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Abstract

Network congestion remains one of the main barriers to the continuing success of the Internet. For Web users,
congestion manifests itself in unacceptably long response times. One possible remedy to the latency problem is
to use caching at the client, at the proxy server, or within the Internet. However, Web documents are becoming
increasingly dynamic (i.e., have short lifetimes), which limits the potential benefit of caching. The performance of a
Web caching system can be dramatically increased by integrating document prefetching (a.k.a. “proactive caching”)
into its design. Although prefetching reduces the response time of a requested document, it also increases the network
load, as some documents will be unnecessarily prefetched (due to the imprecision in the prediction algorithm). In
this study, we analyze the confluence of the two effects through a tractable mathematical model that enables us
to establish the conditions under which prefetching reducestieeageresponse time of a requested document.

The model accommodates both passive client and proxy caching along with prefetching. Our analysis is used to
dynamically compute the “optimal” number of documents to prefetch in the subsequent client’s idle (think) period.

In general, this optimal number is determined through a simple numerical procedure. Closed-form expressions for
this optimal number are obtained for special yet important cases. We discuss how our analytical results can be used
to optimally adapt the parameters of an actual prefetching system. Simulations are used to validate our analysis
and study the interactions among various system parameters.

keywords — Web modeling, caching, proxy, prefetching, multi-fractal traffic.

I. INTRODUCTION
A. Motivation and Related Work

Web users can experience response times in the order of several seconds. Such response time:

often unacceptable, causing some users to request the delayed documents again. This, in turn, aggra:
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the situation and further increases the load and the perceived latency. Caching is considered an effec
approach for reducing the response time by storing copies of popular Web documents in a local cac
a proxy server cache close to the end user, or even within the Internet. However, the benefit of cach
diminishes as Web documents become more dynamic [21]. A cached document may be stale at the t
of its request, given that most Web caching systems in use todgyaasive(i.e., documents are fetched

or validated only when requested).

Prefetching (or proactive caching) aims at overcoming the limitations of passive caching by proactive
fetching documents in anticipation of subsequent demand redu&steeral studies have demonstrated
the effectiveness of prefetching in addressing the limitations of passive caching (e.g., [14], [17], [22
[23], [27], [31], [32], [35], [42], [46], [49]). Prefetched documents may include hyperlinked documents
that have not been requested yet as well as dynamic objects [37], [42]. Stale cached documents r
also be updated through prefetching. In principle, a prefetching scheme requires predicting the docume
that are most likely to be accessed in the near future and determining how many documents to prefet
Most research on Web prefetching focused on the prediction aspect. In many of these studies (e
[14], [35]), a fixed-threshold-based approach used, whereby a set of candidate files and their access
probabilities are first determined. Among these candidate files, those whose access probabilities exce:
certain prefetching threshold are prefetched. Other prefetching schemes involve prefetching a fixed num
of popular documents [32]. Teng et. al [43] proposed the Integration of Web Caching and Prefetchir
(IWCP) cache replacement policy, which considers both demand requests and prefetched documents
caching based on a normalized profit function. The work in [30] focuses on prefetching pages of que
results of search engines. In [47], the authors proposed three prefetching algorithms to be implemen
at the proxy server: (1) thhit-rate-greedy algorithmwhich greedily prefetches files so as to optimize
the hit rate; (2) thebandwidth-greedy algorithmwhich optimizes bandwidth consumption; and (3) the
H/B-greedy algorithmwhich optimizes the ratio between the hit rate and bandwidth consumption. The

negative impact of prefetching on the average access time was not considered.

1The termdemand requess used throughput the paper to refer to a user’s request for a document that needs to be displayed right aw:



Most of the above works rely on prediction algorithms that compute the likelihood of accessing a give
file. Such computation can be done by employing Markovian models [20] [35] [41][36]. Other works rely
on data mining for prediction of popular documents [38] [48] [29] [34].

Numerous tools and products that support Web prefetching have been developed [1]-[4], [6], [7], [©
[10]. Wcol [3] prefetches embedded hyperlinks and images, with a configurable maximum number
prefetched objects. PeakJet2000 [10] is similar to Wcol with the difference that it prefetches objects or
if the client has accessed the object before. NetAccelerator [9] works as PeakJet2000, but does not u:
separate cache for prefetching as in PeakJet2000. Google’s Web accelerator [4] collects user statistics,
based on these statistics it decides on what links to prefetch. It also can take a prefetching action ba
on the user's mouse movements. Web browsers based on Mozilla Version 1.2 and higher also supy
link prefetching [1]. These include Firefox [6], FasterFox [2], and Netscape 7.01+ [7]. In these browser
Web developers need to include html link tags or html meta-tags that give hints on what to prefetch.

In terms of protocol support for prefetching, Davison et al. [19] proposed a prefetching scheme that us
a connectionless protocol. They assumed that prefetched data are carried by low-priority datagrams 1
are treated differently at intermediate routers. Although such prioritization is possible in both IPv6 an
IPv4, it is not yet widely deployed. Kokku et al. [26] proposed the use of the TCP-Nice congestion contrc
protocol [45] for low-priority transfers to reduce network interference. They used an end-to-end monitc
to measure the server’s spare capacity. The reported results show that careful prefetching is beneficial,
the scheme seems to be conservative because it uses an additive increase (increase by 1), multiplic:
decrease policy to decide on the amount of data to prefetch. Crovella et. al [17] showed that a rate-cont
strategy for prefetching can help reduce traffic burstiness and queuing delays.

Most previous prefetching designs relied ostaticapproach for determining the documents to prefetch.
More specifically, such designs do not consider the state of the network (e.g., traffic load) in decidir
how many documents to prefetch. For example, in threshold-based scrahdessuments whose access
probabilities are greater than the prefetching threshold are prefetched. As shown in this paper, suc

strategy may actually increase the average latency of a document.



B. Contributions and Paper Organization

In this paper, we advocatedynamicprefetching approach, in which the prefetching threshold and the
number of documents to prefetch are dynamically optimized (on a per idle/active period) so as to minimi:
the averageresponse time for a demand requested document. Our analytical framework accounts for t
impact of prefetching on the traffic load, and hence on network delays. It also incorporates the effects
client and proxy caching. The objective function of our optimization ensures that prefetching is performe
only when it leads to a reduction in the average response time (compared with no prefetching).

Dynamic threshold-based prefetching was also considered in [24], [44] under a similar setup to tt
one assumed in this paper, but with only a single level of caching (browser cache). In our work, we al
consider proxy caching, which is becoming commonplace in today’s Internet access. Furthermore, in [2.
[44], it was implicitly assumed that clients have high-bandwidth connections relative to the capacity of th
shared access linlC(). Consequently, the authors concluded that it is beneficial to predditcdocuments
whose access probabilities exceed a given, network-state-dependent threshold. In our work, we cons
a more generic model than [24], [44], with no assumptions on the predictor or caching policies (in [44
the authors assumed an LRU caching policy). In contrast to [24], [44], our model accommodates vario
connection speeds, including dialup connections in which the client-proxy link rate can be lowér.than
Using this model, we find that it isot always good to prefetch all documents with access probabilities
greater than some threshold value, irrespective of what this value is. More specifically, there exists
“optimal” number (V;7) of documents to prefetch in a given OFF period and for a given client. We provide
a simple numerical procedure for determiniNg dynamically. For special cases, we expré§sis closed-
form as a function of various system parameters (access speed, average document size, cache hit
etc.). We discuss how to integrate our optimization results into the design of a real prefetching protoct
Extensive simulations of such an optimization-based protocol are conducted. From these simulations,
observe that due to the variability of file sizes, the file hit ratio of the combined prefetching/cachint
system is not a good measure of the likelihood of finding an arbitrary file in the cache. A better measu

is found in thebyte hit ratia Contrary to common belief, we observe that prefetching never degrades th



effectiveness of passive caching, so both can beneficially coexist in the same system.

The rest of the paper is organized as follows. In Section I, we present the network access model &
derive an expression for the prefetching gain as a function of the system parameters. In Section llI, \
optimize the prefetching gain and determine the optimal number of prefetched documents that minimiz
the average response time of a demand request. We use our analysis to study the effect of caching or
prefetching gain. In Section IV, we discuss how our analytical findings can be integrated into the desi
of a practical prefetching protocol. Simulations results are reported in Section V, followed by conclusior

in Section VI.

[I. M ODELING FRAMEWORK
A. System Architecture

As shown in Figure 1, we consider homogeneou$Veb clients who are connected to a proxy server

through dedicated lines (i.e., dial-up modems, cable, DSL, etc.), each of capasity per secord

The proxy server is connected to the Internet via an access link of cagadis. A client is assumed

to run one browsing session at a time. The case of multiple sessions will be treated in a future wot
Each client maintains a local cache that implements an arbitrary cache replacement policybeehe

file hit ratio of the cache. A very small portion of the client cache is reserved for prefetching, and i
called theprefetching cacheThe remaining portion is called thregular cache It was reported in several
studies (e.g., [11], [15], [16], [18]) that the hit ratio is proportional to the logarithm of the cache size
Hence, reserving a small portion of the cache for prefetching should have a negligible effect on the |
ratio of the regular cache, making this hit ratio almost independent of prefetching. The regular cacl
stores demand-requested documents, whereas the prefetching cache stores prefetched documents.
a document that happens to be in the prefetching cache is demand-requested, it is moved to the reg
cache. Accordingly, a document cannot be in both caches at the same time. Prefetched documents
brought to the client from either the proxy server (if available) or are retrieved from the original Wel

server. The proxy server maintains a cache for demand-requested documents, which is parameterize

%In Appendix A, we show how our model can be extended to clients with heterogeneous characteristics.



its hit ratio h,,..,. We assume thdt,,.,, is independent of prefetching (the proxy server does not cache
any prefetched files). We verify this point later in the simulations. Each client alternates between acti
(ON) periods, during which the client demand-requests documents, and idle (OFF) periods, during whi
the retrieved information is read by the user (see Figure 2). An ON period starts with the retrieval of &

html file (the main document which is usually followed by the retrieval of its inline objects.

Internet

Prefetching c oe_

Fig. 1. Components of the prefetching system.

Main document
Prefetching period
Inline objects — =

I OFF (think period) ON period
—

™~ Prediction algorithm starts
Main/proxy server hints

time

Fig. 2. Client behavior.

Each client runs a prediction algorithm that predicts future requests using the history of the client
requests along with hints from the proxy and original servers. The incorporation of such hints in the HTT
protocol is often done through the addition of new headers. These headers can have several direct
that can be used by servers and clients to agree on the level of cooperation and to exchange informa
[22]. For example, th&dTTP link headerspecified in RFC 2068 [5], provides the means for describing a
relationship between two resources (e.g., the requested file and other files). Other techniques for exchan
information includeprefetching agentswhich communicate with servers via separate HTTP requests for
files that contain statistical information [32].

Typically, the outcome of the prediction algorithm becomes available right after the receipt of the mai

document. We assume a generic prediction model, where the predictor computes & sahdidate files



Dy, D,, ..., Dy, and the probabilities of accessing them in the next user’s active pefiody; . . ., P;).

For example, one can adopt the scheme in [24] with a straightforward modification to account for hin
from the proxy server (the details of such a modification are described in Section IV-B). Note that th
events of requesting any two or more files in an ON period are not necessarily mutually exclusiv
i.e., X% | P, can be greater than one. The prefetcher uses the information provided by the predictor
prefetch files in the subsequent OFF period of the underlying client, starting with the file that has tf
highest access probability. The number of prefetched files depends on the length of the OFF period ¢
the state of the network. If the OFF period is long enough, prefetching ends before the start of the ne
ON period. Otherwise, if a demand-request is issued before the prefetching of a file has completed,
client instructs the proxy to stop forwarding the prefetched file in progress. Any partially prefetched fil
is kept in the prefetching cache to be used in any future access to such a file. A demand-request is f
served from the local cache (regular or prefetching cache), if the file is available. Otherwise, the reques
forwarded to the proxy server. If the proxy server does not have the requested file in its cache, it retrie\

it from the original server.

B. Prefetching Gain

In this section, we study the benefit of client-side prefetching when the average access delay is us
as the performance metric of interest. The improvement in the access delay is indicated by the ra
of the average access time of an arbitrary demand-requested file under prefettf)ing the average
access time of such a file without prefetching,£). We call this ratiothe access improvement ind@.
Prefetching is advantageous whén< 1. In the absence of client caching and prefetching, the proxy
server is assumed to retrieve files from the original servers at a\réites per second in response to
requests from all clients. Note that caching and prefetching can impact the rate of bringing files frol
their respective servers.

Prefetching always increases the hit ratio of the overall client cache system because prefetched files

not replace files in the regular cache (they are stored in the prefetching cache). Suppose that, on aver



a client prefetchesv, files in a given OFF period. Then, the average number of “useful” files is:
m = N,P (1)

Np p. _
whereP & ZN;;P (0 < P <1) is called theprefetching precisioi39]. The increase in the client-cache

hit ratio due to prefetching is given by:

(2)

where N, is the average number of files in an ON period. This says that for each demand-requested fi
there arey- useful prefetched ones.

If a client does not employ prefetching, a requested file will be brought from the local cache, the prox
cache, or the original server. The corresponding access times for a file of an averagarsiaet,, ... (),

andt...,(s), respectively. Accordingly, the average access time without prefetching is

Anp = (1= he)- {prozytproz(8) + (1 = prozy)tsers(3)} (3)

We will come back to the determination @f,,.(5) and t¢...,(5). Consider now the situation under
prefetching. Because prefetching is performed on a per-client basis during the OFF periods and beca
clients communicate with the proxy via dedicated links,, (5) will be the same as in the no-prefetching
case. Let’/_ ., (5) be the average access time from the original server when prefetching is employed. No

Serv

that ¢/, (5) # tsern(S) because prefetching files for a given client increases the traffic seen by othe

Serv
clients that share the same access link, which as a result affects the average access delay for all clie

Accordingly,

Ap = (1= he = An).(prorytproa(5) + (1 = hprony)ter, (5))- (4)

From (3) and (4), the access improvement index becomes:

(1 = he = An)-(hprozytoror () + (1 = hprowy)tsery (5))

] p—
(1 - hC)-(hproxytprox (5) + (1 - hproxy)tserv (3))

(5)

We now turn our attention to the computation ©f,.(3), ts(5), andt.,. (s). The queuing delay

Serv



at the (dedicated) proxy-client link can be safely ignored;,sg.(s) = 2. For t,.,(s) andt,,,,(s), we
assume they are dominated by the queueing/service delays at the (downlink) shared access link fr
the Internet to the proxy server. This assumption is justified when the pool of clients that share tt
access link is large, as is often the case in ISP networks. To computes) and ., (5), we model

the queueing/service delays at the proxy as an M/G/R Processor Sharing (M/G/R-PS) system. Riedl et
[40] suggested the use of this model for the dimensioning of IP access networks with elastic traffic al
concluded its suitability for Web delivery systems, particularly when file sizes are large. The rational
behind employing the M/G/R-PS approximation is that in the underlying Web delivery system, multiple
file downloads occur simultaneously over different connections (clients). These downloads are servic
by a shared link (processor) of capacity In our case, a client is limited by the bandwidthof the
dedicatedaccess link, which can be less thah The shared link behaves approximately as a queuing
system withR = C'/r servers. If there are customers in the system, then each customer gets a fraction
of the capacityC' that depends on. If n < R, then each customer gets a fixed fractioht’, i.e., up to

R flows can be served simultaneously, each at ardips. Ifn > R, then each customer gets a fraction
1/n of the total capacity. A special case of the M/G/R-PS system is when1. In this case, a single

client can fully utilize the capacity of the shared access link.

For the M/G/R-PS system, the mean file transfer time is given by [40]:

t=—fr(p) (6)

r

wherep £ \5/C is the traffic load over the access link arfigl is called thedelay factor a measure of

how link congestion affects the response time. It is given by

e Es(R, p)
et 4 22 7
(Rp)f 1
Ey(R,p) = £ . (8)
Tho G UL

Equation (8) is the familiar Erlang-C formula.

To apply the above model, we need to compute the traffic load with and without prefetghiagd
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Pnp, respectively). The average load in the case of no prefetching (with caching only) is given by:

(1= hproay)(1 — ho)AS
Prp = G : (©)

This represents the downlink traffic in response to client requests that cannot be satisfied from the clier
regular cache or the proxy cache.

When prefetching is implemented, an averageVpffiles are retrieved during the OFF period. Hence,

(1 = Pprozy) (1 — he = Ap + Np/Nop) A

Pp = C (10)

This is the load on the downlink in response to requests that cannot be satisfied from the regular, 1
prefetching, or the proxy caches, plus the extra prefetched tréﬁgx Note that for each demand-
requested file, there are on avera¥yg/N,, prefetched ones.

From (5) and (6), the improvement index reduces to:

1—h,— Ah)-(h/pTOZBy + (]- - hpromy)fR(pp)) )

L
(1- h0)~<hmory +(1- hpTowy)fR(/)np))

(11)

I1l. OPTIMIZATION OF PREFETCHING GAIN

In this section, we study the performance of a generic prefetching system. We use the analysis
Section Il to optimize the prefetching parameters. Intuitively, prefetching impacts the mean access tir
of a demand-requested file in two ways. It improves the overall cache hit ratio of the given client an
as a result, reduces the number of files that need to be retrieved from the remote servers. At the se
time, prefetching increases the load on the shared access link, which affects the retrieval time of dema
requested files destined to other clients (such files are retrieved from their original servers following
miss at the local and proxy caches). Hence, a client should be careful not to prefetch every file sugges
by the predictor, as this may lead to increasing the overall average access time.

Accordingly, we seek to compute the optimal number of files to prefetch in an OFF period. Befor
trying to find this optimal value, we need to study the behavior/ dds a function ofN,. It can be

mathematically shown (see below) that if prefetching a single file or a fraction of a file does not lea
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to any gain, then prefetching more files can only worsen the performance. On the other hand, if the
is a gain out of prefetching a single file or a fraction of a file, then there is a unique optimal value fo
the average number of prefetched files in an OFF period. The following theorem describes the gene
relationship betweer and N,. It also specifies the condition under which prefetching is beneficial.
Theorem 3.1:Suppose that files are prefetched in a decreasing order of their access probabilitie

starting from the most likely one. Then the following holds:
1) Let P(N, = 1) be the prefetching precision when, on average, only one document is prefetche
in an OFF period. In other words?(N, = 1) is the average access probability of the first file to

prefetch in the list of candidate files. For prefetching to be of a value, the following condition mus

be satisfied:
_ M pE
P(N,=1)> P, & ——"__ (12)
? (1+ Mpk,)
where

1—h
M dZEf (R pTOl’Z/)R - (13)
(1 - pnp)(]- - hpro:vypnp)

2) If prefetching a single file or a fraction of a file does not improve the mean file access time, the
increasing the number of prefetched files does not do any better.
3) If there is a gain out of prefetching, then the functibns convex inN,, with its minimum point
achieved at the optimaV, (denoted byN;).
Proof: See Appendix B. [ |
It is clear from Theorem 3.1 that the prefetching protocol must first decide whether to prefetch c
not based on the prefetching threshéld. If prefetching is deemed beneficial, thédy is computed by
solving % = 0 for N,. The convexity of the functiod (part 2 of Theorem 3.1) gives a simple numerical
recipe for computingV,; using a logarithmic-time binary search over the set of possible (integer) values
that V,, can take. For some special cases, a closed-form expressid¥); foan be obtained, as described

next.
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A. Prefetching Precision Independent &,

Consider the special case wheris independent ofV,, i.e., all files have the same access probabilities.
Accordingly, the condition in (12) translates into having the file access probability greate’thaim
this case, N, can be computed analytically for two special cases, as described in the following theoren

Theorem 3.2:Consider the case wheh is independent ofV,,, P> Py, andR = 1. Then,

1)
=B-VBi-4AC if B2 —4AC >0
Ny = (14)
Largest value forV, s.t. p, <1, otherwise
where
A ¢ (pnp ) (15)
o —2pnp(1 — )(1 Prp)
B P P (16)
(1 = 12c) Non
1—nh p
C 2 (1 poy)t - e (P2 1) 17
( p P) h/promy P ( )

2) If no proxy caching is usedh,,,, = 0), then the higher the number of prefetched files, the higher
is the prefetching gain.
Proof. See Appendix C. [ |
Figure 3 depictd versusN, for the special case wheh is constant (independent of,), with /. = 0
(no regular client cache),’ = 500 kbps, A = 6.25 files/s, s = 40 kbits, andN,,, = 15 files. In part (a),
we setr = 500 kbps (soR = 1), hprozy = 0, and Py, = 0.5. It is clear that whenP > P,,, I decreases
monotonically with the number of prefetched documents. In this dasan be maximized by prefetching
all documents with access probabilities greater tRgnin line with [44]. For the other case$,does not
necessarily decrease monotonically with the number of prefetched files. This is shown in parts (b) and (
For example, in part (b), wheR = 0.4, I decreases with the increase ), up to a certain point, after
which the trend is reversed. Furthermore, when> P,;,, the trend in the access improvement becomes
monotone. This is because the improvement in the hit ratio is more significant than the loss due to t

increased traffic. Moreover, prefetching cannot go beyond a point where the shared access0k is
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loaded.

Note that the threshold value decreases with the increase amd h,,..,, Which is intuitive since

increasingR or h,,.,, moves the delay bottleneck towards the client-proxy link.

N}
n

N

n

2
- _ 18
é P=01 _ . g $=0.03' 21'4 P:0;q3/ o
§1A5, s o §1.5 50 §1.2
s g ‘ § bezzii-
E 1 757:95 ;Q 1rs ' P=0.4, EO.S ‘ P
2 2 06 b0z
@ _ © @0.
<05 Froe 205 - 204
- Poog ; P05 ’ P-03
. fj=\0.6 ) 0.2 S .
0 5 10 15 20 %5 30 % 5 10 15 30 %5 30 610 20 30 40 50 6 70
Np Np Np
@R=1, (0) R = 10, Aprogy = 0, (©) R =1, hprogy = 0.6,
hproxy = O, Pth =0.5 Pth = 0.05 ]Dth =0.102

Fig. 3. I versusN, (C = 500 kbps, A = 6.25 files/s, 5 = 40 kbits, No,, = 15 files, h. = 0).

B. Prefetching Precision Varying with,

To study the performance of prefetching whéndepends onV,, we consider the following simple

relationship betweerd, and N,,:

Ap =K (1 —e ) (18)

where(0 < K <1 — h.. Based on this relationship, the lowest value for is 0 (no prefetching), while
its highest value id — h., since the overall cache hit ratiad(+ A,) cannot exceed one. Accordingly,
the prefetching precision is given by:

H(1—e M)

p= (19)

where H £ N,,, K. BecauseP < 1, the constant: is bounded { < a < —In(1 — 1))

Figure 4 shows the performance for the same system shown in Figure 3 buPwahying according
to (19). Consider the casB = 1 and h,,.,, = 0. In this case,” > Py, for N, < 7. When N, = 7,
prefetching all seven files with access probabilities greater fAanmproves the performancd 1),

but does not necessarily optimize it (e.g., prefetching six files is actually more beneficial than prefetchi
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seven files). For the other two cases shown in Figure 4, we can see that increasing the number of prefetc

files can worsen the performance, sometimes even whenpP,.

14

; ; ; ; ; ; : :
S R=Lh =0 |
oroxy |
& R=10,h =0 |
proxy oy
& ReLh 206

13

)
Iw
N

Access time improvement index (I)

0.8

0.7
0

Fig. 4. I versusN, for the caseP = 45“%””’” (C = 500 kbps, A = 6.25 files/s, 5 = 40 kbits, Non = 15 files, Py, = 0.5, he = 0).

Corollary 3.3: Consider the case whel = 1, hyyo.y = 0, and P varies with V. Then, prefetching all
files with access probabilities greater thBp is guaranteed to reduce the average access time comparet
to no prefetching.

Proof: The proof follows readily from par2 of Theorem 3.2. [ |

Theorem 3.4:For given P and N,, increasingR or hyrozy reduces the average access time.

Proof: See Appendix D. [ ]

According to Corollary 3.3 and Theorem 3.4, a prefetching system can prefetch all files with acce:
probabilities greater tha®,,. As can be seen in Figure 5, this solution reduces the average access tinr
but does not necessarily minimize it with respectMp This is because for a giveN,, the worst access

delay is whenRk = 1 and h,5y = 0.

Effect of Caching on Prefetching Gain

We now use our analytical results to study the interactions between prefetching, on the one hand, ¢
proxy and client caching, on the other. First, we consider the interactions between prefetching and prc
caching, settingi. = 0. Intuitively, one may think that proxy caching limits the value of prefetching. It

turns out that this is not always true. Specifically, for clients with low-bandwidth connectioss @),
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Access time improvement index (I)

0.7

0.6
0

Fig. 5. Effects ofR and hyrozy on I for the caseP = 4“%:“’” (C = 500 kbps, A = 6.25 files/s, 5 = 40 kbits, N, = 9 files,

Pin(R =1, hprozy = 0) = 0.5, he = 0).

the bottleneck is the client-proxy link. In this case, the reduction in the access time due to prefetching
file from the proxy cache is comparable with the reduction due to prefetching this file from its origina
server, especially when the load over the shared access link is light (i.e., Spnadllues). This situation

is depicted in Figure 6-a, wherg,,, — A, is observed to be insensitive tg,,,,. Note that as the load
over the shared link increases (by increasijg, thenA,,, — A, starts to become more sensitive/tg.,,, .

The behavior is different when is large (i.e., high-bandwidth user access), as the bottleneck shifts to
the shared access link between the proxy and the Internet. This is shown in part (b) of the figure wi
R = C/r = 1. At light load, not much change iA,, — A, is observed a%,,,;, increases. However, at
heavy load (e.g.)N, = 12), the time saving4,,, — A, initially increases with,,.,, (i.e., the prefetching
gain improves with better proxy caching), up to an optimal paifjt,., ~ 0.1, after which the trend is
reversedThis says that while proxy caching always contributes positively to the prefetchingAigin 4,
under hy,ro.y = 0 is always smaller tham,,, — A, under h,,,,, > 0), the amount of positive contribution
due to proxy caching is not always monotone With,,, .

Similar interactions between prefetching and client caching are observed, as shown in Figure 7. The lo
cache limits the number of prefetched files, which in turn limits the prefetching gain. But it also reduce
the load, which is advantageous for prefetching especially for clients with high-bandwidth connectior

(R =1) and for a heavily loaded system.
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IV. PRACTICAL CONSIDERATIONS

In this section, we discuss how our analytical model can be integrated into the design of a prefetchi
protocol. We first address the issue of estimating the model’s parameters and show how such estim:

can be used in performing optimal prefetching.

A. Parameter Estimation and Protocol Support

Initially, each client goes through a no-prefetching warm-up period, during which the client estimates i
own parameters, including. and V,,, (the number of demand-requested files in an ON period). The client

also estimates the relationship betwerand N,. This can be done by running a prediction algorithm
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without performing any actual prefetching. Each client reports this information to the proxy server, whic
uses it in estimating”;, according to (12), determining the prefetching gdinand computingV; for

each client. The proxy also estimates its own cache hit rfatig,,. By the end of the warm-up period,
the proxy will have computed for each client an approximatioih ofthe relationship betweeR and N,

and the average length of the ON period. Clients periodically update the proxy with estimates of the
parameter values, which the proxy uses along with the estimated jgatb(recompute the prefetching
parametersK,;, and NV,).

If the proxy determines that prefetching is beneficial (base®grand P), it uses (11) to optimize the
number of files each client can prefetch. The proxy provides each client wi¥yitsy piggybacking this
information in its response to the client. Once a client had/jtsit can start prefetching in the subsequent
OFF period. We assume that; can take non-integer values, where the fractional part means that only
part of a file is prefetched using, for example, the HTFf&8Rge requesiessage [8]. This feature is critical
because of the high variability of file sizes in the Web. Upon receiving a demand-request, prefetchir
stops, and all prefetched data are saved. When a file that was partially prefetched is demand-reques
only the remaining portion of this file is retrieved.

Prefetching needs to be implemented fairly for clients with different traffic demands. A reasonabl
approach is to assign weights to clients depending on their (downlink) traffic demands. The higher tl
weight assigned to a client, the higher the volume of prefetched traffic that is allowed for that client. Th
assigned weights can be easily computed by the proxy based on the observed loads of different client

the shared link.

B. Forecasting Demand-Requests

Several schemes for Web traffic prediction have been proposed in the literature (e.g., [14], [23], [24
[32], [35], [42], [49]). Any of these schemes can be integrated into our prefetching protocol. Withou
loss of generality, we can consider for our simulations the predictor by Jiang et. al [24], with som
modifications to include hints from the proxy server. In [24], prediction is done at the client side usin

the client’s history along with hints from the main server. Two types of counters are maintained at th



18

client for each html document: a page counter and a set of link counters. Any time an html document
is accessed, its page counfey is incremented. IfX has a link to an html document andY is accessed
from X, then the link counteL x y is incremented. Following each access to docurdénthe predictor
computes the probability of accessing every document that is linked KorRor a linked document’,

this probability is given byLlf—);Y. If not enough historical information is available for computing this
probability, the client relies on hints from the proxy, which runs a similar prediction algorithm but basec
on the aggregate traffic seen by all clients. The proxy also maintains some hints from the original serve
that can be used if the information collected by the proxy is not statistically sufficient. The predictior
algorithm at the proxy requires that clients provide the proxy with information about the html documer
from which the request is initiated. The proxy also provides the server with similar information.

Note that the above predictor does not consider dynamically generated files, i.e., files that are genere
by a server-based script whose input parameters are supplied by the client. This does not change
qualitative nature of our results, since our analysis relies on a generic output for the prediction algorith
(the k files that are most likely to be demand requested in the next ON period along with their acce:
probabilities). Predictors for dynamic content have been proposed in the literature (e.g., [28], [37]), at

can be readily integrated into our adaptive prefetching design.

V. SIMULATION RESULTS

The theoretical results in Section 11l were based on average-case analysis of an idealized queuing mo
To validate the appropriateness of these results, we simulate a generic prefetching protocol that integr:

into its design the optimization of the previous section.

A. Simulation Setup

We consider50 clients who access the Web through a common proxy. The proxy cache implement
an LRU policy with h,,.,, = 0.4 (the cache hit ratio is controlled by adjusting the cache size). Each
client has a large local cache. One percent of this cache is reserved for prefetching. Local caches &

implement the LRU caching policy.
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B. Traffic Model

We use model-based synthetic traces to drive our simulations. Although real (measured) traces wo
be preferable, we do not rely on them for two reasons. First, most Web traces available in the pub
domain are captured at the server, whereas our simulations require client-side traces. The few availe
client-side traces are not sufficient to reproduce the behavior oh&pendentlients, especially that
they do not contain information about the client's ON/OFF behdviSecondly, when using real traces
it is not possible to control the traffic parameters (e.g., average durations for the ON and OFF perioc
average document size, etc.), which we need to study different scenarios.

To capture the essential statistical properties of Web traffic, we extend the model in [12] to genera
client-side traffic. The model in [12] is based on multifractal processes, which are more flexible tha
monofractal (self-similar) models in describing traffic “irregularities” at different time scales. In its original
form, the model in [12] captures the temporal locality, spatial locality, and popularity of the aggregate We
traffic seen by the proxy server. Such traffic represents responses to requests for main html docume
from all clients. Each html document can have one or more inline files (e.g., images). As suggested in [1
[33], a heavy-tailed Pareto distribution is used for the number of inline objects in an html document. Tt
OFF period and the file size are generated according to heavy-tailed lognormal distributions [13], [1€
[33]. The duration of the ON period is specified by the requested main document and the time it tak
the client to retrieve such a document and its inline files. Table | summarizes the distributions used
traffic generation along with their parameter values (taken from [13], [33]).

The model in [12] was not intended for client-side traffic, but rather to capture the properties o
the aggregate traffic destined to a group of clients. To synthesize client-side traffic, we start with
no-prefetching simulation run, in which each client is represented by an ON/OFF profile based on tt
distributions shown in Table I. The aggregate stream is arranged as a vector. When a client starts a r
ON period, it selects a document from the top of that vector. This document is considered as the mz

html document in the current ON period. Each unique document in the vector is assigned a group

%It is possible to extract multiple sequences from one real trace by arranging this trace as a circular chain and extracting several seque
by randomizing their starting times within the circular chain. However, this method results in correlated sequences.
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Component| Distribution | f(x) Parameters

OFF period| Lognormal | - le,ze%w o= 1.57
=275

File size | Lognormal | - ;ﬂaQe%W o=1.82
p1=06.78

Files per | Pareto f(z) = ak®x=@+D) | k=1

Web page a=1.42

TABLE |

PROBABILITY DISTRIBUTIONS USED IN THE SIMULATIONS.

OFF penod

e

Client 0

l > [ e[774 .

inlinefiles
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Aggregate traffic
e

Time

Fig. 8. Client-side traffic generation process.

unique inline files. Moreover, each file (main document or inline file) is assigned a size that is sample
from the proper distribution. The client retrieves the main document with its inline files from the local
cache, proxy cache, or from the original server if the document has not been cached before. The outcc
of this simulation run is streams of client requests that are saved in several files to be used in the m.
simulation experiments. Figure 8 depicts an example with three clients. The three clients start their fil
ON periods at timesg,, t,, andts, respectively, where; > ¢; > t,. According to these times, Client
2 selects the top documend) in the vector of aggregate requests. The first and the third clients selec
documents”' and B, respectively. It takes the second client a periodiQfseconds to retrieve document
A and its preassigned inline filesl{ and A,), and it takes it a period aft, seconds to read the retrieved

information (OFF period). At the end of the OFF period, this client starts a new ON period, while the

other clients are still in their OFF periods. Hence, Client 2 selects documestits next main document,

and so on.
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Fig. 9. Mechanism for traffic prediction.

C. Prediction Model

Because prediction is not the focus of our work, for our model-validation purposes, we adopt an artifici
predictor whose accuracy can be controlled. The predictor works as follows. Each client is assumed
know the future with certain accuracy and has a window through which it sees this future. To emulate
particular relationship betweehR and N, the client considers a window of, files (number of files to
prefetch) that are not in the local cache. Tttefile in the candidate list is considered for prefetching with
probability P;. If a file is not selected for prefetching, it means that the predictor made a wrong decisior
In this case, the client retrieves a dummy file whose size is sampled from the file size distribution. Th
dummy file is either retrieved from the proxy or the original server based on the estimated vajyg. of
Figure 9 illustrates the main idea behind this artificial predictor. In this figure, the client needs to prefetc
three files in the current OFF period. The first three files that are in the future window and are not local
cached areB,, B,, andCy. To capture a specific relationship betwerand N, the access probabilities
Py, P, and P; for the three candidate files to be prefetched are sé to iP(i) — >={ ' P}, i = 1,2,3.

The client prefetches filé3; with probability P;, and with probabilityl — P; an alternative dummy file

is prefetched. The same thing is done for files and C,. Accordingly, the precision in predicting the

three files is@, which reflects the mimicked(N,).
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D. Validation ofA;, and p,

In this section, we validate our analysis with regard to the effects of prefetching on the client’'s overa
cache hit rate and on the system loag)( In a given simulation run, each client tries to prefetch a fixed
number of files ¢) in every OFF period, if possible. Each run outputs the access improvement inde:
(I), the average hit ratios for all caches, the average system load, and the average number of prefetc
documents in an OFF periodVf). Note thatV, can be less than because some OFF periods are not
long enough to retrieve akl files. Figure 10 compares the increase in the client cache hit ratio due tc
prefetching with its numerical counterpart computed using (2). It is clear from the figure that the model
very accurate. The average load vers(gsis depicted in Figure 11. Overall, the modeled and simulated
loads are sufficiently close to each other, with a slight deviation wkgms high. This deviation comes
from the slight change in,,,,, due to prefetching, which we assumed in our analysis to be independen
of prefetching. Although we assumed that prefetched documents are not cached at the proxy, prefetct

can affecth,,.., as it changes the stream of Web requests seen by the proxy.

0.35
—< Model

—©— Simulation

03f /

025 //

02} d
S
Y,

Increase in hit ratio due to prefetching

Fig. 10. Increase in the client's cache hit ratio due to prefetching veNsuashen P = 35(1%:18% (r = 500 kbps, C' = 500 kbps,
A = 8 files/s, s = 38 kbits, hprozy = 0.39, he = 0.31).

E. Validating the Access Improvement Index

Figure 12 depictd versusN,,, computed using the analytical model and the simulations. The two plots

depict a similar trend. Surprisingly, the prefetching gain in the simulations is lower than the one obtaine
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Fig. 11. Average system load under prefetching verSydor the caseP = 35(1%:18%) (r = 500 kbps,C = 500 kbps, A\ = 8 files/s,

5 = 38 kbits, hprozy = 0.39, he = 0.31).

using the analysis. One reason for the difference is that the analysis relies on the average file size, whe
the file size is highly variable (follows a heavy-tail distribution). To test the effect of the file size on the
average access delay, we reran the simulations, assigning to all files the same size (average file size).
outcome of this simulation experiment is shown in Figure 13. It is clear that our analysis needs to accot
for the high variability in the file size. This can be done by modelling the average access delay for
single byte of data. Hence, we use the byte hit ratio of the caching system to compute the probability
finding an arbitrary byte of data in a given cache. Accordingly, the average access time of an arbitra

byte is computed as:

Ap(byte) = (1~ e = 53) ey + (1= Pyrowy) () (20)

whereh, is the regular-cachbyte hit ratio, h;ozy is the proxy cache byte hit ratio, an¥, is the increase
in the local cache byte hit ratio due to prefetching. To validate this revised model, we reran the simulatio
to compute the byte hit ratios for all caches. Figure 14 shows the numerical results for the original ar
revised models, along with the simulation results. It is clear that the results for the revised model a
quite close to the simulations.

Based on the above revised model, we run new simulations using the following adaptive prefetchi

mechanism. Each client dynamically adjusts the number of files to prefetch at the beginning of ea
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Fig. 12. I versusN, (P = 35“%”“ r = 500 Kbps, C' = 500 kbps, A = 8 files/s,5 = 38 Kbits, hprozy = 0.39, he = 0.31).
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OFF period based on the estimated system load, the prefetching precision, and the proxy and regt
caches’byte hit ratios. As before, these hit ratios are estimated from historical data. The increase in tr
local cache hit ratio due to prefetching\f) is estimated based on the number of files the client intends
to prefetch. The estimated, is used to compute the increase in the local cache byte hit ratio due to
prefetching (). This is done by multiplyingA, by a correction factor, which represents the average

ratio of prefetching cache byte hit ratio to its file hit ratio that can start with one and gets updated during
continual prefetchingNote that for the purpose of optimizing,, A, must be estimated for several values

of N,. Figure 15 shows the simulation results for the adaptive prefetching protocol. In this plot, we als
show the results under non-adaptive prefetching, where we run several simulation experiments and
each experiment we séf, to a given value. From the non-adaptive prefetching simulation, we found that
N, ~ 5.3 files. Based on the simulation of the adaptive protocol, the average number of prefetched fil
was found to beV, = 5.6, which is very close taV;. Moreover,! for the adaptive protocol is very close

to I(N}).
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Fig. 15. I versusN, (P = ”’“—Ni r = 500 kbps,C' = 500 kbps, X = 8 files/s, S = 38 kbits, hprozy = 0.39, he = 0.31).

VI. CONCLUSIONS

In this paper, we analyzed the performance of a generic client-side prefetching system. We conside
the access time improvement as the performance metric. Our model considers both proxy and clie

caches. Based on our analysis, we obtained an expression for the prefetching threshold that can be
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dynamically to optimize the effectiveness of prefetching. We proposed a prefetching protocol that uses ¢
analytical results for optimizing the prefetching gain. We investigated the effect of the caching system ¢
the effectiveness of prefetching. We discovered that prefetching all documents with access probabiliti
greater than a given threshold value does always lead to the minimum access delay, as was reported
in previous works. This is only true for the case when clients have high access speeds relative to |
access speed of their common proxy. For the other cases, the access delay improves with the increas
the number of prefetched documents until a certain point, after which the trend is reversed. Moreov
we found that prefetching is always profitable even with the existence of a good caching system. We al
observed that the high variability in Web file sizes limits the effectiveness of prefetching.

In this work, we assumed that each client runs one browsing session at a time. The one-sess
assumption is acceptable for clients with low-bandwidth connections. The case of multiple sessions

more common for clients with high-bandwidth connections, which we leave for a future work.

APPENDIX
A. Model Extension to Heterogenous Clients

The model in Section Il deals with a homogenous environment in which clients have the same acce
speedr, the same cache hit rate, and the same ON/OFF statistics. In this section, we explain how our
model can be extended to clients with heterogenous characteristics by employing a generalized vers
of the M/G/R-PS system. Such a queueing system has recently been studied by Kawahara et al. [:
According to the extended model, client = 1, ..., n, is characterized by an access speg@ cache hit
rateh.,, an average demany, and an average ON duratid¥,,, (in files). This client getsnin{r;, Cri }

Z;;l i
of the shared capacity. We now show how to derived the access improvement index under this model

First, we determine the mean file transfer time for clieit;). Similar to? in (6), ¢; is given by:

fi= (o) (21)

where f5. is the same as the delay factfy in (7) but with R, £ C/r; replacingR. To determing; with

and without prefetching, we need to compute the corresponding loads over the shared accessatidk,
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Pnp, reSpectively, which are given by:

1= Pprogy) S0 (1 — he )AS
prp = L= o) EA(1 = ) 2
(1 B hpro:cy) [Z?ﬂ(l B h‘Ci B Ahi + Npi/Noni))\i] S

Pp = C (23)

where A, = N, P/N,,, is the increase in clients hit ratio due to prefetching and,. is the average
number of files that client prefetches in its next OFF period. Equations (22) and (23) are the counterpart
of (9) and (10) for the homogeneous case. Accordingly, the mean access times without and with prefetch

for an arbitrary file that is demand-requested by clieate given by:

Afy = (1= he)- Dprosytproni(8) + (1 = hyrozy Vtser.i(5)] (24)

Aéi) = (1 - hci - Ahi)' [hpmfvytpmm(g) + (1 - hpmﬂcy)tlsem,z‘@)} (25)

wheret,, 0. i(3), tserv.i(5), andt.,,. ,(s) are the same 85,0, (5), tseru(S), andt’

serv,i serv

(), but for clients.

From (24) and (25), we can compute the access improvement index for client

o AD (=D = D) [orontyroni(5) + (1= Byrasy) i (5) 06

' ASI)) (1 - hcl) [hpro:cytpro:c,i (E) + (1 - h/proa:y)tserv,i (E)] ‘
Note that fori = 1,...,n, I; is a function of N,,, which is the parameter to be optimized. For the
underlying heterogenous case, determining the cost function to minimize with respégt 19,,,..., N,

requires specifying a notion of fairness. For example, if clients are to be treated equally, then the cc
function to minimize is simply given by = (>-" , I;)/n. However, it may be argued that such a cost
function is not fair to clients with fast connections, which should, arguably, be allowed to prefetch mor
files than clients with slower connections. On the other hand, it may also be argued that slow clients ben:
more from prefetching than fast clients, and so they should be given more weight in the cost function.
general, all of these notions of fairness can be handled by minimizing a weighted cost funttion; 7;,
where the weightsuy, ..., w, are determined based on whatever concept of fairness is being adoptec
Note that similar ta/, the function}_" ; w;/; is convex in the optimization parameters, so it can be easily

minimized using numerical approaches.
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B. Proof of Theorem 3.1

First, we show that if prefetching a single file or a fraction of a file does not improve the mean file
access time, then increasing the number of prefetched files does not do any better. To do that, we exp
I as the product of two functiong (z) and f»(x), wherez is the average number of prefetched files in

an OFF period:

where
A = IR 2t o (28)
fo(x) £ A+ Bfr(py(z)) > 1 (29)
h
A prory 30
Pprozy + (1- hprowy>fR(pnp) (30)
B £ L= Moy (31)

hproxy + (1 - hpromy)fR(pnP).

We approximatefr(p) in (7) by:

(32)

The goodness of this approximation is demonstrated in Figure 16.

5

T T
— Exact
Approximation

0 0.1

Fig. 16. Approximation offr(p) by 1/(1 — p*).
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_ddy
It is easy to show thaf; (x) deceases monotonically with sincedf;(f =19 <0 forall 0 <z < o0.

Note thatdj—zh > 0, as prefetching always increases the overall cache hit ratio.

On the other handf,(z) increases monotonically with, considering that for all < x < co we have

dfs(x) _ pdfrlpy) _ 5 Boy™" dpy (33)

dr dx (1-— pﬁ)QE -

Note that%{' > 0, because prefetching always increases the network traffic unless the predidtidfitis
accurate.

Now if we can show thaf,(x) decreases at a slower rate than the rate at wfii¢h) increases, then
we can say for sure that there is no gain out of prefetching more files if prefetching a single or a fractic
of a file is not beneficial. This also assures that if there is a gain out of prefetching, then there is a uniq
value for N;. Formally, we need to show thﬂ% < 0 and % > (. Consider the first inequality.

Recall thatA,, = %(:) Then,

dfi@)| 1 &PA,
dv 1 —h, da?
_ (1_}1)]\[@”(%)%215’@))<0. (34)

Note thatP'(x) < 0 becauseP(z) is a monotonically decreasing function in Also, P”(x) < 0 since

the popularity of Web files follows a Zipf-like distributionP( ~ z% 0 <a<l).For %, we have

d|fy(x)] _ BRp*((R—=1)(1 —p;) + 208 R(%2)?)
dx (1—plt)?

B.Rpi=' d?p,

(= R d?

+

> 0. (35)

Formally, for prefetching to be beneficial, the following condition must be satisfied:

dfy

dx

df,

li
> lim d

z—0t

lim
z—0+




—dAp BRpR—l dp
Sl 8 P R A [
—dA),
H : dx
it xli%lﬂL 1-— hc -
BRpE-1 1 dAy A

lim | ——Lr (1 = hproay) (5= = — )~
z—07t (1 — pf)Q Non de ~ C
. .| P (2)x + P(2)
iff 1 >

acl%lﬂL Non(l — hc)
BRpE! 1 P(x)z+ P(x)

lim |2 (1 — Aprogy)( -
z—0+ (1 — pﬁzz Non Non

Non(1 = he)

BRpf! 1 lim, o+ P(x) A5
5 (L= Pyproay)( - )=
(1 pnp) Non Non C

Note thatlim,, .o+ P(z) = P(1). Defining M £ 28, — (1_p;1;(f;p;-;§ggng)
_ MpE
(1) pnp .
1+ Mpﬁp

C. Proof of Theorem 3.2

Let x be the number of prefetched files. Thancan be expressed as

Mg(z)
I=1L
9O+ T ge) —
where
glz) £ 1—he— Ay(z)
L d:ef hproxy
(1 = he)(Pprozy + (1 = Nprozy) fR(Pnp))
M d:ef 1— hproxy

(1 = he) (Rprowy + (1 = hprovy) fr(Pnp))
a = (L= Tprozy)p

g O

NO?’L.

, we end up with
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(36)

(37)

(38)
(39)
(40)
(41)

(42)
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Now to optimizel, we Iet% = 0 and solve forz:

ar _
dr

Mg'(z)(1 — Bx) + MB3g(x)
(1 - ag(z) — Br)?

Ly (z) + = 0. (43)

With A, (x) defined according to (18)'(x) reduces to];—i. Solving (43) forx yields

=B=VBoAAC if B2 —4AC >0
x = { Largest number of candidate (44)
files subject top, < 1, otherwise

where, A, B, andC' are given in (15), (16), and (17), respectively.
To prove the second part of Theorem 3.2, we know that for prefetching to be of a value, we must ha

I < 1. Therefore,

I <1
(1 — he = An) (Pproay + (L = Pprowy) fr(pp))

i (1 = he) (Pprozy + (1 = hprowy) fr(0np)) <1

iff (1 —he — An) < Pprozy + (1 = hproxy) fR(Pnp)
(1= he) horory + (1 = hproay) f1(Pp)

iff 1— PN, horozy + (1 = hproay) fR(Pnp)

(]- - hc)Ncm hprozy + (]- - hproxy)fR(ﬂp) .

Taking Aoz = 0, we end up with

Pu < JR(Pnp)
(1 - hC)Non fR(pp)

< frR(pnp)(1 = pp).

1—

Becausep, is linear inz, both sides of the above inequality decrease linearly witdence, if the
rate at which the left-hand side (LHS) decreases at 0 is greater than the rate of the right-hand side

(RHS), then increasing the value ofincreases the reduction ih(improvesI).
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For the rate of the LHS to be greater than the rate of the RHS, we must have the following:

P (1- hproxy)(l — P)p

N
(1 - hC>Non (1 - Pnp>Non

=P > py

which is the threshold value that is necessary for prefetching whenl and Ao,y = 0

D. Proof of Theorem 3.4
ConsiderA, as defined in (4) angr(p) as defined in (32). Then,
/)5 In(p,)

dA,
IR (1 —he —Ap)(1 - hpmry)wa

(45)

which is less than zero becausgp,) < 0. Accordingly, the access time with prefetching decreases with

R.

For hyyozy, We have

A 1 he— )

dhfpro:ry
a 1 — (1 = hprozy) "W + R(1 — hgomy)w)
(1 = (1 = hproay) "W)?
where
N, )>\§

1 —h,—A .
W =( he h+NonC

(46)

(47)

But 1 — (1 — hypoay) "W = (1 — pff) < 1. Therefore,1 — (1 — hyrory) "W > (1 — (1 — hyrosy) "W).

Accordingly, hi}i:‘:y < 0 and the access time with prefetching decreases iijth.,.
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