On the bias vector of a two-class preemptive priority
queue

Robin Groenevelt! Ger Koole! Philippe Nainf
1t INRIA, B.P. 93, 06902 Sophia Antipolis, France
1 Vrije Universiteit, De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

December 10, 2001

Abstract

We give a closed-form expression for the long-run average cost and the bias vector in a two-
class exponential preemptive resume priority queue with holding and switching costs. The bias
vector is the sum of a quadratic function of the number of customers in each priority class and
an exponential function of the number of customers in the high priority class. We use this result
to perform a single step of the policy iteration algorithm in the model where the switches of the
server from one priority class to the other can be controlled. It is numerically shown that the
policy resulting from the application of a single step of the policy iteration algorithm is close to
the optimal policy.

1 Introduction

Finding optimal controls in queueing networks is a challenging problem. Few analytical results
exist, therefore numerical solutions are sought. However, straightforward methods consisting of
executing standard Markov decision algorithms such as value or policy iteration are often impossible
because of the curse of dimensionality. We therefore have to rely on other exact or approximation
methods that do not suffer from the dimensionality of the problem. Two different approximation
methods are one-step optimization and reinforcement learning. For both methods it is necessary to
have some insight in the dynamic programming optimality equation. For one-step optimization we
need to have an explicit solution to the optimality equation for one fixed policy; for reinforcement
learning we need the structure of the optimality equation (e.g., quadratic in the queue lengths) for
all policies. In this paper we study the average cost for a specific two-dimensional control problem,
namely a single server serving two customer classes with holding and switching costs. The objective
is to change class in such a way as to minimize the sum of expected long-run average holding and
switching costs. We concentrate ourselves on the one-step optimization method. We first solve the
optimality equation for the preemptive priority rule. It appears to be almost quadratic in the queue
lengths, with a single exponential term. Then we apply one-step optimization, starting from the
priority rule. Due to the low dimensionality of the example problem, we can compute the optimal
policy and compare the results. In principle this method can also be used for problems of a higher

dimension (of course, without being able to compare results with the optimal policy). Currently
we are doing research to extend the results to more than two dimensions and general service time
distributions, both for the average and discounted cost criterion. With respect to reinforcement
learning, our results give some theoretical back-up to the often made assumption that the bias
vector is quadratic.

This work is the average cost counterpart of Koole & Nain [10]. The average cost can be seen as
the limit of the discounted cost as the discounting goes to 0, but calculating this limit appeared
to be a non-trivial task. Therefore we use a direct argument. The idea of using one step of value
iteration was introduced in Ott & Krishnan [12], and used in many papers since then. A different
approach to finding good policies for the same two-dimensional model is described in Koole [9].
Computational methods for obtaining the stationary distribution of the resulting threshold policies
are developed in Boxma et al. [5] and Boxma & Down [4]. Background on reinforcement learning or
neuro-dynamic programming can be found in Bertsekas & Tsitsiklis [3]. A paper where quadratic

value functions are used is Marbach et al. [11].

This paper is organized as follows. In the next section we introduce the preemptive priority queue
and its value function. In Section 3 we derive the main result of this paper, which is the closed
form expression of the solution of the value function. In the last section we use this result to study
the two-dimensional control problem with holding and switching costs using one-step optimization.

2 The model and the optimality equation

We consider a single-server queue equipped with an infinite capacity buffer and fed by two classes
of customers: customers of class ¢ (i = 1,2) arrive to the queue according to a Poisson process
with rate \; > 0 and require independent and identically distributed service times with a common
exponential distribution with mean 1/u;. We assume that the arrival and the service time processes
are mutually independent processes. We set A := A1 + Aq.

There are holding costs and switching costs. We denote by ¢; (i = 1,2) the cost of holding a
customer of class 7 in the system during one unit of time and by s15 (resp. s21) the cost of switching
from serving a customer of class 1 to a customer of class 2 (resp. from a customer of class 2 to a
customer of class 1). We will say that the server is in position i = 1,2 at time ¢ if it is attending
customers of class ¢ at time t. We assume that the server remains at its current position when the
system empties; in this case a switch will occur at the next arrival only if the class of the arriving
customer is different from the class of the last customer which has left the system. Server switches
are assumed to be instantaneous.

We shall assume for the time being that customers are served according to the preemptive resume
service discipline [6], where customers of class 1 have priority over customers of class 2. More
general service disciplines will be considered in Section 4.

Under the preemptive resume service discipline a customer of class 1 is always attended by the
server as long as there are customers of this class in the system, regardless how many customers
of class 2 are waiting. A preemption occurs when an arriving customer of class 1 finds a customer

of class 2 in the server; in this case the customer of class 2 is preempted at once and the server
switches from position 2 to position 1. The service of the preempted customer will be resumed.

The server switches from position 1 to position 2 whenever a customer of class 1 departs the system
and leaves behind him no customer of his class and at least one customer of class 2.

Since customers of class 1 are not affected by the presence of customers of class 2, the number
of customers of class 1 in this system at any time is nothing but the number of customers in an
ordinary M/M/1 queue with arrival intensity A; and service intensity p; (provided the initial states

in both systems are the same).

From now on we shall assume that the condition 3 7_; A;/p; < 1 holds. This condition is the
stability condition under the preemptive resume priority discipline [6]. More generally, it is the
stability condition under any work-conserving service discipline and, in particular, under all policies
to be considered in Section 4.

We call an event time any arrival or departure time of either class of customers. Let 0 =T < Ty <
-+ < T, < --+ < be the successive event times. Let X,, (resp. Y;,) be the number of customers
of class 1 (resp. class 2) in the system just after the n-th event time, and let Z,, € {1,2} be the
class which is attended by the server just after the n-th event time, including the server switch if
applicable.

At time T, the state of the system will be represented by the triple U, := (X,,Y,,Z,). The
subsequent analysis will heavily rely on the fact that under the preemptive resume priority policy,
the stochastic sequence {U,,n > 1} constitutes a discrete-time aperiodic and irreducible Markov
chain on the state-space S = N? x {1,2} — {(z,0,2),2 > 1} — {(0,,1),y > 1}. We will denote by
Puw the one-step transition probability from state u to state u'.

Throughout E, will denote the expectation operator conditioned on U; = u. Given that the system

is in state u = (z,y,z) € S at time T),, the total expected cost ¢(u) incurred in [T},,T},+1) is given
by

C(U) = (ClCL' + CQy) Eu [Tn—l—l - T'n]
+512 Eu[l(en =ay,r=y=0,2= 1) + 1(9n = dlax =1ly> 1)]
+821 Eu[l(én =ai,? = 2)] (1)

where 0,, € {a1,a2,d1,d2} is the type of the n-th event, with 6,, = a; (resp. 6, = d;) if a customer

of class ¢ = 1,2 arrives (resp. leaves) at time T;,. Straighforward algebra yields

1 1 1
— + 1z > 1)+ 1(z =0,y >1)+=1(z = :0)
c(u) (c1z ch)()\+u1 (z>1) T (@=0y=>1)+T1l(z=y=0)
A9 M1)
Z2iz=y=0z=1 1(z=1,y>1
+812<)\ (ﬁC Y y &)+)\+/L1 ('T 7?/—)
+s (A1 1(z=0 >1z—2)+ﬁ1(m— —Oz—?)) (2)
21)\+/1/2 =Vy=z1,2= A =y=Y,z= .

The long-run average total expected cost g(u) starting in state u at time 0 is defined as

T E, Yy c(Un)]
g(u) = lim inf BTyl

u € S. (3)

Since the Markov chain {U,, n > 1} has a single ergodic class, it is known [13] that g(u) is a
constant function of u € S, namely, there exists a non-negative constant ¢g such that g(u) = ¢ for
all w € S.

In order to determine the constant g, we need to solve the dynamic programming optimality
equation — also known as the Poisson equation — given by [13, Eq. (11.4.17)]

9E[To] + h(u) = c(u) + Z puw b(u'), uwe€S. (4)
u'eS

When the state-space S is finite and costs are bounded, then it is known [13] that there exist a
unique constant g and a unique function A (up to an additive constant for) solution to (4). When
S is countable and costs are unbounded, which is the case here, then an argument similar to that
developed in [14] can be used to show the existence of a constant ¢ and of a function A : S - R
satisfying (4). Uniqueness of the pair (g, k) can also be shown (cf. Spieksma [15]) within a certain
normed space. The constant g of this unique normed solution corresponds to the long-run average
total expected cost (3). These existence and uniqueness issues are part of ongoing research; giving
a full proof here would fall outside the scope of this paper.

Our objective is to determine, in explicit form, both the constant ¢ and the function A, usually
referred to as the bias vector. The bias in a state u can be considered as the total difference in
costs between starting in u and in some fixed reference state. As reference state we take (0,0,1).

From the definition of the Markov chain {U,, n > 1} we may rewrite equations (4) in terms of the
model parameters as follows:
A+ p)h(z,y, 1) +g = caz+ey+siogmlc=1y>1)+ \h(z+1,y,1)
+Xoh(x,y +1,1) + prh(z — 1,y,1)1(z > 2)

+u1h(0,y,2)1(z =1,y > 1), x2>1,y>0; (5)
A+ p2)h(0,5,2) +g9 = cy+sa1d +Ah(1,y,1) + Aah(0,y +1,2)
+p2h(0,y —1,2), y>1 (6)
AR(0,0,2) +g = s21Ail(z =2) 4+ s1201(z =1) + A\ih(1,0,1)
+A20(0,1,2), z=1,2. (7)

We can extend the definition of A to the entire set IN? x {1,2} by setting 2(0,y,1) = s1 + 2(0,y,2)
for all y > 1 and h(x,y,2) = sy + h(z,y,1) for all x > 1, y > 0. These additional equations
correspond to server switches immediately after a departure or after an arrival epoch. With this
extension, equations (5)—(7) can be transformed into the following set of equivalent equations on S

A+ p)h(z,y,1) +9 = az+cy+Mh(z+1,y,1) + Xah(z,y +1,1)

+M1h($ - 17y7 1)7 My Z 1,.7J Z Oa (8)

n0,y,1) = s1+0(0,9,2), y>1; (9)
Mz,y,2) = s2+h(z,y,1), z>1, y>0; (10)
A+ p2)h(0,y,2) +9 = cy+ Mh(1,y,2) + A2h(0,y +1,2)
+u2h(0,y —1,2), y=>1; (11)
(Mh(0,0,2) +9 = A1h(1,0,2) + A2h(0,1,2), =z=1,2. (12)

In the next section we will construct an explicit solution (g, k) to the set of equations (12).

3 Solution of the optimality equation
The theorem below gives a closed-form expression for the bias function h and for the cost g.

Theorem 3.1 The relative differential equation h(x,y,z) and the average cost g of a two-class

M/M/1 queue with a preemptive priority discipline are given by

h(0,0,1) = 0, (13)
h0,y,1) = s1+h(0,9,2), y>1; (14)
h(07y7 2) = (bz + bl2)y + b2y2 + bi} — 81, Y Z O; (15)
h(2,0,1) = (by + b))z + bz +b4[1 — 2°(N\y)], =z >1; (16)
h(z,y,2) = sa+h(z,y,1), =>1,y>0; (17)
h(z,y,1) = (b1 +b))z+ bz’
+(ba + bh)y + boy® + bywy + b, z,y>1, (18)
g = A (2by 4+)+ B4[1 — 2(A2)]) + A (209 + by + b)) (19)
iof the stability condition E?:l Ai/pi <1 is met. Here
1 1 Aafha
by = = () (c +co -) ; 20
AV e (p1 = A1) (p2 — A2) — Mg (20)
b= (14 o2) (1) (522 1)) e
H1
1 H1C2
by = — - ; 22
272 (= M) (2 — Aa) — Ay (22)
)\1)\12()\2))

I L . 2
b= (s (1) (2572 (23)
by = H2C2 (24)

(11 — M) (2 — Aa) — MAg’

5

r_ A1(s1+ s2)
4 A

and z(A2) is the unique root in z€(0,1) of

Mz2 = (AN p1)z+pp = 0. (26)

Before giving a formal proof of this theorem, let us first try to explain the presence of some terms
through simple queueing arguments.

Recall that h(x,y,z) is the difference in total cost between starting in state (z,y,z) and starting

in the reference state (0,0,1).

Let us first focus on holding costs. Note that the presence or absence of class-2 customers does not
influence the costs incurred by class-1 customers.

Assume that there are x > 1 class-1 customers in the system at time ¢ = 0. The time until the
number of class-1 customers has decreased to x — 1 is the same as the duration of a busy period in
an M/M/1 queue with arrival rate A\; and service rate p;, which is equal to 1/(u; — A1) [7]. During
the first busy period the cost per unit time incurred by class-1 customers present in the system at
time ¢ = 0 is ¢yx; during the second busy period this cost reduces to ¢i(x — 1), etc. It is therefore

expected that the contribution of the holding cost of class-1 customers to h(x,y,1) for y > 0 is
given by ¢1 %z —i)/(u1 — A1) = cxw(z +1)/(2(11 — M\1)). The reader can check that this term
corresponds to the coefficient of ¢; in both equations (16) and (18).

Now consider holding costs incurred by class-2 customers when there are no class-1 customers in
the system at time ¢ = 0, a situation encountered in (15). Starting from y > 1 class-2 customers,
the time C9 needed to decrease to y — 1 class-2 customers can be obtained by considering that the
service of the class-2 customer that has entered the server at time ¢ = 0 is interrupted each time a
class-1 or a class-2 customer joins the system, and is resumed when all customers which have arrived
after time ¢ = 0 have been served. In other words, Cj is the duration of a busy period of an M/G/1
queue with arrival rate A (recall that A = A1 + A2), mean service time (A1/u1 + A2/u2)/A, and with
an initial workload equal to the service time of a class-2 customer. Standard queueing arguments
show [6, pp. 64-65] that E[Cy] = u1/[(11 — A\1)(2 — A2) — A1A2]. Therefore, the contribution of the
holding cost of class-2 customers to h(0,y,2) for y > 1 should be given by co 37-5 E[Cy)(x — i) =
coE[Cs]y(y +1)/2. The reader can check that this term corresponds to bay + bay? in (15).

Consider now the situation when customers of both classes are present in the system at time
t = 0 (equation (18)). In this case, all initial class-2 customers have to wait for class-1 customers
including all arrivals (class-1 and class-2 customers) before being served. For each class-1 customer
this corresponds to the time needed to empty an M/G/1 queue with initially one class-1 customer,
arrival rate A and mean service time (A1/u1 + A2/p2)/A. Denote this time with Cy; as for Cy it is
readily seen that E[C1] = pa/[(1 — A1) (2 — A2) — Ap Ag]. For each class-1 customer initially present
there are holding costs coE[C1] = b3 per class-2 customer that is initially present. This explains
the zy term in (18).

What remains, concerning the holding costs, are the additional costs related to newly arriving
class-2 customers whose service is delayed compared to the initially empty situation because of the
presence of class-1 customers. The term related to these additional costs is the coefficient of ¢ in
b1. As the number of delayed class-2 customers is related to the length of a class-1 busy period,
and as the time serve the additional class-2 customers is equal to Cy, we expect indeed to find both
w1 — A1 and (1 —A1)(e2 — Ag) — A1 Ag in the denominator. Unfortunately we could not find a simple

explanation of the numerator.

Remains the expression for the average holding costs. It can be derived using standard queueing
theory on priority queueing (see Kleinrock [8, pp. 124-125)).

With this we have for a large part explained the expression for the holding costs. For the switching
costs we were not able to derive the average cost in a straightforward way. By numerical experi-
mentation we found out that the average switching cost is almost, but not quite, quadratic. For
finding the additional non-quadratic term we could use the equivalent result with discounting, from
Koole and Nain [10]. To explain this, consider the initial state (1,0,1). Before reaching the empty
state, two things may happen: one or more arrivals of class-2 occur, or no class-2 arrival occurs.
The probability of the last event happening is E[exp(—A2B)|, where B is the length of the busy
period of an M/M/1 queue with arrival rate and service rate A1 and uq, respectively. The quantity
Elexp(—A2B)] is equal to the Laplace-Stieltjes transform of B at the point A2, denoted as z(Az).
If no arrival in class 2 occurs, then the server stays at class 1. Otherwise the server switches on
emptying queue 1 to class 2.

Thus, in state (z,0,1), we expect a term of the form bz(A2)* occurring in some of the terms. This
is indeed what we have found. Note that it is well-known (see Jaiswal [6]) that z(\2) is the unique
root in z€(0,1) of

A\ 22— A+ p1)z+p1 =0.
Proof of Theorem 3.1. The proof consists in checking that equations (13)—(19) satisfy the

optimality equation (8)—(12). Note that all expressions are finite due to the stability condition. We
verify (8)—(12) for all possible states.

Verification for state (0,0,1). From (19), and (14), (15), and (16) it follows that

g = Ah(1,0,1) + Ah(0,1,1). (27)
From this (12) for z = 1 follows immediately.
Verification for state (0,0,2). For state i = (0,0,2) the optimality equation looks as follows:

= Lh(1,0,2)+ﬁh(0,1,2) —

h(0,0,2
(77)+)\1+)\2)\

>

A1S2—As14+9 = M [82 + h(l, 0, 1)] + Ao [—81 + h(O, 1, 1)] = (27)
This shows the validity of (12).

Validition of states (0,y,1) with y > 1. This case is trivial due to the fact that equation (9) is
equal to (14).

Validition of states (0,y,2) with y > 1. Inserting (15), (17) and (18) in (11) and some rewriting
gives

g = coy+ A [sa+s1+bi+b)+ b+ bsy+ Rh(0,y,2)]

+A2 [b2 + by + (2y + 1)ba + h(0,y,2)]

+pn [~ (b2 +by) — 2y — b2 + h(0,y,2)] = (p2 + Mh(0,9,2) ==
g = ylea+ Aibs — 2(pa — A2)bo] 4 [A1(2b1 + b)) — pabh + A1 bY]

[A2(2bg + bh) + A1(s1+ s2) — AMb)] =
g = A1 [2b1 +b] — b (2(Xa) — 1)] + Ag [2b9 + by + b)) .

The last step follows due to the y-terms summing up to zero and by definition of by, b, and bs.
Since this equation is equal to (19), the optimality equation holds.

Verification for states (x,y,2) with x > 1. This case is trivial as equations (10) and (17) are equal.

Verification for states (x,0,1) with x > 1. The optimality equation for state (x,0,1) can be
rewritten to produce, after inserting the right values from (16) and (18):

g=czx+ A\ [bl + 0+ (22 + 1)by — bl [z“'l()\z) - zm()\z)] + h(z,0, 1)]
+ A2 [2b9 + by + b3z + 51 + b + b [2"(A2) — 1] + h(x,0,1)]
i [—by — B = (20—)by — b [7 1 (h2) — 27 (02)] + bz, 0,1)]
—(A+ p)h(z,0,1) =

A
g==aler — 2(u1 — M)bi + Agbs] + Aq[2b1 + b — /)\‘_ibll _)_i A

+Xg [2bg + by + b))
= [the a2t) = (A4)2(ha) +]| =
g =)\1 [2()1 + bll - bi; [Z()\Q) - 1” +)\2 [21)2 + bIQ + bﬁl] .

The last step follows due to z-terms summing to 0 and by the definition of z(A2) as being the
unique root of equation (26).

Verification for states (x,y,1) and (x,y,1) with x > 1 and y > 1. The validation of states (x,y,1)
and (z,y,2) with z > 1 and y > 1 is done in a similar manner.

As |z(A\2)] < 1, it is readily seen that h is bounded by a second-order polynomial in z and y. For
this reason it has a finite norm in the sense of Spieksma [14]. This shows that we have indeed found
the unique solution with bounded norm. B

4 Application to a controlled polling system

The server assignment discipline studied so far is that of a fixed priority discipline, namely the
preemptive priority resume. See Table 1 for a description of this policy if there are = class-1

customers and y class-2 customers present in the system. The dot represents the situation in which
the server remains in its current position, a number means that in this state the server should
switch to this queue if not yet present at that queue.

However, the average cost can be lowered by introducing more freedom at the moment where the
server can change class. This leads to the model where the server can change at any instant; the
question now becomes what the optimal policy is. In the rest of this section we assume ¢; > 0 and
c2 > 0. In the case that the switching costs are identical to zero the optimal policy is equal to the
well-known pc rule (see e.g., Baras et al. [1]). That is, priority is given to a class-i customer based
on the value of u;c;; priority is given to the queue with higher value of pu;c;. When switching costs
are greater than zero, the optimal policy is not known and a numerical method such as policy or
value iteration has to be used (see e.g., Puterman [13]).

Being iterative procedures, finding the optimaly policy can be numerically demanding. As the
dimension increases, the curse of dimensionality (Bellman [2]) starts playing a role and alternative
methods for policy or value iteration have to be used. One alternative used in the literature for
different models is performing a single step of policy iteration. This means that, using the value
function of a known policy, we choose the minimizing actions. This corresponds, in time, to choosing
the minimizing action given that the known initial policy is used for all future decisions. Using this
new policy all the time gives an improvement over the initial policy, as can easily be shown in an
iterative manner.

As initial policy we take the pc rule and in the optimization step we use the expressions found in
Theorem 3.1 for the relative values and the average cost. This implies that the first step of policy
improvement can be done by straightforward calculations. Define y = max{u1, 2}, vy = A+ p, €q
is the ath unity vector, and I the indicator function. In order to derive a closed form expression
for the one-step improved policy, define for some fixed x and y

A A
2k = spl{k # 1} +caz+cy+ ih(w +1,y,0)+ %h(:ﬂ,y +1,1)
+%h<(<x,y> —e)t)+ %h(x,y,n,

as the expected bias if the server immediately switches from position k& to position [and uses
the preemptive priority rule afterwards. The one-step improved policy is simply the policy that
minimizes for each (z,y, k) the expression ming{zy o }. Define a, , = arg ming{zj o }. If we assume
that s1, s > 0, then it is easily seen that either a;y1 = azy2 Or @z yr = k for £k = 1,2. Define
Qgy = Qg y1 if Gpy1 = Az y2 and agy = 0 if ay 4, = k for k = 1,2. Thus a,, = 0 means that the
server remains where it is; if a;, > 0 then the server goes to class a4, irrespective of its current

class. An alternative way to write a, , is as follows:

Apy =1(2110 < 21,2)- 1(221 < 222)+2-1(211 > 212): 1 (221 > 222), x,y€IN.
We will simplify this expression for several choices of x and y.
The one-step improved policy for x = 0 and y > 1 is derived as follows.

c A A c
am,y - 1<2—y + —lh(l,y, 1) + —Qh(O,y + 1, 1) + Hh(O,y,].) < 81 + Ly
v v v v Y

9

A A —
+2h(L52) + 22H0.y +1.2) + 200,y —1,2) + V“Qh(o,m))

Cc2yY /\1)\2 M c2Y)\1
-1(s + 22 4+ ZLh(1,y,1) + 22R(0,y + 1,1) + “h(0,7,1) < =22 + ZLh(1,y,2
T S () " 0,y) 7(y,1) ~ T3 (1,9,2)

)\ _
+72h(0,y +1,2)+ %h(o,y —1,2)+ %h(ﬂ,y, 2))

A A
42. 1(% + My, 1) + 22800,y + 1,1) + LR(0,y,1) > 5 + 2Y
vy v v v
A A _
+ (L, 2) + 2RO,y +1,2) + %h(o,y ~1,2) + %h(o,y, 2))

A A A
-1<52 + 2% A1) + 200,y +1,1) + Er0,y,1) > ZY 4 Mp(1,y,2)
v g y Y v

/\ _
+72h<0,y +1,2) + %h(o,y ~1,2)+ 2 v’”h(o,m)),

=1 (sw + A1sg — Aos1 — pus1 — pa(2by + by) > O)
-1(— 897 + A152 — Aas1 — s — pa(2byy + b)) > 0)
+2-1 (517 + A1sg — Ags1 — sy — pa(2byy + by) < 0)
-1(— 597 + A152 — Aas1 — s — pa(2byy + b)) < 0),
= 1(p2(2b2y +bh) — Ai(s1 +82) < O)
‘1 (Mz(szy +b5) 4 (14 A2)(s1 + s2) < 0)
+2-1 <u2(2b2y +b5) — A1(s1 + s2) > 0)
1 (uz(%zy +05) + (1 + A2)(s1 + 52) > 0>,

_ 2.1(c2y S (514 89) (%) ()\1(1 —z()\z))—i—)\g)).

1= A/ — Aa/pe

The last step follows due to y, Ay, i, 2, by, by, s1, and s all being greater than zero causing the
first, second, and forth term to disappear. This result tells us that for x = 0 and y > 1 the server
will never switch to position one with one-step improvement of the uc rule, and that if there are no
switching costs, the server will always switch to position two, if not already there. When switching

costs are positive, the decision is based upon a weighted comparison of the holding and switching
costs.

Derivation of the one-step improved policy for the other three parts is done in a similar manner.

10

For x > 1 and y > 1 the result is

Apy = 1((#1171 — p2bs)z > (s1+ s2) ()\1 + (%) 1y = 1)))

)\12‘76()\2)

4201 (b~ et < o1+ 02) (- =t (PP 10 =)),
whereas for + = 0 and y = 0 the outcome will always be aggp = 0. For x > 0 and y = 0 the
outcome will always be a, o = 1. If the switching costs are equal to zero, then the one-step policy
improvement of the uc rule results in the uc rule again. This proves in an alternative manner
that the pc rule is the optimal policy which minimizes the long-term average cost if there are no
switching costs. In Table 2 the one-step improved policy is given for a certain choice of parameters.

The policy depicted in Table 2 is identical to the one found in Koole & Nain [10] for the discounted
costs for the same choice of parameters. The average cost resulting from using a single step of
policy iteration is 3.09895. This is a reduction of the costs by 14.6% as compared to using the
pe-rule where the average cost is 3.62894. By using policy iteration to find the optimal policy the
results hardly improve; the average cost is at lowest 3.09261. Surprisingly enough, the optimal
policy is found in two steps of policy iteration, see Tables 3 and 4. The fast convergence of the
policy iteration algorithm is not coincidental; the average cost of the policies generated by policy
iteration converge at least exponentially fast to the minimum cost, with the greatest improvement
in the first few steps (see Tijms [16], page 194).

Acknowledgement

The authors would like to thank Flos Spieksma and Sandjai Bhulai for their input concerning the
existence and uniqueness issues of the bias vector.

References

[1] J.S. Baras, D.-J. Ma, and A.M. Makowski. K competing queues with geometric service re-

quirements and linear costs: The pc-rule is always optimal. Systems and Control Letters,
6:173-180, 1985.

[2] R. Bellman. Adaptive Control Processes: A Guided Tour. Princeton University Press, 1961.
[3] D.P. Bertsekas and J.N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific, 1996.

[4] O.J. Boxma and D.G. Down. Dynamic server assignment in a two-queue model. FEuropean
Journal of Operational Research, 103:595-609, 1997.

[5] O.J. Boxma, G.M. Koole, and I. Mitrani. Polling models with threshold switching. In F. Bac-
celli, A. Jean-Marie, and I. Mitrani, editors, Quantitative Methods in Parallel Systems, pages
129-140. Springer-Verlag, 1995. Esprit Basic Research Series.

11

[6]
[7]
[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

N.K. Jaiswal. Priority Queues. Academic Press, 1968.
L. Kleinrock. Queueing Systems, Volume I: Theory. Wiley, 1975.
L. Kleinrock. Queueing Systems, Volume II: Computer Applications. Wiley, 1976.

G.M. Koole. Assigning a single server to inhomogeneous queues with switching costs. Theo-
retical Computer Science, 182:203-216, 1997.

G.M. Koole and P. Nain. On the value function of a priority queue with an application to a
controlled polling model. Queueing Systems, 34:199-214, 2000.

P. Marbach, O. Mihatsch, and J.N. Tsitsiklis. Call admission control and routing in inte-

grated service networks using neuro-dynamic programming. IEEE Journal on Selected Areas
i Communications, 18:197-208, 2000.

T.J. Ott and K.R. Krishnan. Separable routing: A scheme for state-dependent routing of
circuit switched telephone traffic. Annals of Operations Research, 35:43-68, 1992.

M.L. Puterman. Markov Decision Processes. Wiley, 1994.

F.M. Spieksma. The existence of sensitive optimal policies in two multi-dimensional queueing
models. Annals of Operations Research, 28:273-296, 1991.

F.M. Spieksma. Personal communication. 2001.

H.C. Tijms. Stochastic Models. An Algorithmic Approach. Wiley, 1986.

12

2 3 4 5 6 7 8 910

1

y x=0

10

Table 1: Class the server goes to under the preemptive priority rule

2 3 4 5 6 7 8 910

1

y x=0
10

Table 2: One step improvement for \y = Ay =1, u1 =6, uo =3, c1 =2, co =1, s1 = s9 = 2. Here

g = 3.09895.

Average cost Comment

Iteration

e rule

3.62894
3.09895
3.09261

One-step improvement

Optimal policy

Table 3: Policy iteration results

13

2 3 4 5 6 7 8 910

1

y x=0
10

2. Here

SS9 —

= /\2 = 1,/11 = 6,,u2 = 3,01 = 2,62 = 1,81

Table 4: Optimal policy for Aq

g = 3.09261.

14

