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ABSTRACT

We propose two novel on-line estimation algorithms to de-
termine the size of a dynamic multicast group. We first use a
Wiener filter to derive an optimal estimator for the member-
ship size of the session in case the join process is Poisson and
the lifetime of participants is distributed exponentially. We
next develop the best first-order linear filter from which we
derive an estimator that holds for any lifetime distribution.
We apply this approach to the case where the lifetime dis-
tribution is hyperexponential. Both estimators hold under
any traffic regime. Applying both estimators on real traces
corresponding to video sessions, we find that both schemes
behave well, one of which performs slightly better than the
other in some cases. We further provide guidelines on how
to tune the parameters involved in both schemes in order to
achieve high quality estimation while simultaneously avoid-
ing feedback implosion.

Categories and Subject Descriptors

G.3 [Probability and Statistics]: Queueing theory, Sto-
chastic processes; H.4.3 [Information Systems Applica-
tions|: Communications Applications—Computer confer-
encing, teleconferencing, and videoconferencing
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Algorithms, Performance, Measurement
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1. INTRODUCTION

Since its introduction, IP multicast has seen slow deploy-
ment in the Internet. As stated in [7], the service model
and architecture do not efficiently provide or address many
features required for a robust implementation of multicast.
However, the fact remains that IP multicast is very appeal-
ing in offering scalable point-to-multipoint delivery specially
in satellite communications. Current research efforts tend to
propose alternatives to IP multicast like the so-called “ap-
plication layer multicast” [5, 10, 15, 20], the idea being to
deploy multicast at the application layer. Also, new mod-
els to support multicast communications in a more effective
way have been proposed, such as the EXPRESS multicast
[14]. The latter is an extension to IP multicast that pro-
vides explicit support for large-scale multicast applications
such as real-time stock quote dissemination, live sports video
feeds or Internet radio and TV. EXPRESS provides as well
a best-effort count of the number of subscribers.

This paper is motivated by the conviction that large-scale
multicast applications will be widely deployed in the future
as soon as the capability becomes available. We believe
that membership estimates will be an essential component
of this widespread deployment as they can be very useful
for scalable multicast. The membership of a session can
be used for feedback suppression as it is the case in current
protocols such as RTP [22] and SRM [9]. In order to regulate
the amount of session/control messages sent by receivers —
the idea being not to exceed 5% of overall session bandwidth
— these protocols use delay timers that are tuned based on
membership estimates.

The membership of a multicast session can be used for
charging the sources in large-scale applications. ISPs tradi-
tionally charge their customers on an input-rate basis. An
alternative pricing scheme would be to charge sources based



on their audience size which is more profitable in the case
of millions of subscribers.

Estimating the size of a multicast session can be quite use-
ful to many applications. Bolot, Turletti and Wakeman [4]
use membership estimation to further estimate the propor-
tion of congested receivers as needed in their videoconfer-
ence system IVS. Future Internet radios and TVs will need
to characterize their audience preferences and to follow the
fluctuations of the audience size. Dutta, Schulzrinne and
Yemini proposed an architecture for Internet radio and TV
called MarconiNet [8] that relies on RTCP [22, 21]. Even
though RTCP provides an easy mechanism for collecting
statistics on the size of the audience, it does not scale well
to large multicast session [8]. In such applications, sampling-
based techniques are more appropriate.

There has been a significant research effort in devising
sampling-based schemes for the estimation of the member-
ship in multicast sessions [4, 18, 19, 11, 17, 3]. The feedback
algorithms presented in [4, 18, 19, 11, 17] are all at-least-one
scenarios in the sense that the membership estimation is
based on at least one acknowledgement (ACK) coming from
the receivers. In these probabilistic schemes, the receivers
send ACKs to the source in reply to a specific request, ei-
ther with a certain probability as in [4] or after some random
time like in [18, 19, 17]. Except for [18] all these schemes
assume that the size of the group remains fixed over time.
In a recent work [3], we propose a dynamic scheme that
tracks the variations of the membership in an optimal way.
The estimation algorithm used is quite simple: the source
requests from its receivers to send ACKs with probability p
every S seconds; it collects the amount of ACKs received at
each observation step and filters out these measurements to
estimate the membership. To derive the optimal estimator
we rely on a diffusion approximation for the heavy-traffic
regime. Under the assumptions of Poisson join times and
exponentially distributed connection times, the diffusion ap-
proximation yields linear dynamics which enables the design
of the optimal filter using Kalman filter theory.

In this paper we propose two novel algorithms for estimat-
ing the membership based on the polling scheme presented
in [3]. Our purpose is to develop an estimator under more
general assumptions than the ones used in [3]. Our first
approach is based on a Wiener filter, which provides the op-
timal dynamic estimator among all linear estimators. The
dynamics is not required to be linear as in the case of the
Kalman filter, which allows us to relax the heavy-traffic as-
sumption made in [3]. Yet, in order to obtain explicit expres-
sions for the parameters of the Wiener filter, we still have
to assume that participants join the session according to a
Poisson process, and that the time during which they stay in
the multicast session, hereafter referred to as on-time, has
an exponential distribution. Under these assumptions we
design the optimal linear estimation scheme that turns out
to require a filter of order one. Motivated by this structure,
we then design an efficient estimation scheme for generally
distributed on-times. To that end, we identify the optimal
filter among all linear filters of order one. We illustrate this
approach in the case of hyperexponentially distributed on-
times. Alike the estimator developed with the Wiener filter,
the latter estimator is valid under any traffic regime. Both
estimators are then tested on real traces. Despite the fact
that these traces violate the assumptions under which the

estimators have been derived, very good performance are
observed.

REMARK 1.1. The material presented in this paper does
not require the specific use of IP multicast, nor any other
multicast protocol. The solutions proposed hereafter are
meant to be deployed at the application layer, and only re-
quire a multicast delivery of the requests for ACKs. This
delivery can be achieved either by IP multicast, or by an
application-layer multicast, or even by a new multicast tech-
nology. It is however assumed that the IP address of the
source is available to all receivers in the session.

The paper is organized as follows: the mathematical model
of the membership is introduced in Section 2. The theory
of Wiener filters is briefly presented in Section 3 and its ap-
plication to the M /M /oo model comes in Section 3.1. The
optimal first-order linear filter is developed in Section 4. Sec-
tion 5 proposes some guidelines on how to choose parame-
ters p and S. The robustness of both estimators is addressed
through validations on real traces in Section 6. Finally, open
issues are discussed in Section 7 and concluding remarks are
given in Section 8.

2. MULTICAST GROUP MODELED AS AN
M/G /0« QUEUE

We consider a multicast group that participants join and
leave at random times. Let T; and T; + D; be the join time
and leave time, respectively, of the i-th participant. In the
following, D; denotes the on-time of the i-th participant. Let
N(t) be the number of participants in the multicast group
at time t or, equivalently, the size of the multicast session at

time ¢. Without loss of generality we assume that N(0) = 0.
Then,

N@t)=> UT; <t<Ti+D) (1)

i>1

where 1(E) equals 1 if the event E occurs and 0 otherwise.

We shall assume that the join times form a homogeneous
Poisson process (with constant intensity 0 < A = 1/E[Tj41—
T;]) and that the on-times form a renewal sequence of ran-
dom variables (rvs) with common probability distribution
U(z) = P(D; < z), 0 < E[D;] < oo, further independent of
the join times. In the following D will denote a generic rv
with probability distribution ¥(z).

In the queueing terminology, { N (¢), t > 0} represents the
occupation process (number of busy servers) in an M/G /oo
queue [16].

At times t = nS, n = 0,1,..., with S > 0 a constant,
each participant to the multicast session sends an ACK to
the source with probability 0 < p < 1 and does not send
any feedback information to the source with probability 1 —
p. We assume that ACKs cannot be lost. However, this
assumption can be relaxed if one knows the loss probability
as it is possible to incorporate it in our feedback mechanism.

The ACK interval S between two consecutive polling in-
stants has to be larger than the largest round-trip time be-
tween a receiver and the source, so that all ACKs produced
in a round reach the source before the (automatic) start of
the next round. Note that in practice the source will have to
regularly multicast the pair (p,S) to ensure that each par-
ticipant will know these values. Throughout the paper, p
and S are held fixed (see Section 5 for possible extensions).



Let Y,, be the number of ACKs received by the source at
time nS. Based on the knowledge of Yi,...,Y,, our objec-
tive is to find an optimal estimator (in a sense to be defined
below) N, for N,, := N(nS), the size of the multicast group
at time nS. In filtering parlance, Y,, is an input signal and
we want to generate another signal N, that is as close as
possible to an unknown signal N, (typically by minimizing
the mean square error).

For later use we briefly review some results on the M /G /oo
queue. In steady-state, the number N of busy servers is
a Poisson random variable with parameter p := X\ E[D],
namely, P[N = j] = p’exp(—p)/j!. In particular, both
the mean and the variance of the number of busy servers
are equal to p. The autocovariance function of the station-
ary version of the process {N(t), t > 0}, also denoted by
{N(t), t > 0}, is given by [6, Eqn (5.39)]

Cov(N(t), N(t+h)) =X P(D > u) du. (2)
[h]

In the following we will denote by Covx (-) the autocovari-
ance function of any second-order discrete-time stationary
process { Xy }». With this notation and the definition of the
process { Ny }n, we see from (2) that

Covn (k) = py*, k=0+1,..., (3)

with v := exp(—puS), when the on-times {D;}, are exponen-
tially distributed with mean 1/pu.
Throughout the paper, we will assume that

> Covn (k) < oo. (4)

k>0

In other words, we will exclude the situation where the on-
times are heavy-tailed (e.g. Pareto distribution).

3. WIENER FILTER

Our objective is to transform a signal Y;, (noisy observa-
tion) into another signal N,, (estimator) that is the closest to
an unknown signal N,. By closest we mean that the mean
error is zero (i.e. E[N,] = E[N,]) and that the mean square
error is minimized.

Such a transformation can be achieved by the Wiener fil-
ter that identifies the optimal linear filter [12] (i.e. the filter
that is optimal among all linear filters). This approach gives
the transfer function of the linear filter, which can be trans-
formed back to the time domain to obtain the impulse re-
sponse of the filter. From the impulse response of the filter,
the expression of N, as a function of Y, and, possibly, of
Np_1, ]\A/'nfz, ..., can be found. We will detail this procedure
below.

Since a filter that minimizes the mean square error when
the underlying processes are centered also minimizes the
mean square error when the same processes are non-centered,
we will derive the Wiener filter for the centered (stationary)
versions of processes { Ny, }n, {Nn}n and {Y,}n, denoted by
{Vn}n, {Pn}n and {yn}n, respectively. We have observed in
the previous section that E[N,] = p. On the other hand

E[Y,] = E[E[Yx | No]] = E[p Na] = pp. (5)

Therefore v, = N,, — p, U, = Nn —pand y, =Y, — pp.

Throughout the paper, z is a complex number such that
|z| = 1. Introduce

Sy(z) = Z Covy (k)z™"

k=—o0

the z-transform of the autocovariance function (also called
the power spectrum) of {yn }n.

Let Covyy(k) = E[vn—_k yn] be the cross-correlation func-
tion of processes {vn}n and {yn}n. We also introduce’

Suy(2) = Y Coviy(k)z™"

k=—o0

the z-transform of Cov,, (k). We can express Cov, (k) and
Cov,y (k) in terms of Cov, (k) as follows

Covy(k) = p°Cov,(k)+1(k=0)pp(l—p) (6)
Covuy(k) = pCovy(k) (7)

where we have used the identity Cov, (k) = Covn(k). We
are now in position to derive the Wiener filter. First, we
write Sy (z) as

S,(2) = 0G()G(= 1) (8)

where o is a constant. This operation is called the canonical
factorization of the power spectrum of {y, }». The function
G(z) is the part of Sy(z) that has all its zeros and poles
lying in the unit disk. The function 1/G(z) is the transfer
function of the whitening filter: it transforms {yn}» into a
white noise process with variance o.

Next, we form the ratio S,y (2)/G(27"). This ratio is in-
terpreted as the transfer function of a linear filter. The
impulse response of this filter has values at the left and at
the right of the time origin which means that this filter is
non-causal. In order to have a causal filter, we should isolate
the part of the impulse response having values at the right
of the time origin solely, and compute its transfer function.
This can be done by expanding S, (z)/G(2~") into fractions
and by considering only the fractions with zeros and poles in
the unit disk. In other words, we transform the non-causal
filter into a causal one. We denote the transfer function of
the causal version of the filter by

we - [,

The transfer function of the optimal filter is given by [12]

_ H()
cG(z)

It remains to invert this transfer function back into the time
domain to find the desired recurrence between 7, and Yn
and, subsequently, between the non-centered variables N,
and Y;,. This procedure is illustrated in Section 3.1 for the
case that the underlying model is the M /M /oo queue.

H,(2)

3.1 Application to the a/M/oc model

In light of the results reported in Section 3, all what
we have to do is to find expressions for Sy(z) and S,y (2).
This can easily be done when the underlying model is the
M /M /oo queueing model, as shown below.

!Observe from (6) and (7) that both S,(z) and S,,(z) are
well-defined for |z| = 1 under the assumption (4).




Let us first determine Sy (z). By using (6) and (3) together
with the property that Covy (k) = Cov,(k), we find

_J p oy, fork#0
Covy (k) = { P, for k = 0.

Since v < 1 and |z| = 1, the z-transform of Cov, (k) is
Cpp[vlp—1)22 +[1+42(1 - 2p)z +y(p — 1)]
= 21— 72) (1 — 72 ) '

The second-order polynomial in the variable z in the numer-
ator has two positive real roots given by r and 1/r, with

L 17 =2p) = V(1 =)L = 7*(1 = 2p)7]

Sy(2)

2y(1 - p) '
Note that r < 1. Hence
_ oapp(l—p) [(L=rz)(1 —7rz"")
A e T
= 0G(2)G(z
with
_ pp(1 —p) _1-r!

We now compute S,y (2). From (7) and (3) we find

Covyy (k) = ppy'™!

so that

pp(1—7%)
(1 =72)(1L —vz=1)

The transfer function H(z) is given by

Svy(z) =

_[Sw) | _ (=77
10 = (G5, = e e

and the transfer function H,(z) of the optimal filter takes
here the simple form

_ (-9 B
Ho(z) = o(l—~r)(1—rz—1) T 1— Az?
where
2 2
A=, _ep(=7) _ (=7

Co(l—ar) A1 -p(d )
The impulse response of this linear filter is given by the
first-order recurrence relation [12]

lA/n = AlA/n—l + Byn

with 2, the estimator of v,,. We now return to the original
processes {N, }, and {Y,},, to finally obtain the optimal
linear filter:

Nn = AN,_1 + BY,, + p(1 — A — pB). (9)

It is interesting to compare this filter with the Kalman
filter derived in [3]*. They appear to be the same! This
result is somehow expected, since both the Kalman filter

2Recall that a Kalman filter is the optimal filter under the
condition of linear dynamics and observation, which does
not hold in our case. However, the dynamics does converge
to a linear diffusion as the traffic load tends to infinity, al-
lowing us in [3] to obtain a Kalman filter which is optimal
for the asymptotic heavy traffic regime.

and the Wiener filter are optimal (among the class of linear
filters) in the sense that they minimize the mean square
error. The key point is that the Kalman filter used in [3] was
derived under a heavy traffic assumption, while the Wiener
filter computed in the present paper holds for any value of
the model parameters A and p. This partly explains why the
estimator in [3] behaves well under light or moderate traffic
as experimentally observed in that paper.

We conclude this section by computing the mean square
eITor €min = B[(N, — Nn)Q] of our estimator. It is known
that [12]

€min = »_ Res [F(2), 2]

k=1
with
1 _
F(z):= . [Su(2) — Ho(2)Suy (2 1)}
where z1,...,2zum are the poles (if any) of the function F(z)

lying in the unit disk. The notation Res [F'(z), zx] stands for
the residue of F(z) at point z = zx, namely, the coefficient
of 1/(z — zi) in the Laurent series expansion of F'(z) in the
vicinity of z.

Specializing F'(z) to the values of S, (z), Svy(z) and Ho(z)
found earlier, yields

p(1— (1 — Bp)z — A)
FE =00 e —a)

This function has two poles inside the unit circle which are
located at z = A and z = ~; the residues of F(z) at these
poles are given by —ppAB(1 — ~4%)/((1 — yA)(A — 7)) and
p(1+pB~y/(A—7)), respectively. Summing up these residues

gives
(1 Bp
€Emin P 1—~ 1)

By using the expressions of A and B, we finally obtain
—(1 =)+ /0 =) (1 =201 - 2p)?)
P 3 :
2v%p
This expression for €,,:, can be used to tune the parameters
p and ~ or equivalently S (see Section 5).

(10)

€Emin =

4. OPTIMAL FIRST-ORDER LINEAR FIL-
TER

The theory reported in Section 3 applies to any on-time
distribution ¥(z) (with the exception of heavy-tailed distri-
butions). However, it is not easy to identify the function
G(z) that appears in the canonical factorization of the spec-
trum Sy (z) (see (8)) and thereby the optimal filter, except
when the on-times are exponentially distributed rvs (see Sec-
tion 3.1).

In this section we will determine the first-order linear filter
that minimizes the mean square error. Observe that, unlike
the Wiener filter, the proposed approach will not return the
optimal filter among all linear filters but simply the optimal
linear filter among all first-order linear filters. We will il-
lustrate this approach at the end of this section in the case
where ¥(z) is an hyperexponential distribution.

Recall the definition of the centered processes {vn }n, {Un In
and {yn }» made at the beginning of Section 3.



The methodology is simple: we want to find constants
A € (0,1) and B such that € := E[(vn, — #,)?] is minimized
when the process {0} satisfies the following first-order re-
currence relation

Dy = Abp_1 + Byn. (11)
In steady-state this implies that
On =B Ay, . (12)
k=0

The mean square error € is equal to
e=E[i}] +E [v] — 2E [nvn].

We have E[v2] = E[(N,, — p)?] = p (see Section 2). From
(12) and (7) we find

E [Onvn] = pB Z AFCov, (k) = pBg(A)
k=0

where
g(z) = _ 2" Cov, (k). (13)
k=0

The power series g(z) converges for |z| < 1 (Hint: k& —
Cov, (k) is nonincreasing) and is therefore differentiable for
|z] < 1. We will denote by g¢'(2) its derivative.

It remains to express E[ﬁ%] in terms of the parameters
A and B. Squaring both sides of (11) and then taking the
expectation, yields

E[1?] = (1_73/12) (2AE[#n_1y.] + BE [42]).

With the identities E[y2] = Covy(0) = pp (see (6)) and
E[0n-1yn] = Bp® (9(A) — p)/A (Hint: use (12), (7) and
Cov,(0) = p), we obtain

E[5}] = (%) (2p9(4) + p(1 — 2p)).

Finally, the mean square error is

= - 2pBy) + ({225 ) (o(a) + o1 20)) . (19

In order to minimize €, A € (0, 1) and B must be the solution
of the following system of equations:

e 2pB (AB {2299(14) +p(1 — 2p)}

A~ 1-_ A2 1- A2

+¢'(A)(pB— (1 - 4%) | =0

By ([T )

The 2nd equation gives
_ - A%)
2pg(A) + p(1 = 2p)
Substituting this value of B into the 1st equation shows that
A must satisfy
Ag(A)(2pg(A) + p(1 - 2p))
—9'(A)(1 = A*)(pg(A) + p(1 - 2p)) =0.  (16)

(15)

If this equation has a unique solution A € (0,1), then sub-
stituting this value of A into (15) will give the optimal pair
(A, B).

It is shown in Appendix A that (16) has always a unique
solution in [0,1) (in particular) if g’(x) > 0 in [0,1). This
condition will hold as long as P(D > S) > 0. In practice,
one can always select S such that this condition is true.

The reader can check that the filter defined in (11) with
the optimal pair (A, B) is the same as the Wiener filter
found in Section 3.1 when the on-times are exponentially
distributed.

We now illustrate the approach developed in this section
by considering the situation where on-times have a hyper-
exponential distribution. More precisely, we assume that

(@) =1-) pet* (17)

with 0 < pp < 1,1 = 1,2,...,L, and ZZL:Ipl =1. In
this setting the underlying queueing model can be seen as
L independent M/M /oo queues in parallel. The arrival
rate to queue [ is p;A and the service rate is u;. Define

v = exp(—wS), pr := pA/m so that p = Zlel pi. The
autocovariance function of the process {un}n is equal to

[ for k=0
Covy (k) = { S ™ for k0

so that

L

_ pr
=1

Numerical example®: L =2, p=0.0106 and S = 2.55. Also

1/pn = 3897s p1 = 195 ~ = 0.999359
1/puz = 480061s pz = 751 2 = 0.999995
1/p = 18316s p = 947

The optimal first-order filter is
N, = 0.99879456 N,,_1 + 0.10720289 Y;, + 0.006540864.

For comparison the Wiener filter found in Section 3.1 (for
exponential on-times) is

N, = 0.99828589 N,,_1 4 0.14885344 Y, + 0.012900081.

5. GUIDELINES ON CHOOSING ACKS PA-
RAMETERS

A “good” pair (p,S) should (i) limit the feedback implo-
sion while at the same time (ii) achieve a good quality of the
estimator. Of course (i) and (ii) are antinomic and therefore
a trade-off must be found. This trade-off will be formalized
as follows: we want to select a pair (p,S) so that the mean
number of ACKs generated every S seconds (see (5)) and
the relative error of the variance of the estimator (denoted
as 1) are bounded from above by given constants, namely

ElY.]=pp <« )
_ Var(Nn) — Var(Ny)
= Var(Ny)

(18)

<B.

3The values of the parameters come from the trace called
videoy investigated in Section 6.



When N, is optimal then Var(N,) — Var(N,) = E[(N,, —
Nn) | and 1 becomes the “normalized mean square error”
[13, p. 202]. Optimality was shown for the M/M /oo queue,
therefore

€min

p

n=

with €min given in (10).

For given constants « and (3, it is easy to solve the con-
strained optimization problem defined in (18), provided that
7 is known.

For the M /M /oo model, where €min is given in (10), we
find that p = a/p and that S, or equivalently ~, is the unique
positive solution of the equation €, = pf.

The problem now is to choose constants o and 3 so that
conditions (i) and (ii) are satisfied. We have found that «
in the range [0.5,1] and 3 < 0.15 give satisfactory results.

We conclude this section with general remarks on how to
adapt the parameters p and S to important variations in the
membership. The estimation schemes in Sections 3.1 and 4
have been obtained under the assumption that parameters p
and S are fixed. However, the filters constructed in Sections
3.1 and 4 can still be used if p and/or S change over time,
provided that these modifications do not prevent the system
to be most of the time in steady-state. In that setting, a new
filter will have to be recomputed after each modification (e.g.
each time the number of ACKs collected by the source in a
given period is significantly different from pp, the current
expected number of ACKs).

6. VALIDATION WITH REAL TRACES

In this section we apply the estimators developed in Sec-
tions 3.1 and 4 to four traces corresponding to video mul-
ticast sessions. Two types of estimators will be used: the
estimator — denoted as N¥ — found in (9) when the the dy-
namics of population is modeled as an M /M /oo queue; the
estimator — denoted as N,{{Q — derived in Section 4 in case
the join times are Poisson and the on-times have a 2-stage
hyperexponential distribution (M/H2/oco model).

The objective is twofold: we want to investigate the qual-
ity of both estimators when compared to real life conditions,
and we want to identify the best one.

We have collected four MBone traces — denoted video;, i =

.,4 — between August 2001 and September 2001 using
the MListen tool [1]. Each trace corresponds to a long-lived
video session (see duration of each session in Table 1, where
the superscript “d” stands for “days”). We have run both
algorithms (estimators) on each trace.

For each trace we have identified the parameters of the
M/M /oo model (parameters A and u, or equivalently pa-
rameters p and p) and of the M/Hz /0o model (parameters
0, 11, 2, p1 and p2 = 1 — p1 — see definitions in Section 4).
The values of these parameters are reported in columns 3-8
in Table 1. Details on how these values have been obtained
are given in Appendix B.

Parameters p and S have been chosen by following the
guidelines presented in Section 5, namely o € {0.5,1} and
B € {0.1,0.15}. Values of these parameters are listed in
columns 9-10 in Table 1. The performance of estimators
]\7,]{3 and ]\752 are reported in Tables 2 and 3.

Table 2 reports several order statistics (Columns 3-7) and

[Ny — Nn
Nnp,

the sample mean of the relative error (column 2),

where N, is either Nf or ]\752 All results are expressed in

Table 2: Mean and percentiles of |N,, — Nn|/Nn
Trace [ Mean 25 50 75 90 95 ‘
videor NP | 6.82 1.09 242 5.25 115 194
NIz | 612 1.08 255 6.31 135 206
videoo NF | 419 1.41 3.08 543 8.66 11.9
N2 | 412 098 214 441 878 126
videos NF | 420 155 326 571 871 11.0
N2 | 398 1.07 236 4.83 9.35 126
videos NF | 379 1.23 257 451 7.50 11.0
N2 | 406 1.02 221 4.39 898 14.7
overall NP | 444 133 288 522 860 12.0
NHz | 434 1.02 226 4.73 9.61 14.2

Table 3: Empirical mean and variance of N, — Nn

| Trace [ Mean Variance €min, € 7 ‘

videoy NF | -0.112 12.664 13.942 0.147
Nz | _0.047 12.851 12.120

videos NF | 0.006 0.495  1.407 0.099
N2 | 0.019 0.785  0.396

videos NF | 0.037 0.207  0.737 0.091
NIz | 0.019 0.229  0.208

videos NF | 0.052 0911  1.566 0.087
N2 | 0.065 1.423  0.676

percentages. The first observation is that both estimators
perform reasonably well. The sample mean of the relative
error is always less than 6.82% and is as low as 3.79%; when
averaged over all experiments, this sample mean is less than
4.5% for both NE and N2 (see last two rows). The last
column gives the 95th percentile and reads as follows: the
relative error achieved on trace videos by NE (resp. Nrfb) is
95% of the time less than 11.00% (resp. 12.56%). The sec-
ond observation is that no scheme is uniformly better than
the other over an entire session but their sample means are
very close to each other (see column 2). For instance, N’
performs better than N2 regarding the 90th and the 95th
percentiles whereas the result is reversed regarding the 25th
percentile. It looks like the relative error on N2 is empir-
ically more dispersed around its mean than is the relative
error on Nf, and has a longer tail. Across all sessions (see
last two rows), 75% of the time NH2 performs better than
NE. This improvement does not come for free, since it re-
quires the identification of 4 parameters (p, 1, 2 and p1)
instead of 2 (p and p) for NE.

Table 3 reports the sample mean and the sample variance
of the error N,, — N,. In the 4th column, we list the theo-
retical variance. It is given by emin for N (see (10)) and
by € for N}72 (see (14)). The expected average E[N,, — N,,]
is zero in both approaches. Both estimators N and N2
have almost no bias (see column 2), and their empirical vari-
ances closely match the theoretical ones given by €, and
€, respectively. It is of interest to point out that for the 4
traces studied, €, the theoretical mean square error provided
by N 2, s smaller than €,,in, the theoretical mean square
error provided by N (however, this result is reversed if we
consider the empirical mean square errors). Thus, ]\752 is



Table 1: Parameter identification

| Trace [ Session lifetime [ p 1/p 1/ 1/p2 p1 D2 P S [ « I]
videoy | 3%13%33™20° [ 94.7 18316 3897 480061 0.97 0.03]0.011 25 1.0 0.15
videoy | 11% 17 46™ 8° | 14.1 16476 1 226498 0.93 0.07 | 0.034 3.2 |05 0.1
videos | 509227 13™20° | 8.1 66823 1 900854 0.93 0.07 | 0.062 20.0 |05 0.1
videoy | 29916 43™13° | 17.9 83390 1 473268 0.82 0.18 | 0.028 10.0 | 0.5 0.1

Table 4: Distributions that best fitted into the inter-arrivals and on-times sequences.

Trace [ Best fit for inter-arrivals sequence

[ Best fit for on-times sequence

|

Weibull with shape 0.35, scale 3700
Weibull with shape 0.26, scale 1400

video1 | Lognormal with p = 3.38, d = 1.49
videoz | Lognormal with = 5.20, d = 1.68
videos | Weibull with shape 0.65, scale 3500
videos | Weibull with shape 0.55, scale 2700

Lognormal with u = 5.08, d = 3.32
Weibull with shape 0.18, scale 4000

more efficient? than ]\7,{3 (again, ]\75 is empirically more ef-
ficient than N/2). The last column provides the relative
error on Var(NF), called 1 (= €min/p) in Section 5.

In Fig. 1 (resp. 2, 3 and 4) we plot the variations of
membership for session videoi (resp. videos, videos and
videos), together with the estimates returned by NE and
]\7,{{2. Among all 4 sessions, session video; presents the high-
est variations in N,. Fig. 1(a) (resp. 2(a), 3(a) and 4(a))
displays three curves: the membership of the video session,
the estimation returned by Nf , labeled “Exponential”, and
the estimation returned by N2, labeled “Hyperexponen-
tial”. It is clearly visible, especially at the left-hand side of
graph 1(a), that NE tracks better the session dynamics than
]\A/,{{?. Both estimators Nf and ]\775{2 have been derived un-
der some specific and restrictive assumptions: Poisson join
times for both of them, exponential (resp. 2-stage hyper-
exponential) on-times for the first (resp. second) one. It is
interesting to know whether or not these assumptions were
violated in each session video;, i = 1,...,4. We have there-
fore carried out a statistical analysis of each trace in order
to determine the nature of their join time process and of
their on-time sequence.

As shown in Table 4 and Figs. 1, 2, 3 and 4, parts (b) and
(c), neither is the join time process Poisson nor are the on-
times exponentially distributed (or hyperexponentially dis-
tributed) for any of the traces. The inter-join times and
the on-times appear to follow subexponential distributions
(Weibull and Lognormal distributions), a situation quite
different from the assumptions under which the estimators
have been obtained. Despite these significant differences,
the estimators behave well and therefore show a good ro-
bustness to assumption violations.

In summary, both estimators perform very well when ap-
plied to real traces and are robust to significant deviations
from their (theoretical) domain of validity. Estimator N2
returns the best global performance for the relative error cri-
terion, but does not track high fluctuations as well as ]\7,‘? .
Overall, we have found that NF is a good estimator, both
in terms of its performance and its usability since it only
requires the knowledge of two parameters: p and pu.

4An estimator is said to be more efficient if it has a smaller
variance.

7. OPEN ISSUES

The main pending issue concerns the knowledge of pa-
rameters p and p (or equivalently any couple of parameters
among p, A and u, since p = A\/u in steady-state). When
these parameters are not known, the source should estimate
them. Again, the source could estimate any two parameters
among p, A and y and infer the third one.

One possible way of estimating A is to let a newly arrived
receiver send a “heartbeat” to the source with a certain (con-
stant) probability ¢ (¢ should be small enough to avoid over-
whelming the source with heartbeats). The source would
then use the arrival time t,, of the mth heartbeat to esti-
mate A. The maximum likelihood estimator is A = m/(qtm).
This estimator is unbiased and consistent by the strong law
of large numbers (limp— oo tm/m = 1/(gA)).

In a similar way, the source can estimate u if receivers
probabilistically send a “goodbye” message reporting their
lifetime when they leave the session. Let 7,,, be the life-
time indicated in the m/th goodbye message received at the
source, then the maximum likelihood estimator of p is sim-
ply i = m’/(Xlzi1 Tm). The estimator [ is unbiased and
consistent. .

A natural estimator for p is p = E[IV,,]. As long as there is
no estimation of both p and p, it is not possible to compute
the filter coefficient A and B. Then only a naive estimator
for N, can be used, defined as the ratio of the number of
ACKSs received Y;, over the ACK probability p (this estima-
tor does not perform well as shown in [2]). Observe that
E[Y,/p] = p.

One might want to treat the estimation of N,,, 4 and p as
a joint parameter estimation problem. Unfortunately, the
problem becomes much more complicated, and we are not
able at the moment to say anything about its resolution.
Alternatively, one might want to replace p by p = E[N,]
in (9) and investigate on the performance of the resulting
algorithm. It is possible to go even farther by replacing
p by Y. /p, instead of using E[Y,,/p]. This will add more
burstiness to the dynamics of N,, and (9) becomes

N = ARy + (1— A)X2
p

The latter equation is nothing but an exponential weighted
moving average (EWMA) estimator for the membership pro-
cess N,. We expect this EWMA estimator to perform better



than Nn, as given in (9), over highly dynamic sessions, as its
auto-regressive equation has been derived by replacing the
constant term p by the bursty term Y, /p. It is also expected
that this EWMA estimator will react faster to important
and sudden changes in the membership process. However,
its performance over real sessions still needs to be investi-
gated more carefully. Observe that the use of this EWMA
estimator relies on the prior knowledge of v = exp(—puS)
solely, and therefore either “goodbye” or “hello” messages
are still required to compute fi.

The first option is to directly estimate p as indicated
above, but the first estimate will be delayed until the recep-
tion of the first goodbye message, which might necessitates
the departure of several customers. The second option is to
estimate both p and ) as indicated earlier in the section and
to estimate p as A/p, which is not expected to perform as
well as the first option, but will return a first estimate much
faster. At the expense of a larger warm-up period, we be-
lieve that the first option is preferable. Another advantage
of this option concerns the possible modification of ¢’ by the
source, in order to control the volume of goodbye messages
sent, which clearly cannot be done with the hello messages.

8. CONCLUSION

The major contribution of this work is the design of two
novel estimators for evaluating the membership in multicast
sessions. We have designed estimators capable of efficiently
tracking the dynamics of multicast sessions while simultane-
ously avoiding feedback implosion. In contrast to the esti-
mator proposed in [3] which was designed under heavy traffic
assumptions, our schemes do not place such restrictions.

Relying on the Wiener filter theory, we have computed
the optimal linear estimator for session membership when
the underlying model is an M /M /oo queue. The optimality
refers to the unbiasedness of the estimator and to the fact
that the mean square error is minimized. We have also devel-
oped the optimal first-order linear filter in case the on-time
distribution is arbitrary and have derived the associated es-
timator in case the on-times have a 2-stage hyperexponential
distribution.

Both obtained estimators have been validated on real traces.
Their performance have been shown to be excellent, one of
them showing a good ability to adapt to highly dynamic
multicast sessions.
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APPENDIX

A. EXISTENCEAND UNIQUENESS OF THE
SOLUTION

LEMMA A.1. Define

f(x) = (2pg(x) + p(1 = 2p))zg(x)
~(pg(x) + p(1 = 2p))(1 — 2*)g' (),
where g(x) is given in (13).
If ¢'(z) > 0 for x € [0,1), then f(z) has a unique zero in
[0,1).

Proof. Write f(x) as f(z) = f+(x) —
f+(2) = [2p(9(x) — p) + plxg(x)
f-(@) = [plg(x) = p) + p(1 = p)] (1 — 2°)¢ ().
)=

The derivative of f_(z) is given by f’ (z
using

f—(x) where

—az? - Bz 4+«

a=p(g'@)" +plg(x) = p) + p(1 = p)lg" (@),

B :=2[p(g(x) — p) + p(1 — p)lg'(x).

Since ¢'(x) > 0 and g(z) > p (see (13)), it is seen that o > 0
and 3 > 0 which implies that f”(z) = —2az—3 < 0for z €
[0,1). We therefore have that f’ (x) is strictly decreasing in
[0,1), with f7(0) =« > 0 and f’ (1) = =8 < 0. Thus, the
function f’ (z) has only one zero in [0, 1).

Therefore, and under the assumptions of the lemma, it is
seen that:

(i) f+(z) is continuous and strictly increasing in [0, 1)
with f4(0) = 0;

(if) f-(z) is continuous in [0,1) and f_(1) = 0. There
exists zo € (0, 1) such that f_(x) is strictly increasing
in [0, zo), strictly decreasing in (zo,1) and f’ (xo) = 0.

We deduce from the above that f(x) has a unique zero in
[0,1) if ¢g’(z) > 0 in [0,1). This condition will hold as long
as P(D > S) > 0. In practice, one can always select S such
that this condition is true.

B. COMPUTING PARAMETERS FROM
TRACE

Each trace records (73, D;),7 > 1. To use the M/M/co
queue model, we identify 1/X\ = E[Tj41 — T3] and 1/p =
E[D], and deduce p = A/u. To use the M/Hz/oco queue
model, A\ is computed as before. Identifying u1, g2, p1 and
p2 requires the knowledge of the first three moments of D
(recall that po = 1 — p1). For a 2-stage hyperexponential
distribution, the kth moment is given by

2 pk! p1 D2 o
=2 G ((uo +(u2)’“)’f Bt

=1

The parameters p1, u2,p1 and pa are then solution to the
following system of four equations, where o; stands for 1/,
with [ =1, 2.

pi+pe=1 (19)
p1o1 + p2o2 = E[D] (20)
pioi + paoi = E[D?]/2 (21)
pioi + paoi = E[D%]/6. (22)

Equations (19) and (20) readily give

. o2 — E[D]’ s — E[D] - a1 (23)

o2 — 01 o2 — 01
Substituting Equations (23) for p; and p2 into (21) yields
E[D*]/2=E
Substituting them into (22
E[D?]/6 = E[D]((02 + 1) — 0102) — 0102(02 + 01). (25)

[D)(o2 + 01) — g102. (24)

) yields



Introduce now S, and P, as the sum and the product of o1
and o2, respectively. Equations (24) and (25) become
E[D’]/2 = E[D]S, - P,
E[D’|/6 = E[D|(S; — Ps) — PsSo
(E[D*)/2) S; — E[D]P,

where the latter identity is obtained when using the first
one. It then follows that

S - 3E[D|E[D?] — E[D?]
7~ 3(2E[D]? - E[D?)
_ 3E[D?)?> — 2E[D]E[D?]
~ G6(2E[D]2 —E[D?)) ~

(26)

P, (27)
and o1 = 1/p1 and o2 = 1/ o are the (positive) solutions of
2> —S,z+ P, =0. Namely,

o1a=1/2 % (sa + \/M).

We now can compute p1 and ps as given in Equations (23). It
is then possible to calculate p; = pi A/ and v, = exp(—m.S)
for [ = 1,2. Last p = p1 + p2.
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Figure 4: Membership estimation of session videos and corresponding probability plots



