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Abstract—In this paper we propose an optimal on-line es-
timation algorithm for determining the size of a dynamic
multicast group. By using diffusion approximation and
Kalman filter, we derive an estimator that minimizes the
mean square of the estimation error. As opposed to previous
studies, where the size of the multicast group is supposed to
be fixed throughout the estimation procedure, we consider
a dynamic estimation scheme that updates the estimation at
every observation step. The robustness of our estimator to
violation of the assumptions under which it has been derived
is addressed via simulations. Further validations of our ap-
proach are carried out on real audio traces.
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I. INTRODUCTION

SEVERAL papers have recently addressed the impor-
tant question of estimating a population size in a mul-

ticast tree: a source might be interested to know how many
recipients are connected to the multicast session (or are ac-
tively following some application that is being broadcast).
When such an information is required, the source could
ask to all connected members to send an acknowledgment
(ACK). But this could be undesirable in case of large pop-
ulations as the acknowledgments could overload the net-
work. To avoid this, one could alternatively ask each ac-
tive connected receiver to send an acknowledgment with
some small probability p∗. Yet, if p∗ is chosen too small,
the estimation would be inaccurate.

If we wish to further have the possibility of tracking the
population size, we should repeat occasionally the requests
for ACKs, at say, every S seconds. If S is not too large
then the population size at two consecutive estimation in-
stants would present statistical dependence. The engineer-
ing question we pose in this paper is how can we benefit
from this dependence in order to be able to get better esti-
mation, or alternatively, to get a given quality of estimation
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with a smaller required volume of ACKs (i.e. decreasing
p∗ or increasing S). A precise mathematical formulation
of this problem would require to use the theory of non-
linear stochastic filtering, which does not provide us with
tractable solutions. We shall instead use some simplifying
assumptions that will allow us to obtain a good estimation
scheme which, even if it is not always the optimal, will
show good performance. To that end we shall make some
simplifying assumptions: we shall consider an exponen-
tial distribution for the time during which a receiver stays
in the multicast session and make a large group size as-
sumption. This will allow us to obtain a diffusion approx-
imation for the dynamics of the population. Sampling this
process at some regular time intervals will yield a discrete-
time linear stochastic difference equation for the popula-
tion dynamics. We will further derive a linear discrete-
time equation for the measurements. The fact that both
the population dynamics and the measurements in our ap-
proximations are linear, will allow us to use the power-
ful Kalman filtering theory to design simple dynamic esti-
mation procedures which are optimal for the heavy traffic
model (in minimizing the second moment of the error).
These schemes thus make the best use of previous estima-
tion in order to update the current estimation optimally.

Having proposed dynamic estimation procedures that
are optimal in our simplified mathematical model, we will
test it on real traces which do not satisfy the assumptions
of that model. Nevertheless, we report good performance
of this procedure in these cases.

Estimating the size of a multicast session can be quite
useful to many protocols like RTP [1] and SRM [2] re-
quiring such estimates for feedback suppression, as well
as to several applications. For instance, Bolot, Turletti and
Wakeman [3] use a probabilistic scheme in order to esti-
mate the number of receivers in a multicast group and fur-
ther estimate the proportion of congested receivers. Their
mechanism is implemented in the IVS1 videoconference

1available at http://www-sop.inria.fr/rodeo/ivs.html
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system. In another context, Nonnenmacher and Biersack
[4], [5] investigate the scalability of feedbacks as needed
for reliable multicast and for the estimation of the num-
ber of receivers. They derive a random delay response
scheme that scales well to group sizes as large as 106 re-
ceivers. The feedback implosion problem is handled at the
receivers: each participant multicasts its response unless
he receives one from another participant. In [6], Friedman
and Towsley address the issue of estimating multicast ses-
sion membership size. Mapping the polling mechanism
to the problem of estimating the parameter n of the bino-
mial (n, p) distribution, they derive an interval estimator
for n and bounds for the amount of feedback as well as
the polling probability in order to achieve specific require-
ments. They apply their results on both mechanisms in-
troduced in [3], [4], [5] which have point estimators and
further add some contributions to each. Another timer-
based feedback scheme is proposed in [7] where receivers
send their randomly delayed response only to the source
which in turn initiates a new round of replies. Each re-
quest for replies sent by the source would reset the timers
at the receivers. Two versions of the mechanism are pro-
posed depending on whether the estimation is based on the
first arrival solely or on all the received responses. The lat-
ter version improves the accuracy of the estimator but in
both cases, the probability of a feedback implosion is not
negligible.

The paper is organized as follows: the mathematical
model is introduced in Section II and the optimization is
performed in Section III. The robustness of the estima-
tor is addressed both via simulations (in Section IV) and
via validations with real audio traces (in Section V). Open
issues regarding the “optimal” selection of p∗ and S are
discussed in Section VI and concluding remarks are given
in Section VII.

II. THE MODEL

We consider a multicast group that participants join and
leave at random times. Let Ti and Ti + σi be the join time
and the leave time, respectively, of the i-th participant. In
the following, σi > 0 is called the on-time of the i-th par-
ticipant and {σi}i is referred to as the on-time sequence.
Let N(t) be the number of participants at time t or, equiv-
alently, the size of the multicast session at time t. Under
the enforced assumption that N(0) = 0, we have

N(t) =
∑

i

1(Ti ≤ t < Ti + σi) (1)

where 1(E) is equal to 1 if the event E occurs and to 0
otherwise.

At times t = nS, n = 1, 2, . . ., the source polls all par-
ticipants (or receivers), with S > 0 a given constant. Upon
receiving a polling request, a participant sends an ACK
back to the source with probability p∗ and does not send
any feedback information to the source with probability
1− p∗. Travel times of polling requests from the source to
the receivers and travel times of ACKs from the receivers
to the source are supposed to be negligible with respect to
S; we also assume that the processing time needed to gen-
erate an ACK at a receiver is negligible with respect to S.
Finally, we assume that neither polling requests nor ACKs
can be lost. Under these assumptions it is seen that at time
nS the source possesses all ACKs sent to it by participants
which have been polled at the n-th polling instant (i.e. at
time nS). Throughout the paper p∗ and S are held fixed.

Given this scheme, our objective is to devise an algo-
rithm for estimating the session size at times t = nS for
n = 1, 2, . . ..

Mainly for mathematical tractability we shall assume
from now on that the arrival process is Poisson with rate
λ > 0 and that on-times form a renewal sequence with
common exponential distribution with finite mean 1/µ,
further independent of the arrival process (more general
arrival processes can be considered – see Remark II.1). In
this setting, the process {N(t), t ≥ 0} as defined in (1) is
nothing but the occupation process in a M/M/∞ queue-
ing system with arrival rate λ and mean service times 1/µ
[8]. For such a queue, it is known that the stationary num-
ber of busy servers is distributed according to a Poisson
random variable (RV) with parameter ρ := λ/µ; in par-
ticular, the mean number of busy servers in steady-state is
equal to ρ.

Unfortunately, not much is known on the transient be-
havior of the M/M/∞ for a fixed traffic intensity ρ.
We will instead investigate the M/M/∞ queue in heavy
traffic. To this end, let us introduce the scaled process
{NT (t), t ≥ 0} which is identical to the original process
{N(t), t ≥ 0} except for the fact that the arrivals have
been speeded up by a factor T , that is, the arrival rate in
the M/M/∞ queue is now λT . The mean service rate is
kept unchanged and equal to 1/µ.

Since NT (t) → ∞ a.s. as T → ∞, we will instead
work with the normalized process {ZT (t), t ≥ 0} defined
by

ZT (t) =
NT (t)− ρT√

T
, t ≥ 0. (2)

The process {ZT (t), t ≥ 0} describes the fluctuations of
the scaled process {NT (t), t ≥ 0} around its limiting tra-
jectory ρT as T →∞.

A nice feature of the process {ZT (t), t ≥ 0} is that
it converges to a diffusion process as T → ∞. More
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precisely, as T → ∞ the process {ZT (t), t ≥ 0} con-
verges in distribution to the Ornstein-Ühlenbeck process
{X(t), t ≥ 0} given by [9, Thm 6.14, p. 155]

X(t) = X(0) e−µt +
√
2λ

∫ t

0
e−µ(t−u) dB(u) (3)

where {B(t), t ≥ 0} is the standard Brownian motion (see
also [10, Thm 1, p. 172]). The Ornstein-Ühlenbeck pro-
cess defined in (3) is an ergodic Markov process and its
invariant distribution is a normal distribution with mean
zero and variance ρ [11, p. 358].

In the next section we shall devise optimal estimators
for the elements of the sequence {X(nS), n = 1, 2, . . .}
based on Kalman filter theory.

A word on the notation in use: N(m, v) will denote a
normal distribution with mean m and variance v and X ∼
N(m, v) will denote a RV with distribution N(m, v).

Remark II.1: . The convergence of the process
{ZT (t), t ≥ 0} to a diffusion process (but with different
coefficients than that in (3)) still takes place if the arrival
process is replaced by a process slightly more general than
a Poisson process [10, Thm 1, pp. 172-173]. On the other
hand, if the on-times are generally distributed and the ar-
rival process is Poisson, then one only knows that the pro-
cess {ZT (t), t ≥ 0} converges to a Gaussian process [12].

III. OPTIMAL ESTIMATION

In order to achieve an optimal estimation, we shall use
a Kalman filter that computes the state estimator out of
two linear equations: the system dynamic equation and
the measurement equation. These two equations are in-
troduced in the next two sections.

Throughout these sections we shall assume that the pro-
cess {X(t), t ≥ 0} is in equilibrium at time t = 0, namely,
X(0) ∼ N(0, ρ) (see comment after (3)).

A. System dynamics

From (3) we obtain

X(t) = e−µ(t−s)X(s) +
√
2λ

∫ t

s

e−µ(t−u) dB(u)

for 0 ≤ s ≤ t, from which it follows that

ξn+1 = γ ξn + wn, n = 0, 1, . . . (4)

with ξn := X(nS), γ := exp(−µS) and

wn :=
√
2λ

∫ (n+1)S

nS

e−µ((n+1)S−u) dB(u).

The RV’s {wn, n = 0, 1, . . .} are i.i.d. with

wn ∼ N(0, Q), n = 0, 1, . . . (5)

(see e.g. [10, p. 17]) with Q given by

Q = 2λE

[

∫ (n+1)S

nS

e−µ((n+1)S−u) dB(u)

]2

= 2λ

∫ (n+1)S

nS

e−2µ((n+1)S−u) du

= ρ (1− γ2).

Notice that

ξn ∼ N(0, L), n = 0, 1, . . . (6)

with L := ρ, under the assumption that X(0) = ξ0 ∼
N(0, ρ), which implies from (4) that

cov (ξn, ξn+1) = γρ, n = 0, 1, . . . . (7)

Equation (4) establishes a simple one-order recur-
sive expression relating the state of the limiting pro-
cess {X(t), t ≥ 0} between two consecutive polling in-
stants. We shall next derive the corresponding measure-
ment discrete-time equation, which will allow us to use
standard optimal estimation techniques.

B. Measurement equation

Let ζ i(n) be the indicator function that receiver i =
1, 2, . . . , NT (nS) has sent an ACK at the n-th polling in-
stant, with ζ i(n) = 1 if an ACK was sent by receiver i and
ζi(n) = 0 otherwise. From the definition of the model it is
seen that, conditioned on NT (nS) = k, ζ1(n), . . . , ζk(n)
are i.i.d. Bernoulli RV’s with E[ζ i(n)] = p∗. The con-
ditional expectation and variance of the number of ACKs
∑NT (nS)
i=1 ζi(n) received by the source at time nS are then

respectively given by

E





NT (nS)
∑

i=1

ζi(n) |NT (nS)



 = NT (nS) p
∗ (8)

Var





NT (nS)
∑

i=1

ζi(n) |NT (nS)



 = NT (nS) p
∗(1− p∗).

(9)

We define our normalized measurement equation as

YT (n) =

∑NT (nS)
i=1 ζi(n)− p∗ρT√

T
, n = 0, 1, . . . .

(10)
which can be rewritten as

YT (n) = p
∗ ZT (nS) + VT (n) (11)



4

with the help of (2), with

VT (n) :=

∑NT (nS)
i=1 ζi(n)−NT (nS)p∗√

T
. (12)

The next step is to let T → ∞ in (11). It is shown in the
Appendix that there exist i.i.d. RV’s {vn, n = 0, 1, . . .}
with

vn ∼ N(0, R), n = 0, 1, . . . (13)

with R := ρ p∗ (1 − p∗), independent of {wn, n =
0, 1, . . .}, such that {vk, k = n, n + 1, . . .} is indepen-
dent of {ξk, k = 0, 1, . . . , n} for n = 0, 1, . . ., and such
that YT (n) weakly converges as T → ∞ to a RV yn with
the representation

yn = p
∗ξn + vn, n = 0, 1, . . . . (14)

The properties enjoyed by the RV’s vn together with (6),
(7) and (14) readily imply that

yn ∼ N(0,M) (15)

with varianceM := ρ p∗, and

cov (yn, yn+1) = γρ (p
∗)2 (16)

for n = 0, 1, . . ..

C. Kalman filter

Equations (4) and (14) represent the equations of a dis-
crete time linear filter, for which we can compute the opti-
mal estimator. Throughout we shall assume that the Gaus-
sian initial condition ξ0, the signal noise sequence {wn}n
and the observation noise sequence {vn}n are all mutually
independent.

Let ξ̂n be an estimator of ξn, and denote by εn = ξn− ξ̂n
the estimation error. The estimator that minimizes the
mean square of the estimation error is given by the fol-
lowing Kalman filter (see e.g. [13, p. 347]), which has the
following simple recursive structure:

Pn =
(

(

γ2Pn−1 +Q
)−1
+ (p∗)2 /R

)−1
(17)

Kn = Pnp
∗/R (18)

ξ̂n = γξ̂n−1 +Kn

(

yn − p∗
(

γξ̂n−1

))

(19)

for n = 1, 2, . . ., with ξ̂0 = E[ξ0] = 0 and where the
constants γ, R and Q have been defined in Sections III-A
and III-B. Equation (17) is called the Riccati equation and
Pn gives the variance of the estimation error εn. In (18)Kn
is called the filter gain. Equation (19) is the state estimate
equation and it is the sum of an extrapolation term and of
an update term.

The above filter minimizes the sum of mean square es-
timation errors until time nS. One can also (and will from
now on) use the stationary version of the Kalman filter,
which minimizes the time average mean square estimation
error, namely,

P =
(

(

γ2 P +Q
)−1
+ (p∗)2 /R

)−1

K = Pp∗/R

ξ̂n = γξ̂n−1 +K
(

yn − p∗
(

γξ̂n−1

))

. (20)

P now gives the steady-state variance of the estimation
error. It is obtained as the unique positive solution of the
Riccati equation

(p∗)2 γ2P 2 + (Q (p∗)2 +R
(

1− γ2
)

)P −RQ = 0.

We find

P = −Q (p
∗)2 +R

(

1− γ2
)

2 (p∗)2 γ2

+

√

(Q (p∗)2 +R (1− γ2))2 + 4(p∗)2γ2RQ
2 (p∗)2 γ2

.

For every n, the error εn is a normal RV with mean zero
and variance P , further independent of the observation yn
[14, p. 240].

D. Membership size estimation

We now return to our original estimation problem,
namely, the derivation of an estimate – called N̂n – for
the number of participants NT (nS) at time nS.

Recall that the process {NT (t), t ≥ 0} describes the
number of busy servers in anM/M/∞ queue with arrival
rate λT and service rate µ. If NT (0) = 0, namely the
system is initially empty, then we know by Takács [15,
Thm 1, pp.160-161] that E[NT (t)] = ρT (1 − e−µt) for
any time t. In particular, E[NT (t)] = ρT in steady-state
(i.e. as t→∞).

Motivated by (2), we define N̂n as follows:

N̂n = ξ̂n
√
T + ρT (21)

with ξ̂n given in (20). Starting from E[ξ̂0] = 0 it is seen
from (20) and (14) that E[ξ̂n] = 0 for n = 0, 1, . . ., which
in turn implies from (21) that E[N̂n] = ρT . The estimator
N̂n is asymptotically unbiased in the sense that

∣

∣

∣
E
[

N̂n −NT (nS)
]
∣

∣

∣
la = e−µnS −→

n
0.

We conclude this section by briefly discussing the vari-
ance of the error en := NT (nS)− N̂n as a function of the
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parameter T . We have (use (2)) en =
√
T (zT (nS)− ξn),

so that

Var

(

en√
T

)

= Var(zT (nS)− ξn).

Although we have not been able to prove this result, we

believe that Var
(

en/
√
T
)

→ P as T →∞.

IV. SIMULATIONS

Our estimator has been derived under a set of vari-
ous statistical assumptions that may be violated in prac-
tice (Poisson arrivals, exponential on-times, heavy-traffic
regime). In this section, we investigate the robustness of
our estimator and try to identify situations where it works
well/poorly. To do so, we have conducted various simula-
tions where some or all of the assumptions needed for the
derivation of the estimator are violated.

Four types of simulations have been performed. For
each simulation, the parameters λ and T are taken to be
equal to 1 and 1/185.9 sec−1, respectively, and the run
time is 124240 sec. These values have been measured on a
real trace (see Section V for details on the traces we have
used). The ACK probability p∗ and the ACK interval S
have been set to 0.01 and 1.0 sec, respectively (see com-
ments in Section VI).

Two figures are associated with each simulation depend-
ing on the load (defined as ρT ) of the system: ρT = 34.1
referred to as “small load” (left-hand side figures) and
ρT = 200 referred to as “heavy-load” (right-hand side
figures). Each figure displays three curves: the simulated
data, the estimated data and the mean load ρT . For each
simulation, the performance of the estimator is collected
in Table I. The first column gives the 25th percentile, the
second the median value, etc. The last column reports the
interquartile range2 of the relative error.

In the first simulation the users join the multicast group
according to a Poisson process and their on-times are ex-
ponentially distributed. The Poisson assumption for the
joining process is fairly realistic as mentioned in [16]. The
validity of the exponential assumption for the on-times
has been observed for short sessions. The obtained re-
sults are reported in Figures 1(a). Both for small and
heavy loads the estimated value appears to be very close
to the true value; in particular, the relative error defined as
|NT (nS)−N̂n|
NT (nS)

, is less than 13.1% (resp. less than 4.7) most
of the time when ρT = 34.1 (resp. ρT = 200) (see Table
I for details).

2The interquartile range is the difference between the upper (75th per-
centile) and lower (25th percentile) quartiles of the data sample (upper
and lower bounds of the center half of the data values). It describes the
relative concentration of the data around the median value.

In the second simulation the on-times are still exponen-
tially distributed but now the inter-arrivals are Pareto dis-
tributed with shape parameter α equal to 1.1, leading to an
infinite variance of the inter-arrival times. The results are
displayed in Fig. 1(b). We first observe that both the esti-
mator and the real values are far away from the “limiting
trajectory” when the load is small. This is due to the infi-
nite variance of the inter-arrival times which prevents the
stationary regime to be reached rapidly. Nevertheless, the
accuracy of the estimator is still remarkable both at small
and heavy loads, as can be seen in Table I.

In the third simulation the arrival process is Poisson and
the on-times are Pareto distributed with shape parameter
α equal to 1.1. Both the estimator and the real values are
far away from the limiting trajectory for both loads. When
the load is small, the accuracy of the estimator is not as
good as in the previous simulations but it is still fair. We
suspect that this lack of accuracy is more a consequence of
the small measured load (18.1) than of the Pareto on-time
assumption. The accuracy of the estimator dramatically
increases as the load increases. See Fig. 1(c) and Table I
for details.

In the fourth and last simulation all assumptions are si-
multaneously violated: both the inter-arrival times and the
on-times are Pareto distributed with shape parameter α
equal to 1.1. The overall performance of the estimator is
better than in the third simulation. See Fig. 1(d) and Table
I for details. Table II contains the mean and variance of

TABLE II
MEAN AND VARIANCE OF THE ERROR en

ρT = 34.1 ρT = 200
TP = 5.514 TP = 14.067
Mean Var Mean Var

All exponential 0.07 4.7 −0.006 9.95
Pareto inter-arrivals 2.8 19.7 3.6 67.3
Pareto on-times −1.2 4.1 −3.8 10.1
All Pareto 0.6 16.9 −0.4 57.9

the error en. The expected mean is 0 and the (conjectured)
expected variance is TP . “Mean” denotes the measured
average and “Var” denotes the measured variance. Look-
ing at Table II, we can easily observe that
• There is a small bias when the distributions of the inter-
arrival times and of the on-times are different, that is, when
one of them is Pareto and the other one is exponential (c.f.
second and third lines). The negative bias −3.8 in the
heavy-load case can be observed in Fig. 1(c) where the
estimation is clearly above the simulated group size;
• The variances measured when the arrival process is Pois-
son are very close to each other for both values of the
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Fig. 1. Estimation of the multicast group size over time: p∗ = 0.01, S = 1 sec.
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TABLE I
PERCENTILES AND INTERQUARTILE RANGE OF THE RELATIVE ERROR

Small load ρT = 34.1 Heavy-load ρT = 200
25% 50% 75% 90% 95% Inter 25% 50% 75% 90% 95% Inter

All exponential 1.9 4.1 7.3 10.6 13.1 5.4 0.8 1.7 2.7 3.8 4.7 1.9
Pareto inter-arrivals 2.6 5.3 9.2 12.9 15.7 6.6 1.5 3.3 5.3 7.2 9.8 3.8
Pareto on-times 4.0 9.2 16.5 26.7 35.7 12.5 3.2 6.1 8.9 12.4 15.1 5.7
All Pareto 3.9 7.8 12.5 18.5 25.6 8.6 1.7 3.5 6.1 9.9 14.5 4.3

workload (see 1st and 3rd lines) and they are not too far
from the expected variances;
• The variances measured when the inter-arrival times are
Pareto distributed are both far from the expected variances
but are relatively close to each other (see 2nd and 4th
lines).

V. VALIDATION WITH REAL TRACES

An extensive study of the characterization of MBone ses-
sion dynamics is due Almeroth and Ammar [16], [17].
They have developed a tool called Mlisten3 that col-
lects the join/leave times for multicast group members in
MBone sessions. We have applied our algorithm to some
of these traces4 collected in 1996. We were not able to
analyze more recent traces. As stated in [17], the joining
process is reasonably close to a Poisson process. As to the
on-times two cases have to be distinguished depending on
the duration of a session. For long sessions some people
will join for very long periods while others will join only
for a few minutes. In this case, the Zipf distribution fits
well in the collected data. In the case where sessions are
short, the maximum membership duration is much shorter
than for long sessions, thereby eliminating long on-times.

We have run our algorithm on two different traces, one
collected from a short audio session that started on 9th of
December 96 and lasted for 1 day 10 hours 30 minutes and
40 seconds, i.e. 124240 seconds; the other one results from
a long audio session that lasted from 18th of November 96
to 10th of December 96 (21 days 12 hours 37 minutes and
27 seconds, that is 1859847 seconds). Fig. 2 plots the
actual group size and its estimation for each session.

The values of the arrival rate T (throughout λ = 1 so
that the arrival rate is T ) and the expected on-times 1/µ
were extracted from the traces. For the short duration ses-
sion, the measured “load” is ρT = 34.1; for the long dura-
tion session, the measured load is ρT = 63.5.

A naive approach to the estimation problem would con-
sist in using

∑NT (nS)
i=1 ζi(n)/p∗ as an estimator of the

3available at http://www.cc.gatech.edu/computing/Telecomm/mbone/
4Available at ftp://ftp.cc.gatech.edu/people/kevin/release-data/

TABLE III
PERCENTILES AND INTERQUARTILE RANGE OF THE

RELATIVE ERROR

ρT 25% 50% 75% 90% 95% Inter

34.1 2.3 5.2 11.8 44.9 61.2 9.5
63.5 1.3 2.7 4.7 7.7 13.1 3.3
38.0 1.8 4.2 7.3 11.4 15.9 5.4

TABLE IV
MEAN AND VARIANCE OF THE ERROR en

ρT Mean Var TP

34.1 0.219 6.070 5.514
63.5 0.017 8.083 6.723
38.0 0.338 6.339 6.303

size of the multicast group at time nS. Recall that
∑NT (nS)
i=1 ζi(n) gives the number of ACKs generated at

time nS. Not surprisingly this estimator performs very
poorly both because it does not take into account the “his-
tory” of the membership process and because the ratio
(1/NT (nS))

∑NT (nS)
i=1 ζi(n) will converge to p∗ a.s. only

when NT (nS) is large (the strong law of large numbers).
Our experiments (not reported here) have confirmed the
poor behavior of this naive estimator.

We now come back to our estimator. We have observed
(see Fig. 2(a)) that our estimator does not work well
case the session gathers a few participants. In this case,
it overestimates the size of the group; the absolute error
|NT (nS) − N̂n| is not significant but the relative error is
very high and approaches 100% (see around 2 a.m. in Fig.
2(a)). This behavior was already reported in Section IV.
The percentiles and the interquartile range of the relative
error for both sessions are listed in Table III.

The data set corresponding to the short audio session
exhibits two very different parts: very few users are con-
nected during the first quarter of the data set, thereby sug-
gesting that this part was recorded before the start of the
transmission. The remaining part of the data set records
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Fig. 2. Estimation of the multicast group size using audio traces and probability plots for the observed data.

participants activity during the transmission.

Our algorithm has first been run on the entire trace. As
expected, it performs poorly on the first quarter of the
trace; its performance improves dramatically on the re-
maining part of the trace.

The first quarter of the data set has then been removed
and our algorithm has been run on the resulting trace (we
found T = 1/157.7 sec−1, µ = 1/5994.6 sec−1 and
ρT = 38). Most of the time, the relative error is less than

15.9% (see Table III), which is a satisfactory result.

Table IV reports the mean and variance of the error en.
As before, “Mean” is the measured average, “Var” is the
measured variance and “TP ” is the (conjectured) expected
variance. We can see from this table that, as expected,
the measured average is close to 0. Also notice that the
measured variance and the expected variance are close to
each other.
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A. Distribution fits

The distribution fits for the inter-arrival time process and
the on-time process for both the short and long duration
sessions are presented in Figs. 2(a) and 2(b). We have
found that for both types of sessions, the joining process is
not Poisson and on-times are not exponentially distributed.

For the entire short audio session, the inter-arrival time
distribution is well represented by a Weibull distribution
with shape parameter 0.85 and the on-time distribution fits
well a Weibull distribution with shape parameter 0.32. Re-
call that the smaller the shape parameter the heavier the
tail (a Weibull distribution with shape parameter 1 is an
exponential distribution). Our results are different from
the results reported in [17] which is explained by the fact
that they have only analyzed the part of the trace with the
highest human activity. See Fig. 2(a)).

For the entire long audio session, the inter-arrival time
distribution is well represented by a Lognormal distribu-
tion with parameters µ = 4.53 and d = 1.41 and the on-
time distribution fits well a Lognormal distribution with
parameters µ = 5.55 and d = 3.24. Recall that the Log-
normal distribution is long-tailed; the higher the parameter
d, the longer the tail. See Fig. 2(b)).

To conclude this section, we would like to point out that
our estimator seems to be very robust to changes in the
distribution laws. Although the assumptions that the inter-
arrival times and the on-times have an exponential distri-
bution is crucial in the theory that we have developed in
Sections II and III, it is interesting to note that our esti-
mator still performs well for other distributions, including
various subexponential distributions (Pareto, Lognormal,
Weibull).

VI. OPEN ISSUES

Our main concern is the choice of the couple (p∗, S).
Until now we have used p∗ = 0.01 and S = 1 in all exper-
iments. These values were chosen in order to have a good
estimation. Empirically, we have seen that the estimation
is also good if both p∗ and S are increased/decreased. If
we only increase S, the ACK process will exhibit less cor-
relations, and the estimation will deteriorate. In this case,
we will need to increase p∗ accordingly in order to en-
hance the estimation. On the other hand, if we decrease p∗

then the source will collect less feedback information and
S should be decreased in order to increase the correlation
of the ACK process.

From the network point of view, the best would be to
have small p∗ and large S so as to minimize congestion.
From the estimation point of view, the best would be to
have small S and large p∗ so as to enhance the quality of

the estimator. Therefore, a trade-off has to be found based
on the group size, the available bandwidth of the underly-
ing network and the capacity of the source (or of any re-
ceiver who wants to dynamically estimate the group size).
We can think of three criteria to choose (p∗, S) in order to

(i) Avoid feedback implosion
(ii) Allow for a maximal volume of ACKs

(iii) Insure a predefined estimation quality.

The first criterion is the most constraining as it limits
the amount of ACKs to be generated at each ACK epoch.
The expected number of ACKs to be generated at time nS
is p∗NT (nS) which is estimated as p∗N̂n. This criterion
is expressed as p∗N̂n ≤ α which means that the highest
expected number of ACKs during S seconds is equal to
α. When applying our algorithm to the real traces, we
obtained up to 6 ACKs per second (S = 1) for the short
session and up to 8 ACKs per second for the long session.
If this exceeds the desired threshold, it means that p∗N̂n >
α and we should then decrease p∗ slightly, which could
deteriorate the quality of the estimation.

Regarding the second criterion, it is less constraining in
the sense that it allows for higher p∗. This criterion takes
advantage of the fact that receivers are not synchronized
and the generated ACKs are dispersed over S seconds. So
we may allow for a larger volume of ACKs to be generated
as long as it does not exceed some threshold during some
I seconds. This is expressed as p∗N̂n IS ≤ α where I is in
the order of µs or even ms. Increasing I for the same α
would be more constraining and letting I = S gives us the
first criterion. For I > S, this criterion becomes the most
constraining one.

For overprovisioned networks, the only worthful crite-
rion is to insure some estimation quality. Fig. 3 plots the
expected variance of the error en over γ = exp(−µS) for
different values of p∗. Two couple of values were retained
for λT and µ, taken from the couple of traces studied in
Section V. In each plot the horizontal line corresponds to
p∗ = 0.01 and γ = exp(−µ) (S = 1). It gives the ex-
pected variance of the error obtained in the corresponding
real traces. Observe that several couples (p∗, γ) lead to
the same variance, but while the r.h.s. values correspond
to high correlations between the ACKs, the l.h.s. values
result in independent ACKs. For high γ (small S) the es-
timation reproduces the dynamics of the group size, while
for small γ (large S) it reproduces the mean value of the
group size (load). However, the variance of the error would
be the same in both cases if we consider appropriate values
for p∗. We are interested in the r.h.s. values and we may
satisfy one of the previous criteria in order to choose the
parameters values.
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VII. CONCLUSION

In this paper, we have developed a robust estimator for
computing the size of a multicast group. Our scheme al-
lows the user to track on-line the variation of the audience
over time. We have modeled the group dynamics as an
M/M/∞ queue and established our results under the as-
sumption that this queue is in heavy-traffic. In this regime
the backlog process of the M/M/∞ queue is “close” to
a diffusion process that can be used to cast our estima-
tion problem into the appealing framework of Kalman fil-
ter theory. Using this theory we have derived an estimator
that minimizes the variance of the error. We have carried
out several simulations to test the robustness of our esti-
mator in the case where the arrivals are not Poisson and/or
the on-times are not exponentially distributed. The esti-
mator has also been computed on real audio traces and
its performance have been shown to be excellent. Ongo-
ing research include an optimal selection of (p∗, S) with
respect to some cost criterion (e.g. expected number of
ACKs bounded by a given constant) as well as extensions
to the case where both p∗ and S have to be estimated, the
objective being to better react to sudden changes in the
multicast population.

Acknowledgment: The authors wish to thank Prof. O.
Zeitouni for helpful suggestions.

APPENDIX

Define

Z(m,n) :=

∑m
i=1 ζi(n)−mp∗√

m
.

Observe that

VT (n) = Z(NT (nS), n)

√

NT (nS)

T
(22)

where VT (n) is defined in (12)).
The RV Z(m,n) converges weakly as T → ∞ to a

normal RV `n with mean zero and variance p∗ (1 − p∗).
Equivalently, for any bounded continuous function f ,

lim
m→∞

E [f(Z(m,n))] = E[f(`n)].

Since NT (nS)/T converges P a.s. to ρ as T → ∞ [9,
Thm 6.13, pp. 153-154], it follows that

lim
T→∞

E [f(VT (n)) |NT (nS)] = E[f(vn)] (23)

where vn = ρ `n is a normal RV with mean zero and vari-
ance ρp∗ (1− p∗).

Let f and g be two arbitrary bounded continuous func-
tions. Then

lim
T→∞

E [f(VT (n)) g(ZT (nS))] =

= lim
T→∞

E [E [f(VT (n)) g(ZT (nS)) |NT (nS)]]

= lim
T→∞

E [E [f(VT (n)) |NT (nS)] g(ZT (nS))]

= lim
T→∞

E[{E[f(VT (n)) |NT (nS)]− f(vn)} (24)

×{g(ZT (nS))− g(ξn)}] + E[f(vn)]E[g(ξn)]

= E[f(vn)]E[g(ξn)] (25)

where (24) follows from (23) together with the weak con-
vergence of ZT (nS) to ξn as T → ∞, and where the last
equality follows from the bounded convergence theorem.

On the probability space that carries the RV’s {ξn, wn}n
one can always construct the RV’s vn so that they are i.i.d.
with a normal distribution with mean zero and variance
ρp∗ (1−p∗), further independent of {wn, n ≥ 0} and such
that, for every n ≥ 0, the {vk, k ≥ n} are independent of
{ξ0, ξ1, . . . , ξn}. Under this construction, we deduce from
(25) that

lim
T→∞

E [f(VT (n)) g(ZT (nS))] = E[f(vn) g(ξn)]

or, equivalently, that (ZT (nS), VT (n)) converges weakly
to (ξn, vn) as T → ∞ (Hint: choose f(x) = exp(it1x)
and g(x) = exp(it2x) with t1 and t2 real numbers). We
deduce from this result that YT (n) defined in (10) con-
verges weakly as T → ∞ to a RV yn such that yn =
p∗ ξn + vn.
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