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Florence Cĺevenot-Perronnina,∗, Philippe Naina, Keith W. Rossb

a INRIA, BP 93, 06902 Sophia Antipolis, France
b Polytechnic University, Six MetroTech Center, Brooklyn, NY 11201, United States

Available online 10 August 2005

Abstract

We propose a multiclass fluid model for BitTorrent-like content-distribution systems. The new model can model
heterogeneous peers, in which peers have different access bandwidths. The model can also model BitTorrent-like
systems which provide differential service (for example, first class and second class service) to the participating
peers. The fluid model leads to a non-linear system of differential equations with special structure. For the service
differentiation problem, we prove that the system of differential equations admits a unique stable equilibrium,
that we compute in closed-form. We also provide the average download times for both classes. For the bandwidth
diversity problem, we show that the system of differential equations has a stable state that may depend on the initial
conditions. We compute the average download time of both classes for each reachable steady-state.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In a traditional client–server content-distribution system, such as distribution from an ordinary Web
server, a large number of clients download content from a single server. If the single server cannot keep
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up with the demand from all the clients, the load can potentially be handled by replacing the server with
a server farm and increasing the access bandwidth from the server farm. Although it is possible in theory
to match any demand with a sufficient number of servers and sufficiently wide access pipes, the cost can
easily become prohibitive.

BitTorrent is a content-distribution booster which enables a content provider to distribute popular
content to large number of clients without the need of large server farms and expensive high-speed Internet
connections. The idea in essence is to split the file into small chunks, distribute different chunks to different
downloading peers, and then have the different downloading peers obtain their missing chunks from each
other. In this manner, the clients become servers, contributing bandwidth to the content-distribution
system. This approach has proved to be a highly successful mechanism to distribute popular content at
low cost. In BitTorrent terminology, the servers that make available the entire file are called “seeds”. The
clients that are collecting and sharing chunks are called “leechers”. Once a leecher has downloaded the
entire file, it becomes a seed for as long as it continues to distribute chunks to other clients. The BitTorrent
protocol includes a “tit-for-tat” mechanism to ensure that leechers not only download content but also
upload content[1]. BitTorrent is a peer-to-peer system since clients (peers) upload chunks directly to
each other.

Qiu and Srikant[2] developed a tractable fluid model for BitTorrent-like content-distribution systems.
The model sheds insight on throughput, average download times, and stability of BitTorrent-like systems.
Although the model is elegant and tractable, it has limited applicability. First, the model assumes that
all peers are homogeneous, with all peers having the same upload and download capacity. Currently,
peers have diverse bandwidth characteristics, including dial-up modem access, broadband access (cable
and ADSL), and high-speed Ethernet access. Second, the model does not allow for the exploration of
distribution systems that provide application-layer differentiated-services. Indeed, it is natural to conceive
of a BitTorrent-like system in which there are, say, first-class peers and second-class peers. The first-class
peers pay more (in some sense) and should receive better service – that is, shorter average download
times – than the second-class peers. This is a form of “application-layer differentiated-service” as the
service differentiation would be provided by the BitTorrent-like application rather than by the core of the
Internet. Intuitively, BitTorrent-like systems could provide differentiated-service by having the seeds and
leechers allocate more of their upload bandwidth to first-class peers.

In this paper we propose a deterministic multiclass fluid model for BitTorrent-like content-distribution
systems. The new fluid model can model both heterogeneous peer access and multiple differentiated-
service classes. Our multiclass fluid model results in a system of differential equations which generalize
the single-class equation in[2]. The equations are significantly more complex and difficult to solve, as
they explicitly distinguish between the various classes. The system of differential equations are so-called
“linear switched systems” which are non-linear differential equations with special structure. Nevertheless,
for a number of important special cases, we explicitly solve the equations, obtaining closed-form solutions
for average download times for each of the classes.

In particular, we consider the special case where downloaders leave the system immediately after
completing their download. This is a worst-case scenario since altruistic seeds could instead stay in the
system when they have completed their download, contributing bandwidth and providing any missing
chunk to other peers. For the service differentiation problem we prove that the system of differen-
tial equations governing the system dynamics admits a unique stable equilibrium, that we compute in
closed-form. From this result, we find the average download time for each class of peers and show
how this result can be used to achieve service differentiation among the peers. We also indicate to
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what extent our results remain valid when seeds stay in the system for a non-negligible amount of
time.

In the second part of the paper, we address the bandwidth diversity problem. We show that the system
of differential equations has a stable stationary state that may depend on the initial conditions. We identify
all stationary solutions and compute the average download time associated with each solution. Last, we
minimize the maximum average download time of both classes, regardless of the initial conditions.

The paper is organized as follows. Section2 reviews related work. In Section3 we introduce the
multiclass model and derive the equations governing the system dynamics.Sections 4 and 5provide
results for the service differentiation problem and bandwidth diversity problem, respectively. Section6
concludes the paper.

2. Related work

Several models of BitTorrent-like networks have been proposed, beginning with[3] which studies
their transient and steady-state behavior using, respectively, branching processes and numerically solved
Markov chains. Then Qiu and Srikant[2] proposed the simple deterministic model described in Section1,
which was inspired by Yang and De Veciana[3].

A first multiclass fluid model of BitTorrent-like networks based on[2] was proposed in[4]. The authors
study the specific bandwidth diversity problem through a comparison with the single-class homogeneous
model in[2]. This is done in the case of symmetric access links and focuses on parallel download, using
max-min fairness to numerically compute connexion rates. Lo Piccolo et al.[4] presents a significant
number of major differences with the work we present in this paper. Mainly, we propose a generic
framework designed to study for instance the resource allocation problem at individual peers. We then
apply our general model to two important problems, including bandwidth diversity, from an optimization
point of view. In addition, we address stability issues for each problem, and study carefully the boundaries
between the working regions defined by the system.

3. Multiclass model

In this paper we consider a BitTorrent-like system with two classes of peers, with the classes denoted
by i = 1 andi = 2. All the peers in both classes want to obtain the single fileF. Without loss of generality,
we take the file size to be equal to 1. Each class has seeds and downloaders (leechers). Seeds have all
of the file, whereas downloaders have only portions of the file. When a downloader obtains the whole
file, it immediately becomes a seed. Letyi(t) andxi(t) denote the number of seeds and downloaders,
respectively, for class-i peers at timet. Since we consider a deterministic fluid model,yi(t) andxi(t) are
continuous variables. In this paper, we are particularly interested in the steady-state behavior ofyi and
xi, i = 1, 2. We need to also define the following:

• Letλi be the rate at which new class-i downloaders arrive. Whenever a new class-i downloader arrives,
xi is incremented by 1.

• Let µi be the upload bandwidth of a peer from classi.
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• Let ci be the download bandwidth of a peer from classi. We make the realistic assumption thatci ≥ µi,
which is consistent with the current access technologies. Whenever a class-i peer has fully downloaded
the file,xi is decremented by 1 andyi is incremented by 1.

• As in [2], we allow downloaders to abort downloading before fully obtaining the file. Letθi be the rate
at which class-i downloaders abort. Whenever a class-i downloader aborts,xi is decremented by 1.

• Letγi denote the rate at which class-i seeds leave the system. Whenever a class-i seed leaves the system,
yi is decremented by 1.

• Let ηi ∈ (0, 1) denote the efficiency of class-i downloaders, which is the average amount of a down-
loader’s upload bandwidth that is being used for content distribution. This parameter was first introduced
in [3] in a Markov chain model, then used in[2] in the single-class case.

We now discuss the resource allocation policy. A peer (seed or downloader) will upload chunks to
multiple peers simultaneously. The aggregate rate at which a class-i seed peer uploads isµi; the aggregate
rate at which a class-i downloader peer uploads isηiµi. A peer will allocate its upload rate between the
two classes of peers. For a class-i peer, letαi(x1, x2) (resp. 1− αi(x1, x2)) be the fraction of its upload
rate that is allocated to class-i peers, that is, to peers in its own class (resp. to peers in the other class)
when there arex1 class-1 downloaders present andx2 class-2 downloaders present. Thus,αi(x1, x2) lies
between 0 and 1. We refer to (α1(x1, x2), α2(x1, x2)) as adynamic allocation policy. To implement such
a resource allocation, peers only need to know which class the other peers belong to, and also the size of
the population in each class for the dynamic policy. This information may be provided, for instance, by
the tracker server which is used in BitTorrent as a bootstrap to help incoming peers discover seeds and
other downloaders.

In this paper we limit our attention tostatic allocation policies, namely, policies of the formαi(x1, x2) =
αi for all x1 andx2 for i = 1, 2. We will consider dynamic policies in a future work.

Our deterministic model of the two-class multiclass P2P network is now complete.Fig. 1summarizes
the states and rates in the system.

We now develop a system of differential equations for the fluid-version of the above multiclass model.
At time t, the total upload rate provided by class-i peers to peers of classi is αiµi(ηixi(t) + yi(t))

and to peers of the other class is (1− αi)µi(ηixi(t) + yi(t)). Therefore, the total upload rate provided
by class-i peers isµi(ηixi(t) + yi(t)). Let k = 3 − j designate the other class. The total download
rate provided to peers of classi cannot exceedcixi(t) so that the total flow rate out of statexi(t) is
min(cixi(t), αiµi(ηixi(t) + yi(t)) + (1 − αk)µk(ηkxk(t) + yk(t))), to which we must addθixi(t), the total

Fig. 1. General model for a two-class P2P file dissemination system. Solid arcs represent migration rates of users. Dashed arcs
represent the fraction of allocated bandwidth.
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flow rate at which downloaders leave the system without having downloaded the entire file. By definition,
the flow rate into statexi(t) is λi. Hence, the time-evolution of (x1(t), x2(t)) is governed by the following
differential equations:

dxi(t)

dt
= λi − θixi(t) − min(cixi(t), αiµi(ηixi(t) + yi(t)) + (1 − αk)µk(ηkxk(t) + yk(t))) (1)

for i = 1, 2 andk = 3 − i.
Similarly, we find that the total flow rate into stateyi(t) is given by the total rate at which downloaders

become seeds, namelyµi(ηixi(t) + yi(t)) + (1 − αk)µk(ηkxk(t) + yk(t)) as explained above, while the
total flow rate out of stateyi(t) is simplyγiyi(t). This gives the following equations for the time-evolution
of (y1(t), y2(t))

dyi(t)

dt
= min(cixi(t), αiµi(ηixi(t) + yi(t)) + (1 − αk)µk(ηkxk(t) + yk(t))) − γiyi(t) (2)

for i = 1, 2 andk = 3 − i.
Eqs.(1) and (2)fully define the system dynamics.
We will be particularly interested in the case where downloaders leave the system at once when

they have completed their download, namely 1/γ1 = 1/γ2 = 0. There are two reasons why we will be
considering this situation. First, it will yield much more tractable equations, as shown next. Second, this
case represents a worst-case situation, where peers are not willing to cooperate, and leave the system as
soon as they have downloaded the file. In this case, they never become seeds, which impliesyi(t) = 0 for
all t > 0. As a result, system(1) reduces to

dxi(t)

dt
= λi − θixi(t) − min(cixi(t), αiβixi(t) + (1 − αk)βkxk(t)) (3)

for i = 1, 2 andk = 3 − i, where

βi := µiηi. (4)

Note that

ci > βi, i = 1, 2 (5)

since we have assumed thatc ≥ µi and 0< ηi < 1. In matrix form(3) writes

ẋ(t) = Aσ(x(t))x(t) + b (6)

with x(t) := (x1(t), x2(t))T andb = (−λ1, −λ2)T (as usualvT denotes the transpose vector of the vector
v). In (6) σ is an integer-value mapping, taking values inσ ∈ {1, 2, 3, 4}, given by

σ(x) = 1 + 2 × 1(c1x1 ≥ α1β1x1 + (1 − α2)β2η2x2) + 1(c2x2 ≥ α2β2η2x2 + (1 − α1)β1η1x1) (7)

for x = (x1, x2), where1(A) denotes the indicator function of the eventA (i.e. 1(A) = 1 if A holds and
zero otherwise). The mappingσ is called aswitching condition and a system like(6) is called aswitched
system [5,6]. The 2-by-2 matricesAi, i = 1, . . . , 4, can easily be identified from(3).

The model where 1/γ1 = 1/γ2 = 0 will be referred to as theno-seed model. A natural question is:
how do downloaders ever get any chunk if there are no seeds? Here, we make a distinction between two
notions of seeds. A BitTorrent-like system needs, at startup time, at least one seed, for as long as it needs
to upload (at least) a complete copy of the file. Though this bootstrap seed is mandatory to make the
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file available, it may leave long before the system reaches a steady-state. Therefore, its role is limited to
starting the torrent, and is negligible on the long term. Note that the general systems(1) and (2), as well
as the single-class model in[2], also neglect this bootstrap seed, since the system may have a non-zero
solution even ifyi(0) = 0 for i = 1, 2. Downloaders which have a complete copy of the file, on the other
hand, will have an impact on the steady-state since they belong to the long-term dynamics of the system.
These regular seeds are considered in(1) and (2), whereas the no-seed model assumes they leave the
system immediately.

We conclude this section by introducing the cost functions that we will consider throughout the paper.
Let φi be thedownload cost of peers of classi, which is defined as the expected download time given that
the peer completes the download. An analytic expression forφi can easily be derived as follows. Assume
thatxi(t) has a stationary regime, denoted by ¯xi. By Little’s formula, the expected download timeTi for
peers of classi is given byTi = x̄i/λi. On the other hand, the stationary probabilitypi that a class-i peer
completes its download ispi = (λi − θix̄i)/λi. Therefore, the download cost for peers of classi takes the
form

φi = x̄i

λi − θix̄i

, i = 1, 2. (8)

In the next two sections we shall address two different problems corresponding to different subsets
of (static) allocation policies: (α1, α2) = (α, 1 − α), referred to as the service differentiation problem
(Section4), and (α1, α2) = (α, α), referred to as the bandwidth diversity problem (Section5). Both
problems will be considered for no-seed models.

4. Resource allocation policy for service differentiation

In this section we address the service differentiation problem for the no-seed model (unless otherwise
mentioned). For the sake of simplicity we further restrict the analysis to the case where all peers have the
same download/upload bandwidths and the same efficiency parameters. In other words, we assume that
1/γi = 0, ci = c, µi = µ andηi = η for i = 1, 2. We defineβ := µη.

We recall that the service differentiation problem corresponds to the situation whereα1 = 1 − α2 = α

(see end of Section3).
Our goal is to solve the resulting system of differential equations (see below) and determine the

download cost (defined in(8)) of the two classes of peers. In particular, we shall show that differential
service can indeed be provided to the two classes of peers via the allocation parameterα.

Under the above assumptions the system of differential equations(3) governing the dynamics of
(x1(t), x2(t)) simplifies to

dx1(t)

dt
= λ1 − θ1x1(t) − min(cx1(t), αβ(x1(t) + x2(t))),

dx2(t)

dt
= λ2 − θ2x2(t) − min(cx2(t), (1 − α)β(x1(t) + x2(t))). (9)

In matrix notation this system is given by(6) with the switching condition (x = (x1, x2))

σ(x) = 1 + 2 × 1(cx1 ≥ αβ(x1 + x2)) + 1(cx2 ≥ (1 − α)β(x1 + x2)). (10)
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We introduce the new parameters

a1 := max
(

0, 1 − cλ2(θ1 + β)

D

)
, a2 := min

(
1,

cλ1(θ2 + β)

D

)

with D := β(λ1(θ2 + c) + λ2(θ1 + c)).
Proposition 4.1computes the equilibrium point of the switched system(9).

Proposition 4.1 (Equilibrium point for service differentiation).Regardless of the initial condition x(0),
the system of equations (9) has a unique equilibrium point x̄ given by

x̄T =




(
λ1 − α λ2β

θ2+c

θ1 + αβ
,

λ2

θ2 + c

)
if 0 ≤ α < a1,

(
λ1(θ2 + (1 − α)β) − λ2αβ

θ2(θ1 + αβ) + θ1(1 − α)β
,
λ2(θ1 + αβ) − λ1(1 − α)β

θ2(θ1 + αβ) + θ1(1 − α)β

)
if a1 ≤ α ≤ a2,

(
λ1

θ1 + c
,
λ2 − (1 − α) λ1β

θ1+c

θ2 + (1 − α)β

)
if a2 < α ≤ 1.

(11)

Proof. We first check that if limt→∞ x(t) exists, then it is given by(11).
Assume that limt→∞ x(t) = x̄. Letting t → ∞ in (6) yields

Aσ(x̄)x̄ + b = 0, (12)

whereσ is given in(10). We consider separately the four systems of linear equations obtained from(12)
when (a)σ(x̄) = 1, (b)σ(x̄) = 2, (c)σ(x̄) = 3 and (d)σ(x̄) = 4.

(a) σ(x̄) = 1 or equivalentlycx̄1 < αβ(x̄1 + x̄2) andcx̄2 < (1 − α)β(x̄1 + x̄2).
The download rate is the bottleneck for both classes of peers. We find

x̄T =
(

λ1

θ1 + c
,

λ2

θ2 + c

)
. (13)

(b) σ(x̄) = 2 or equivalentlycx̄1 < αβ(x̄1 + x̄2) andcx̄2 ≥ (1 − α)β(x̄1 + x̄2).
The bottleneck is the download rate for class-1 peers and the upload rate for class-2 peers. We find

x̄T =
(

λ1

θ1 + c
,
λ2 − (1 − α) λ1β

θ1+c

θ2 + (1 − α)β

)
. (14)

(c) σ(x̄) = 3 or equivalentlycx̄1 ≥ αβ(x̄1 + x̄2) andcx̄2 < (1 − α)β(x̄1 + x̄2).
The bottleneck is the download rate for peers of class 2 and the upload rate for peers of class 1. In

this case

x̄T =
(

λ1 − α λ2β

θ2+c

θ1 + αβ
,

λ2

θ2 + c

)
. (15)

(d) σ(x̄) = 4 or equivalentlycx̄1 ≥ αβ(x̄1 + x̄2) andcx̄2 ≥ (1 − α)β(x̄1 + x̄2).
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The bottleneck is the download rate for both classes of peers. The equilibrium point is

x̄T =
(

λ1(θ2 + (1 − α)β) − λ2αβ

θ2(θ1 + αβ) + θ1(1 − α)β
,
λ2(θ1 + αβ) − λ1(1 − α)β

θ2(θ1 + αβ) + θ1(1 − α)β

)
. (16)

In the following, we call “type-i equilibrium” the equilibrium found whenσ(x̄) = i.
The next step is to check if a type-i equilibrium may exist, namely, ifσ(x̄) = 1 (resp.σ(x̄) = 2,

σ(x̄) = 3, σ(x̄) = 4) whenx̄ is given by(13) (resp.(14)–(16)).
It is easily seen that a type-1 equilibrium may only exist ifc ≤ β. Since this condition is never met

(use(5) with ci = c andβi = β) we conclude that there is no type-1 equilibrium.
Recall that 0≤ α ≤ 1. We prove inAppendix Athat a type-2 equilibrium may only exist ifa2 < α ≤ 1.

The same type of analysis shows that a type-3 equilibrium may only exist if 0≤ α < a1, and that a type-4
equilibrium may only exist ifa1 ≤ α ≤ a2.

This concludes the proof that, if limt→∞ x̄(t) = x̄ exists, then̄x is given by(11) (regardless of the
initial condition).

We now turn to the proof that limt→∞ x̄(t) exists. To this end, we investigate the nature of the equilibrium
of each of the linear systemsẋ(t) = Aix(t) + b, for i = 2, 3, 4, with

A2 =
( −(θ1 + c) 0

−(1 − α)β −(θ2 + (1 − α)β)

)
,

A3 =
(−(θ1 + αβ) −αβ

0 −(θ2 + c)

)
and A4 =

(−(θ1 + αβ) −αβ

−(1 − α)β − (θ2 + (1 − α)β)

)
.

Recall that the equilibrium of the systeṁx(t) = Aix(t) + b is stable if and only if all eigenval-
ues of the matrixAi have strictly negative real parts[7]. It is easily seen thatA2 and A3 have two
strictly negative eigenvalues, given by (−(θ1 + c), −(θ2 + (1 − α)β)) and (−(θ1 + αβ), −(θ2 + c)), re-
spectively. The same property holds forA4. To see this, denote byD(c, r) the closed disc of centerc
and radiusr in the complex plane. From Geršgorin circle theorem[8, p. 344]we know that both eigen-
values ofA4 lie in the regionD(−θ1 − αβ, αβ) ∪ D(−θ2 − (1 − α)β, (1 − α)β), from which the result
follows.

We have now proved the local stability of the equilibrium of each linear subsystem of(9). However, a
rigorous proof of the global stability of(9) would require more attention. For brevity, we do not address
this problem here. The interested reader can refer to[6] for the stability of linear switched systems.

In summary, we have shown that for a given value ofα, a unique equilibrium exists, is given in(11),
and is stable. This completes the proof.�

4.1. How can we achieve a target QoS ratio k?

It is now possible to achieve service differentiation using parameterα as follows.
The goal is to differentiate the download costsφ1 andφ2 of class-1 and class-2 peers, respectively.

These costs are given in the next proposition.
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Proposition 4.2 (Download costs for service differentiation).In a no-seed model, the download cost φi

of class-i peers in the service differentiation problem is given by

φ1 = λ1(θ2 + c) − αλ2β

αβ(λ2θ1 + λ1(θ2 + c))
, φ2 = 1

c
if 0 ≤ α < a1;

φ1 = λ1(θ2 + β) − αβ(λ1 + λ2)

αβ(λ2θ1 + λ1θ2)
, φ2 = λ2θ1 − λ1β + αβ(λ1 + λ2)

(1 − α)β(λ2θ1 + λ1θ2)
if a1 ≤ α ≤ a2;

φ1 = 1

c
, φ2 = λ2(θ1 + c) − λ1β + αλ1β

(1 − α)β(θ2λ1 + λ2(θ1 + c))
if a2 < α ≤ 1.

First, note that in the service differentiation problem, we considered the static allocation policy (α, 1 −
α). Since the two classes have the same bandwidth characteristics (i.e.c1 = c2, µ1 = µ2) and the same
efficiency parameters (η1 = η2), this policy results in a download cost tradeoff governed byα. This
tradeoff is represented inFig. 2.

There are at least two ways to achieve service differentiation. The first one is to guarantee a subscribed
download cost for one class (e.g.φ1 = Φ for peers of class 1) with no constraint on the download cost of
the other class. This can be done by assigning to the parameterα the (unique) root in [0, 1] of the linear
mappingα → φ1 − Φ, whereφ1 is given inProposition 4.2.

The second one is to achieve a target download cost ratiok between first- and second-class peers,
namely

φ2

φ1
= k. (17)

The parameterα is then obtained as the (unique) root in [0, 1] of the (either linear or quadratic) mapping
α → φ2/φ1 − k. For a given set of parameters (see caption),Fig. 3 reports the value ofα that satisfies
(17)as a function ofk, for k ∈ [1, 300].

Fig. 2. Download cost tradeoff (λ1 = λ2 = 10−1, θ1 = θ2 = β = 10−4, c = 10−3).
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Fig. 3. Selection ofα for a target cost ratiok (λ1 = λ2 = 10−1, θ1 = θ2 = β = 10−4, c = 10−3).

We conclude that service differentiation in BitTorrent-like networks can easily be achieved through
the single parameterα.

4.2. What if users stay connected after the download?

All the results obtained so far in this section have been derived under the assumption that there are no
seeds in the system. As already observed this case can be seen as a worst-case scenario, where peers are
selfish and leave the system as soon as they have downloaded the file.

In this section, we relax the no-seed assumption. In other words, we assume that downloaders do not
leave the system immediately after they have downloaded the file, but continue to upload chunks to the
other peers for some time of average duration 1/γi > 0 for class-i peers.

In this more general setting the time-evolution of the system is given by the system of differential
Eqs.(1) and (2), with (α1, α2) = (α, 1 − α). We still assume thatµ1 = µ2, c1 = c2 andη1 = η2 (these
assumptions could be relaxed). The analysis of this system is much more complex than that of the no-seed
model. While it is still easy to compute the stationary solutions of(1) and (2)in explicit form, it is much
more complex to study the existence and stability of these solutions. However, there is no difficulty to
numerically compute the steady-state of these equations once numerical values have been assigned to the
system parameters.

This has been done for the following set of parameters:λ1 = λ2 = 10−1 peers/s,θ1 = θ2 = µ =
10−4 s−1, c = 10−3 s−1, η1 = η2 = 0.9. These parameters are rounded values of typical values estimated
using the statistics in[9] in particular. We also assumedγ1 = γ2 = γ.

For given values ofγ andα ∈ (0, 1) we have computed the ratio of download costsR = φ2/φ1 for the
seed model and the ratio of download costsr = φ2/φ1 for the no-seed model.

We have found that forγ = c, the relative error|R − r|/R averages 1%. Forγ ≥ c, this relative error
rapidly decreases, making the no-seed model very-well suited for the service differentiation problem. For
γ < c, the relative error rapidly increases, making a numerical estimation ofα necessary, using(1) and
(2).
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5. Bandwidth diversity

We now address the bandwidth diversity problem for the no-seed model (i.e., 1/γi = 0 for i = 1, 2).
We consider two classes of peers with different bandwidths (e.g., ADSL users and corporate users). Recall
that the bandwidth diversity problem we consider is characterized byα1 = α2 = α (see Section3).

Our first objective is to determine the download cost for each class of peers. Then, we will find a
static allocation policy (α, α) that minimizes the maximum download cost of both classes. With a slight
abuse of notation a static allocation policy (α, α) will simply be referred to as an allocationα from
now on.

Under the aforementioned assumptions the system of differential equations(3) becomes

dx1

dt
= λ1 − θ1x1 − min(c1x1, αβ1x1 + (1 − α)β2x2),

dx2

dt
= λ2 − θ2x2 − min(c2x2, (1 − α)β1x1 + αβ2x2). (18)

In matrix notation the system(18) is given by(6), with the switching condition

σ(x) = 1 + 2 × 1(cx1 ≥ αβ1x1 + (1 − α)β2x2) + 1(cx2 ≥ (1 − α)β1x1 + αβ2x2). (19)

For the sake of compactness we introduce the new parameters

a3 : = λ2β2(θ1 + c1) − λ1(c1θ2 + β1β2)

λ2β2(θ1 + c1) − λ1(β1θ2 + 2β1β2 − c1β2)
, a4 := λ1β1(θ2 + c2) − c2λ2(θ1 + c1)

λ1β1(θ2 + c2) − β2λ2(θ1 + c1)
,

a5 : = λ1β1(θ2 + c2) − λ2(c2θ1 + β2β1)

λ1β1(θ2 + c2) − λ2(β2θ1 + 2β2β1 − c2β1)
, a6 := λ2β2(θ1 + c1) − c1λ1(θ2 + c2)

λ2β2(θ1 + c1) − β1λ1(θ2 + c2)
,

d : = (θ2 + αβ2)(θ1 + αβ1) − (1 − α)2β1β2. (20)

We also define the elementary conditions

(C1) : λ1(c1θ2 + β1β2) ≤ λ2β2(θ1 + c1) and 0≤ α < a3, (21)

(C2) : c2λ2(θ1 + c1) ≥ λ1β1(θ2 + c2) or a4 ≤ α ≤ 1, (22)

(C3) : λ2(c2θ1 + β2β1) ≤ λ1β1(θ2 + c2) and 0≤ α < a5, (23)

(C4) : c1λ1(θ2 + c2) ≥ λ2β2(θ1 + c1) or a6 ≤ α ≤ 1. (24)

Furthermore, let us define the following set of conditions

(D2) = (C1) ∩ (C2), (D3) = (C3) ∩ (C4), (D4) = (not (C1)) ∩ (not (C3)).

The above definitions imply that (D4) ∩ (D2) = (D4) ∩ (D3) = ∅, where∅ denotes the empty set.
However, (D2) ∩ (D3) is not necessarily empty, so that (D2) and (D3) may hold simultaneously for some
sets of parameters. Finally, we define the two-dimensional vectorsxi, i = 2, 3, 4, by
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x2 =
(

λ1

c1 + θ1
,
λ2 − (1 − α)β1

λ1
c1+θ1

θ2 + αβ2

)
, x3 =

(
λ1 − (1 − α)β2

λ2
c2+θ2

θ1 + αβ1
,

λ2

θ2 + c2

)
,

x4 =
(

λ1(θ2 + αβ2) − (1 − α)λ2β2

d
,
λ2(θ1 + αβ1) − (1 − α)λ1β1

d

)
,

whered is defined in(20). Proposition 5.1investigates the steady-state behavior of the switched system
(18).

Proposition 5.1 (Equilibrium for bandwidth diversity).The system of differential equations (18) has a
unique equilibrium point x̄ given by

x̄ =




xT
2, regardless of x(0), if (D2) ∩ (not (D3))hold,

xT
3, regardless of x(0), if (D3) ∩ (not (D2))hold,

xT
4, regardless of x(0), if (D4)holds,

xT
2 or xT

3, depending on x(0), if (D2) ∩ (D3)hold.

(25)

Proof. As in Section4, we first assume that limt→∞ x(t) exists and check that it is given by(25).
Letting t → ∞ in (6) yields(12), whereσ is now given by(19).
We consider separately the four systems of linear equations obtained from(12)when (a)σ(x̄) = 1, (b)

σ(x̄) = 2, (c)σ(x̄) = 3 and (d)σ(x̄) = 4.

(a) σ(x̄) = 1 or equivalentlyc1x̄1 < αβ1x̄1 + (1 − α)β2x̄2 andc2x̄2 < (1 − α)β1x̄1 + αβ2x̄2.
The download rate is the bottleneck for both classes of peers. We find

x̄T =
(

λ1

θ1 + c1
,

λ2

θ2 + c2

)
. (26)

(b) σ(x̄) = 2 or equivalentlyc1x̄1 < αβ1x̄1 + (1 − α)β2x̄2 andc2x̄2 ≥ (1 − α)β1x̄1 + αβ2x̄2.
The bottleneck is the download rate for class-1 peers and the upload rate for class-2 peers. We find

x̄T =
(

λ1

θ1 + c1
,
λ2 − (1 − α)β1

λ1
c1+θ1

θ2 + αβ2

)
. (27)

(c) σ(x̄) = 3 or equivalentlyc1x̄1 ≥ αβ1x̄1 + (1 − α)β2x̄2 andc2x̄2 < (1 − α)β1x̄1 + αβ2x̄2.
The bottleneck is the download rate for peers of class 2 and the upload rate for peers of class 1. In

this case

x̄T =
(

λ1 − (1 − α)β2
λ2

c2+θ2

θ1 + αβ1
,

λ2

θ2 + c2

)
. (28)

(d) σ(x̄) = 4 or equivalentlyc1x̄1 ≥ αβ1x̄1 + (1 − α)β2x̄2 andc2x̄2 ≥ (1 − α)β1x̄1 + αβ2x̄2.

The bottleneck is the download rate for both classes of peers. The stationary solution is

x̄T =
(

λ1(θ2 + αβ2) − (1 − α)λ2β2

d
,
λ2(θ1 + αβ1) − (1 − α)λ1β1

d

)
(29)

whered is defined in(20).
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The next step is to check if a type-i equilibrium may exist, namely, ifσ(x̄) = 1 (resp.σ(x̄) = 2,
σ(x̄) = 3, σ(x̄) = 4) whenx̄ is given by(26) (resp.(27)–(29)).

It is easily seen that a type-1 equilibrium may only exist ifc1λ1 + c2λ2 ≤ β1λ1 + β2λ2. Sinceci > βi

for i = 1, 2 (see(5)) we conclude that there is no type-1 equilibrium, where both classes would saturate
their download capacity.

A simple analysis, similar to that inAppendix A, shows that a type-2 equilibrium only exists if(21)
and (22)are true, and that a type-3 equilibrium only exists if(23) and (24)are true. For the existence
conditions of a type-4 equilibrium, we also use the stability condition(30), in addition toσ(x̄) = 4, to get
the following condition: (not(21)) and (not (23)). It happens that conditions forσ = 2 andσ = 3 are not
mutually exclusive. When they are simultaneously satisfied (i.e., (D2) ∩ (D3) holds) then the steady-state
is given either by(27) or (28)depending on the initial conditions.

We now turn to the proof that limt→∞ x̄(t) exists. Namely, we investigate the nature of the equilibrium
of each of the linear systemsẋ(t) = Ai x(t) + b, for i = 2, 3, 4, with

A2 =
( −θ1 − c1 0

−(1 − α)β1 −θ2 − αβ2

)
,

A3 =
(−θ1 − αβ1 −(1 − α)β2

0 −θ2 − c2

)
and A4 =

( −θ1 − αβ1 −(1 − α)β2

−(1 − α)β1 −θ2 − αβ2

)
.

It is easily seen that the matricesA2 andA3 have two strictly negative eigenvalues. The eigenvalues
of the matrixA4 are the roots inλ of the polynomial

det(A4 − λI)=(θ1 + αβ1 + λ)(θ2 + αβ2 + λ) − (1 − α)2β1β2=λ2 + λ(θ1 + αβ1 + θ2 + αβ2) + d,

whereI denotes the 2× 2 identity matrix. The roots of this polynomial have strictly negative real parts if
and only if their product is strictly positive and their sum is strictly negative, which is equivalent to

d > 0. (30)

This shows that all equilibria are stable, which concludes the proof.�
We now compute the download costsφ1 and φ2 associated with each equilibrium point found in

Proposition 5.1.
In order to simplify the notation, we introduce the following two-dimensional vectors:

ϕ2 =
(

1

c1
,

λ2(θ1 + c1) − (1 − α)λ1β1

θ2λ1β1 + α(λ2β2(θ1 + c1) − λ1β1θ2)

)
,

ϕ3 =
(

λ1(θ2 + c2) − (1 − α)λ2β2

θ1λ2β2 + α(λ1β1(θ2 + c2) − θ1λ2β2)
,

1

c2

)
,

ϕ4 =
(

(λ1θ2 − λ2β2 + αβ2(λ1 + λ2))

β2(λ2θ1 − λ1β1) + α(λ1β1(θ2 + 2β2) − θ1λ2β2)
,

λ2θ1 − λ1β1 + αβ1(λ1 + λ2)

β1(λ1θ2 − λ2β2) + α(λ2β2(θ1 + 2β1) − θ2λ1β1)

)
.

The next proposition partially characterizes the download costsφ1 andφ2.
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Proposition 5.2 (Download costs for bandwidth diversity).In a no-seed model, the vector of download
costs (φ1, φ2) in the bandwidth diversity problem is given by

(φ1, φ2) =




ϕ2 regardless of x(0), if (D2) ∩ (not (D3))holds,

ϕ3 regardless of x(0), if (D3) ∩ (not (D2))holds,

ϕ4 regardless of x(0), if (D4)holds,

ϕ2 orϕ3 depending on x(0), if (D2) ∩ (D3)holds.

Proof. The proof directly follows fromProposition 5.1 and (8). �

5.1. How can we minimize the highest download cost?

In the bandwidth diversity problem, several optimization problems could be considered. For instance,
one may wish to find an allocationα that yields the same download costs. Another objective could be
to minimize a linear combination of the download costs. However, as shown inProposition 5.2, it is
difficult to analytically determineφ1 andφ2 whenever (D2) ∩ (D3) 
= ∅, and thereby to solve the above
optimization problems.

Instead, we will seek to minimize the maximum download cost over all initial states and over all classes.
To this end, we introduce the mappingα → E(α), called theenvelope function, defined by

E(α) = max
σ∈{2,3,4}

max
i∈{1,2}

φi.

Our objective is to minimize the envelope function as a function ofα.
We now useProposition 5.2to calculate the value ofα that minimizesE(α). In Figs. 4 and 5, the

envelope function is represented along with the possible values of (φ1, φ2) for α in (0, 1), for two different
sets of physical parameters.

Fig. 4. Minimum of maximum download cost achieved forα ≈ 0.78 (λ1 = λ2/2 = 10, β1 = β2/2 = 10−2, c1 = c2/2 =
400, θ1 = θ2 = 10−5).
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Fig. 5. Minimum of maximum download cost achieved for a whole interval [0.5502, 0.8207] (λ1 = λ2/4 = 10−1, θ1 = 2θ2 =
β1 = β2/20 = 10−4, c1 = c2/2 = 10−3).

In Fig. 4, we observe thatE(α) is minimal for a single value ofα, whenσ = 4 andφ1 = φ2. In this case,
the exact value ofα that minimizes the maximum download cost can be found by solvingφ1 = φ2 using
Proposition 5.2. Note that inFig. 4, we have both type-2 and -3 equilibria forα ≤ 0.32. The steady-state
is then determined by initial conditions.

In Fig. 5, E(α) is minimal on a whole interval on which it is equal to the constant download costφ1

whenσ = 2. In this case, the interval can also be determined usingProposition 5.2, by solvingφ1 = φ2

for σ = 2 for the lower bound, and by determining the maximum value ofα that satisfies(21) and (22)
for the upper bound. Note that inFig. 5, conditions(23) and (24)are never satisfied simultaneously with
this set of physical parameters, since we do not have a type-3 equilibrium.

In any case, finding the value ofα that minimizes the worst download cost, amounts to solve a linear
or quadratic equationφ1 = φ2 using the appropriate expression inProposition 5.2.

We conclude that for a given physical set of parameters, it is possible to account for bandwidth diversity
in BitTorrent-like networks through parameterα.

6. Conclusions and perspectives

In this paper we presented a simple multiclass fluid model for BitTorrent-like distribution systems.
We successfully applied this model to account for two specific problems: service differentiation and
bandwidth diversity. We mainly focused our attention to the special case where peers selfishly leave
the system immediately after their download (“no-seed case”). For both the service differentiation and
bandwidth diversity problems, we have defined a single parameterα that defines a resource allocation
strategy. We showed how this parameter affects the steady-state of the system and provided closed-form
expressions for the successful download time in each case. In addition, we showed how this parameter
α can be chosen so as to achieve a target quality of service ratio (download time ratio) for the service
differentiation problem. We also quantified the impact of the no-seed assumption on this result through a
numerical resolution of the general problem. For the bandwidth diversity problem, we also showed how
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it is possible to choose parameterα so as to minimize the highest download time between two classes of
peers.

Many open problems remain. In particular, though the fluid approximation was experimentally validated
in [2], we intend to compare the results of our multiclass model to a simulation of a real P2P file
dissemination system. Another problem for further research is the study of dynamic resource allocation,
whereα would depend on the class population.

Appendix A. Service differentiation: type-2 equilibrium

In this appendix, we show that a type-2 equilibrium exists forα ∈ [0, 1] if and only if a2 < α ≤ 1,
wherea2 is defined inSection 4. By definition, a type-2 equilibrium exists if̄x = (x̄1, x̄2) given in(14) is
such thatσ(x̄) = 2, to which we need to add the condition that ¯x2 ≥ 0 (note that ¯x1 is always non-negative).
Equivalently, we need to find the values ofα in [0, 1] such that

cξ < αβ

(
ξ + λ2 − (1 − α)βξ

θ2 + (1 − α)β

)
, c

λ2 − (1 − α)βξ

θ2 + (1 − α)β
≥ (1 − α)β

(
ξ + λ2 − (1 − α)βξ

θ2 + (1 − α)β

)
,

λ2 − (1 − α)βξ ≥ 0,

where we have setξ := λ1/(θ1 + c). The first two conditions express the identityσ(x̄) = 2 and the
third condition expresses the constraint ¯x2 ≥ 0. Straightforward algebra shows that these conditions are
simultaneously met forα ∈ [0, 1] if and only if

α >
cλ1(θ2 + β)

D
and α ≥ max

(
1 − cλ2(θ1 + c)

D
, 1 − λ2(θ1 + c)

λ1β

)
, (A.1)

where we recall thatD = β(λ1(θ2 + c) + λ2(θ1 + c)). Let us first comparecλ1(θ2 + β)/D to 1− cλ2(θ1 +
c)/D. We have

cλ1(θ2 + β)

D
−
(

1 − cλ2(θ1 + c)

D

)
= 1

D
(cλ1(θ2 + β) + cλ2(θ1 + c) − D)

= 1

D
(c(λ1(θ2 + β) + λ2(θ1 + c))−β(λ1(θ2 + c) + λ2(θ1 + c)))

= 1

D
(c − β)(λ1θ2 + λ2(θ1 + c)).

We have observed earlier in the proof ofProposition 4.1thatc > β, which shows thatcλ1(θ2 + β)/D >

1 − cλ2(θ1 + c)/D. We now comparecλ1(θ2 + β)/D to 1− λ2(θ1 + c)/(λ1β). We have
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cλ1(θ2 + β)

D
−
(

1 − λ2(θ1 + c)

λ1β

)
= 1

Dλ1β
(cλ2

1β(θ2 + β) − Dλ1β + λ2(θ1 + c)D)

= 1

Dλ1β
(λ1β(cλ1(θ2 + β) − βλ1(θ2 + c) − βλ2(θ1 + c)

+ λ2(θ1 + c)(θ2 + c)) + βλ2
2(θ1 + c)2)

= 1

Dλ1
(λ1(λ1θ2(c − β) + λ2(θ1 + c)(θ2 + c − β))

+ λ2
2(θ1 + c)2) > 0

sincec > β. In summary we have shown that the conditionsσ(x̄) = 2 andx̄2 ≥ 0 will simultaneously
hold forα ∈ [0, 1] if and only if α > min(1, cλ1(θ2 + β)/D) = a2, which is the announced result.

References

[1] B. Cohen, BitTorrent,http://www.bitconjurer.org/BitTorrent/.
[2] D. Qiu, R. Srikant, Modeling and performance analysis of BitTorrent-like peer-to-peer networks, in: Proceedings of the

ACM Sigcomm, Portland, OR, 2004.
[3] X. Yang, G. De Veciana, Service capacity of peer-to-peer networks, in: Proceedings of IEEE INFOCOM 2004, Hong Kong,

2004.
[4] F. Lo Piccolo, G. Neglia, G. Bianchi, The effect of heterogeneous link capacities in BitTorrent-like file sharing systems,

in: Proceedings of the International Workshop on Hot Topics in Peer-to-Peer Systems (HOT-P2P 2004), Volendam, The
Nederlands, 2004, pp. 40–47 in conjunction with MASCOTS 2004.

[5] A.S. Morse (Ed.), Control Using Logic-based Switching, Springer-Verlag, London, 1997.
[6] D. Liberzon, Switching in Systems and Control, Birkhäuser, 2003.
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