5] http://www.faqs.org/rfcs/rfc2068.html.

[6] http://www.mozilla.com/en-us/firefox/.

[7] http://www.netscape.com/.

[8] http://www.w3.org/Protocols.

[9] Web 3000 Inc. (NetSonic Internet Accelerator). http://www.web3000.com/.

[10] PeakSoft corporation. PeakJet 2000 web page. http://www.peak.com/peakjet2.html, 2002.

[11] V. Almeida, A. Bestavros, M. Crovella, and A. deOliveira. Characterizing reference locality in the WWW. InProceedings of the

Fourth International Conference on Parallel and Distributed Information Systems (PDIS), pages 92–103, 1996.

[12] A. Balamash and M. Krunz. WWW traffic modeling: A multifractal approach.Computer Networks Journal, 43(2):211–226, October

2003.

[13] P. Barford and M. Crovella. Generating representative web workloads for network and server performance evaluation. InProceedings

of the ACM SIGMETRICS Conference, pages 151–160, 1998.

[14] A. Bestavros. Using speculation to reduce server load and service time on the WWW. InProceedings of the 4th ACM International

Conference on Information and Knowledge Management, pages 403–410, 1995.

[15] L. Breslau, P. Cao, L. Fan, G. Philips, and S. Shenker. Web caching and zipf-like distributions: Evidence and implications. In

Proceedings of the INFOCOM Conference, pages 126–134, 1999.

[16] P. Cao and S. Irani. Cost-aware WWW proxy caching algorithms. InProceedings of the 1997 USENIX Symposium on Internet

Technology and System, pages 193–206, 1997.

[17] M. Crovella and P. Barford. The network effects of prefetching. InProceedings of IEEE INFOCOM Conference, pages 1232–1239,

1998.

[18] C. Cunha, A. Bestavros, and M. Crovella. Characteristics of WWW client-based traces.IEEE/ACM Transactions on Networking,

1(3):134–233, Jan 1999.

[19] B. Davison and V. Liberatore. Pushing politely: Improving web responsiveness one packet at a time.Performance Evaluation Review,

28(2):43–49, September 2000.

[20] M. Deshpande and G. Karypis. Selective Markov models for predicting Web page accesses.ACM Transactions on Internet Technology,

4(2):163–184, May 2004.

[21] F. Douglis, A. Feldmann, and B. Krishnamurthy. Rate of change and other metrics: a live study of the world wide web. InProceedings

of USENIX Symposium on Internet Technologies and Systems, 1997.

[22] D. Duchamp. Prefetching hyperlinks. InProceedings of 2nd USENIX Symposium on Internet Technologies and Systems, pages 127–138,

1999.

[23] L. Fan, P. Cao, W. Lin, and Q. Jacobson. Web prefetching between low-bandwidth clients and proxies: Potential and performance. In

Proceedings of ACM SIGMETRICS Conference on Measurment and Modeling of Computer Systems, pages 178–187, May 1999.

34

[24] Z. Jiang and L. Kleinrock. An adaptive network prefetch scheme.IEEE Journal on Selected Areas in Communications (JSAC),

17(4):358–368, April 1998.

[25] R. Kawahara, K. Ishibashi, T. Mori, T. Ozawa, and T. Abe. Method of bandwidth dimensioning and management for aggregated TCP

flows with heterogeneous access links.IEICE Transactions on Communications, EE88-B(12):4605–4615, December 2005.

[26] R. Kokku, P. Yalagandula, A. Venkataramani, and M. Dahlin. NPS: A non-interfering deployable web prefetching system. InUSENIX

Symposium on Internet Technologies and Systems, 2003.

[27] T. Kroeger, D. Long, and J. Mogul. Exploring the bounds of web latency reduction from caching and prefetching. InUSENIX

Symposium on Internet Technologies and Systems, 1997.

[28] K.-Y. Lam and C. Ngan. Temporal pre-fetching of dynamic web pages.ACM Information Systems, 31(1):149–169, May 2006.

[29] B. Lan, S. Bressan, B. C. Ooi, and K.-L. Tan. Rule-assisted prefetching in web-server caching. InProceedings of the ninth international

conference on Information and knowledge management, pages 504–511, McLean, Virginia, United States, 2000.

[30] R. Lempel and S. Moran. Optimizing result prefetching in web search engines with segmented indices.ACM Transactions on Internet

Technology, 4(1):31–59, February 2004.

[31] T. S. Loon and V. Bharghavan. Alleviating the latency and bandwidth problems in WWW browsing. InProceedings of USENIX

Symposium on Internet Technologies and Systems, pages 219–230, 1997.

[32] E. Markatos and C. Chronaki. A top-10 approach to prefetching on the web. InProceedings of the INET Conference, 1998.

[33] M. Molina, P. Castelli, and G. Foddis. Web traffic modeling exploiting tcp connections’ temporal clustering through html-reduce.IEEE

Network Magazine, 14(3):46–55, May 2000.

[34] A. Nanopoulos, D. Katsaros, and Y. Manolopoulos. Effective prediction of web-user accesses: a data mining approach. InProceedings

of of web usage analysis and user profiling workshop, pages 504–511, San Fransisco, CA, 2001.

[35] V. Padmanabhan and J. Mogul. Using predictive prefetching to improve world wide web latency. InProceedings of the ACM SIGCOMM

Conference, pages 26–36, 1996.

[36] T. Palpanas and A. Mendelzon. Web prefetching using partial match prediction. InProceedings of Web Caching Workshop, San Diego,

California, March 1999.

[37] A. B. Pandey, J. Srivastava, and S. Shekhar. Web proxy server with intelligent prefetcher for dynamic pages using association rules.

Technical 01-004, University of Minnesota, Computer Science and Engineering, January 2001.

[38] J. Pitkow and P. Pirolli. Mining longest repeated subsequences to predict world wide web surfing. InProceedings of the Second

USENIX Symposium on Internet Technologies and Systems, Boulder, Colorado, USA, October 1999.

[39] M. Rabinovich and O. Spatscheck.Web Caching and Replication. Addison Wesley, 1st edition, December 2001.

[40] A. Riedl, T. Bauschert, M. Perske, and A. Probst. Inverstigation of theM/G/R processor sharing model for dimensioning IP networks

with elastic traffic. InFirst Polish-German Teletraffic Symposium PGTSDresden, September 2000.

[41] R. Sarukkai and S. Clara. Link prediction and path analysis using Markov chains. InProceedings of the Ninth International World

Wide Web Conference, pages 377–386, Amsterdam, The Netherlands, 2000.

[42] S. Schechtera, M. Krishnanb, and M. Smithc. Using path profiles to predict http requests. InProceedings of the 7th International

World Wide Web Conference, pages 457–467, April 1998.

35

[43] W.-G. Teng, C.-Y. Chang, and M.-S. Chen. Integrating web caching and web prefetching in client-side proxies.IEEE Transactions on

Parallel and Distributed Systems, 16(5):444–455, May 2005.

[44] N. J. Tuah, M. Kumar, and S. Venkatesh. Resource-aware speculative prefetching in wireless networks. InWireless Networks Journal,

volume 9, pages 61–72, 2003.

[45] A. Venkataramani, R. Kokku, and M. Dahlin. TCP Nice: A mechanism for background transfers. InProceedings of the 5th Symposium

on Operating Systems Design and Implementation, volume 36, pages 329–343, 2002.

[46] A. Venkataramani, P. Yalagandula, R. Kokku, S. Sharif, and M. Dahlin. The potential costs and benefits of long-term prefetching for

content distribution. InThe Sixth Web Caching and Content Distribution Workshop, 2001.

[47] B. Wu and A. D. Kshemkalyani. Objective-optimal algorithms for long-term Web prefetching.IEEE Transactions on Computers,

55(1):2–17, 2006.

[48] Q. Yang, H. H. Zhang, and T. Li. Mining web logs for prediction models in WWW caching and prefetching.

[49] I. Zukerman, D. Albrecht, and A. Nicholson. Predicting users’ requests on the WWW. InProceedings of the 7th International

Conference on User Modeling, pages 275–284, 1999.

