ASYMPTOTIC BEHAVIOR OF A MULTIPLEXER
FED BY A LONG-RANGE DEPENDENT PROCESS*

Zhen LIU! Philippe NAIN!' Don TOWSLEY? and Zhi-Li ZHANG?

IINRIA
B.P. 93, 06902, Sophia Antipolis Cedex, France
{liu, nain}@sophia.inria.fr

?Department of Computer Science
University of Massachusetts, Amherst, MA 01003, USA
towsley@cs.umass.edu

3Department of Computer Science and Engineering
University of Minnesota, 200 Union St. S.E., Minneapolis, MN 55455, USA
zhzhang@cs.umn.edu

Journal of Applied Probability, Vol. 26, pp. 105-118, 1999

Abstract

In this paper we study the asymptotic behavior of the tail of the stationary backlog distri-
bution in a single server queue with constant service capacity ¢, fed by the so-called “M /G /oo
input process” or “Cox input process”. Asymptotic lower bounds are obtained for any distri-
bution G and asymptotic upper bounds are derived when G is a subexponential distribution.
We find the bounds to be tight in some instances, e.g., G corresponding to either the Pareto or
lognormal distribution and ¢ — p < 1, where p is the arrival rate to the buffer.
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1 Introduction

The recent discovery [16, 21, 30] that traffic in networks possess long-range time dependencies that
cannot be easily captured by Poisson-based models has motivated queueing theorists to propose and
analyze new queueing models that capture these dependencies. One such model that has received
attention is a buffer with server having rate ¢ fed by an M/G /oo input process where G is heavy-
tailed (e.g., [1, 12, 19, 27]). This is of interest because of its versatility, i.e., the dependencies over
different time-scales can be controlled by varying the tail behavior of G.

In this paper we consider the model introduced by Parulekar and Makowski [27]. A discrete-time
single-server queue (called the multiplexer) with infinite waiting room and with service capacity
c is fed by an integer-valued process {b;, t € IN}. The r.v. b; is defined as the number of busy
servers at time ¢ € IN in an M/G /oo queue with arrival intensity A > 0 and i.i.d. service times
{on}n with common cumulative distribution function (c.d.f.) G(z) = P(o, < x) and finite mean
7. An appealing feature of the (stationary version of the) input process {b;, ¢ € IN} is that it is a

long-range dependent process [2] for some well-chosen subezponential c.d.f.’s G (see Section 2).

Let @ be the queue-length at the multiplexer at time ¢. Then, @; satisfies the Lindley’s equation
Qi+1 = max(0,Q¢+ by — ¢) for all t € IN, with Qo = 0. Let Q be the stationary queue-length under
the stability condition ¢ > p := A7 (see Section 2). The aim of this paper is to study the behavior
of log P(Q > z) and of P(Q > x) for large x. More precisely, we show that there exist positive and
finite numbers #; and 65, depending on G, such that

log P log P

= —— < —6s. 1
z—oo  —log G1(x) z—oo  —logGyi(x) — 2 )

The lower bound in (1) holds for any c.d.f. G whereas the upper bound holds for any subezponential
c.d.f. G (to be defined in Section 2). Here Gy is defined as

G1i(x) := %/OI Gu)du, >0 (2)

and F(z) = 1 — F(x) for any probability distribution F. We also show that the bounds in (1) are
tight (i.e. #; = 63) when G is Pareto or lognormal (see Corollary 4.1), provided that ¢ — p < 1. In
the following the bounds in (1) will be referred to as large deviations bounds. Asymptotic upper

and lower bounds for P(Q > z) are also obtained.

Large deviations bounds were obtained in [29] in the case when G is short-tailed. Duffield observed
in [12] that the approach in [27], based on the Gértner-Ellis theorem, cannot be used to derive large
deviations lower bounds for heavy-tailed G. By refining Theorem 2.2 in [13] and by using results
in [28] Duffield was able to obtain the following large deviations upper bound (see [12])

log P(Q > x)

hin_,sgp T <1-(a=1)(c—p) (3)



in the case of the Pareto distribution G(z) ~ c¢; 7. An asymptotic lower bound for P(Q > z) was
obtained by Jelenkovic and Lazar [19] in the case when ¢ — p < 1 and under a technical condition

on (1 (see comment after the proof of Proposition 3.2).

In this paper we propose an alternative to the approach based on the Gértner-Ellis theorem that
will yield asymptotic lower and upper bounds. We will observe that the large deviations bounds are
tight for a number of subexponential distributions when ¢— p < 1 and that, in the case of G Pareto,
the large deviations upper bound that can be derived from (1) (see Proposition 4.1) is tighter than
that of Duffield when ¢ — p < a/(a — 1); otherwise Duffield’s is tighter.

Other models have been proposed for modeling the effects of long-range dependence in arrival pro-
cesses on buffer occupancy statistics. These include fractional brownian motion [13, 25], fractional
gaussian noise [27], and a finite population of on-off sources where the on state holding times are
characterized by heavy-tailed distributions [5, 7, 9, 18, 19, 22, 31] (see [6] for a survey on fluid
queues with long-tailed activity periods).

The rest of the paper is structured as follows. Section 2 contains a characterization of the stationary
behavior of the M/G /oo input process and the definition and characterization of the family of
subexponential distributions. Asymptotic lower and upper bounds are established in Sections 3 and
4 respectively. Concluding remarks on the superposition of independent M/G /oo input processes
are given in Section 5.

2 Preliminaries

The lemma below gives a useful characterization of the stationary behavior of the input process
{bt, t € N}. We will assume that customers entering the M/G/co queue begin their service upon

arrival (see Remark 2.1).

Lemma 2.1 The distribution of the sequence {bs1, t € N} converges monotonically for k — oo to

that of a proper stationary and ergodic sequence {b*, t € N} such that

b0 t—1
PES I@E >+ Y I(o;>t-1Tj), teN (4)
j=0 §=0 s<T;<s+1
where
(i) 0 < Th < Ty < --- are the successive jump times of a Poisson process with intensity A,

independent of the service times {0y, n=1,2,...};

(ii) B° is a Poisson r.v. with parameter p := \G;



(iii) conditioned on the event {b° =k}, k > 1, the r.v.’s {61,...,6+} are i.i.d. with common c.d.f.
G1 as defined in (2), namely,

k
P(&1 <1y, b gxk|b0:k) =[] Gi(z)).
7j=1

Further, the r.v.’s {Tj,05, 7 = 1,2,...} are independent of the r.v.’s {b°,6;, j = 1,2,...}.

The proof of this lemma follows from [4, Chapter 6] and [33, pp. 160-162| (see also [27]). The
interpretation of (4) is the following: given that the M /G /oo queue is in steady-state at time ¢t = 0,
the first sum in the r.h.s. gives the number of busy servers at time ¢ = 1,2... among all servers busy
at time 0—; the second sum gives the number of servers that became busy at time s, 0 < s <t —1,
and that are still busy at time £.

Assume that p < ¢. Since the process {b;1k, t € N} converges to the stationary and ergodic process
{b', t € N} (see Lemma 2.1) then it is well-known (see e.g. [4, Theorem 6, p. 12]) that there exists
a proper r.v. Q such that

P(Q>x):t1_i>rglo P(Qt>x)=P(sup <§ bs—ct) >:c), reN (5)

teN \5—9

where {b*, —00 < t < 0o} is a stationary and ergodic process obtained by supplementing {b*, t € IN}.
We will however prefer the following representation for the stationary queue length distribution:

P(Q>x)=P<sup<§bs—ct>>x>, z €N, (6)

teN \5=0

which follows from (5) together with the property that the number of busy servers in a stationary

M/G /oo queue is a reversible stochastic process [20, Theorem 3.11].

The rest of this paper is devoted to the computation of asymptotic lower and upper bounds for
P(Q > x). Particular attention will be devoted to the case when the c.d.f. G of the service times
is subexponential. Recall that a probability distribution F' on [0,00) is subexponential, denoted as
F € 8 (or F € S with a slight abuse of notation) if F*2(z) ~ 2F(z) where F*? denotes the 2nd
convolution of F with itself, namely, F*?(z) = [;° F(z — u) F(du). As usual, the notation f(z) ~
g(x) will stand for lim, .o, f(z)/g(z) =1 and f(z) = o(g(x)) will stand for lim, .o, f(z)/g(z) = 0.
The class of subexponential distributions was introduced by Chistakov [8] and contains Pareto,
Weibull and lognormal distributions (see Section 3), among others. A probability distribution F' on
[0, 00) belongs to the class D of dominated-variation distributions if limsup,_, ., F(z)/F(2z) < oo
and to the class £ of long-tailed distributions if lim, .o, F(x —y)/F(x) = 1 for all y € (—00,0).



For any c.df. F on [0,00) with finite expectation p, (ie. p := [§° uF(du) < co), define the
integrated tail distribution F} by

1 ==
Fl(x)::;/o F(u)du, x>0.

Note that G in (2) is the integrated tail distribution of o,.

The next lemma reports basic properties of subexponential probability distributions.

Lemma 2.2 The following statements hold:

(a) DNLCS C L 15, 17];
(b) If F has finite expectation and if F € D then F; € DN L [15];

(c) If F € S and G is a probability distribution on [0,00) such that F(z) ~ ¢; G(x) for some
positive constant c1, then G € S [26, Lemma 2].

In particular, we see from properties (a) and (b) that if F' € DN £ and if F has finite expectation
then F,F, € S.

We conclude this section by pointing out an interesting feature (already observed in [27, p. 1455])
of the process {b*, t € IN} defined in (4). First, it has been shown in [11, formula (5.39)] that
cov(bt,bTh) = pGy(R) for all t,h € IN. Therefore, the stationary process {b’, t* € N} will be
long-range dependent [2] if 352 G1(h) = oo, which will occur, for instance, when G is Pareto (i.e.
G(z) ~ z7%) with parameter 1 < a < 2.

Remark 2.1 By taking integer-valued service times our model reduces to that in [27]. This follows
from the fact that in the case of integer-valued service times the number of busy servers at time
t+1 is the same whether customers entering the M/G /oo queue in (t,t+ 1) begin their service upon

arrival (as in our model) or begin their service at time t+ 1 (as in [27]).

3 Lower Bounds

The following representation of A(0,t) := Z;%) b* will prove useful:

t—1
A(0,) = Db
s=0

t—1 80 t—1s-1
= DD IG >+ > > Iop>s-Ty)
s=0 j=1 s=0k=0 k<T,;<k+1



b0 ¢—1

= ZZ aj>s—|—z Z ZIO']'>S—T]')

7j=1 5=0 k=0 k<T;<k+1 s=k+1

=me[0ﬂt+2 > Z I(oj > 5= 1) (7)

k=0 k<T;<k+1 s=k+1
where [x| denotes the smallest integer larger than or equal to x.

The first sum in the r.h.s. of (7) gives the total number of customers arriving to the multiplexer
in [0,t) generated by all servers in the infinite-server queue busy at time 0; the second sum gives

the total number of customers arriving to the multiplexer in (0,¢) generated by all servers in the

infinite-server queue that become active at time 1,2,...,¢ — 1. Set
bO
ao(t) = Y min([6;],1) (8)
=1
t—1
as(t) = Z ZI(0j>i—Tj), s=1,2,...,t—1 (9)
s—1<T;<s i=s
so that
t—1
A(0,t) = Z as(t). (10)
s=0

Denote by |x]| the largest integer smaller than or equal to z. The following asymptotic lower bound
for log P(Q > x) holds:

Proposition 3.1 (Large deviations lower bound)

For any c.d.f. G,

lim inf log P(Q > z) > —inf ¢ (le—p+ B] +1)limsup log G (x) } . (11)

z—oo —logGi(x) — ﬁ>0{ z—oo  log G1(Bx)

Proof. Fix 8 > 0, € > 0, and define 7 := ¢ — p+ [+ e¢. Note that v > 0 under the stability
condition ¢ > p.

We have

. . dog P(Q>x) .. . .log P(Q > pt)
liminf —-—-——> =liminf ——+——*
z—oo  —log G1i(x) t—oo  —log G1(ft)

log P(A(0,t) — ct > ft)

> liminf = 12

- e —log G1(p3t) 12
-1

> i f —————1log P ) >t s( —e)t

- ltlggl log G'1(6t) o8 ( 7 Z ¢ 2 )



t—1
= hgglfW log P(ag(t) > ~t) + log P (Z as(t) > (p— e)t)] (13)

s=1
olog Plag(®) 29t) (L ] (H
> liminf — +liminf —————1log P | Y as(t) > (p—e)t | . (14)
PR gy e a2 &

Inequality (12) follows from P(Q > z) > P(A(0,t) — ct > x) (see (6)); (13) is a consequence of the
independence of the r.v.’s ag(t) and 3%_; as(t) (see Lemma 2.1); (14) comes from the inequality
liminf, (a, + b,) > liminf, a, + liminf, b,.

Let us now focus on the first limit in the r.h.s. of (14). We have for ¢t > 0

bO
Plao(t) 2t) = P (Z min ([651,1) > 7t>

=1

> Z (Z min(6;,t >’yt|b0—k> P’ =k) (15)
k=[~] J=1

> 3 P(&1 >t 601 >t|b°zk)P(b° = k)
k=[]

= G P > []) (16)

where (16) follows from Lemma 2.1(iii).

Since P(b° > [4]) > 0 (see Lemma 2.1(ii)) we deduce from (16) that

S _

lim inf 28 (00 271 o ] Tim sup ~28.0LE Gi(t) (17)
t—oo  —log G1(ft) t—oo log G1(ft)

Let us show that the second limit in the r.h.s. of (14) is 0. We see from the definition of A(0,t) and

from (8)-(10) that

t—1 80
> as(t) > Z b = [6; (18)
s=1 7=1

On the other hand, the stationarity and ergodicity of the sequence {b*,t € IN} together with
p = E[b°] < 0o (see Lemma 2.1) yields

lim ! Z b*=p as. (19)

from ergodic theory (see e.g. [32, Chapter V]). We therefore deduce from (18)-(19) that

1 =1
lim infz Z as(t) > p as. (20)

t—o0
s=1



. o .
since 22:1 G < oo a.s. by Lemma 2.1.

Combining |24, Proposition I-4-3| together with (20) yields

1> limtian <§ as(t) > (p — e)t) >P <1imtinf {§ as(t) > (p — e)t}) =1 (21)

s=1 s=1

which entails that

1 t—1
liminf —————log P as(t) > (p—¢€)t| =0. 22
minf (g 0> ( >) (22)
In summary, we have shown that (cf. (14), (17), (22))
log P log G1(t
lim inf M > — inf qfc—p+ B +e€] limsup Ong
z—oo  —log G1(x) B>0,e>0 t—oo  log G1(0t)
. : log G1(t)
> —inf —-p+B+1)1 —
> égo{(tc p+pB]+1) D G (5t
which completes the proof. 1

It is worth noting that the lower bound in (11) is never trivial as it is always larger than or equal
to —(|c — p] + 2) that is obtained for 8 = 1.

The next result proposes asymptotic lower bounds for P(Q > x).

Proposition 3.2 (Asymptotic lower bound)

For any c.d.f. G,

Yan le=p]+1 le—p] &
lim infM > sup lim inf (G_Cil(g;)) (1 - > %ep) . (23)

T—00 Gl(l’)l.c pl+1 — 0<B<1+[c—p|—(c—p) T—00

Proof. The proof of (23) follows the same line of arguments as that of Proposition 3.1. Define
yi=c—p+PF+e Let 0 < <1+ [c—p]—(c—p) and pick € > 0 small enough so that
[1=lc—pl+1

In direct analogy with the derivation of (14) and by using (16) and (21) we get

.. P(Q>x) .. . P(ag(t) >~t)
o e 2 i e 24
o Lempl
o G1(1) 0
> liminf [ = P" > |lc—p]+1 25
> limin (Gl(m)) (> le=p| +1) (25)



forall0 < B <1+ |c— p] — (c— p), from which (23) follows. 1

It is worth noting that the supremum in the r.h.s. of (23) is strictly positive if and only if G; € D.
Indeed, it follows from [3, Corollary 2.0.6, p. 65] that if lim inf, .., G1(z)/G1(6x) is strictly positive
for some 6 € (0,1) then this limit is strictly positive for all § € (0,1), and in particular for § = 1/2.
A sufficient condition for G; € D is that G € D (e.g. G Pareto) and G has finite expectation (see
Lemma 2.2(b)).

A refined lower bound has been obtained in [23] under the additional assumption that G; € S.
When ¢ — p < 1, Jelenkovic and Lazar [19, Theorem 11| have derived a tighter lower bound with
the same decay function G1(z) but with a larger coefficient. The bound in [19] holds provided that
L := limg); lim infy10 G1(62)/G1(z) > 0 (Jelenkovic and Lazar [19] actually assume that L = 1
but this assumption can be weakened to L > 0; if so, then the coefficient of their lower bound
in Theorem 11 has to be multiplied by L). Since G; is non-increasing, it is easy to see from [3,
Corollary 2.0.6] that L > 0 is equivalent to G; € D. Hence, both bounds in Proposition 3.2 and in
[19] are non-trivial if and only if Gy € D.

Corollary 3.1 When Gy € D then

lim juf 08 P(@ > 2)

T—00 — ]OgG_l(af) = |_C - pJ - (26)

When Corollary 3.1 applies, the lower bound in the r.h.s. of (26) is easier to compute than the
lower bound in Proposition 3.1 but may not be as tight (for G Pareto both bounds in (11) and in

(26) are the same as reported below).

We conclude this section by addressing the cases when G is (i) geometric, (ii) Pareto, (iii) Weibull,

and (iv) lognormal.

(i) G is geometric. We have P(c, = 1) = (1 — ¢)¢" ! for r = 1,2,... with ¢ € (0,1). Hence,
Gi(r) = ¢" for r = 0,1,.... Proposition 3.2 yields a trivial lower bound (= 0). From
Proposition 3.1 we find

le—p+6]+1
g

1
liminf = log P > log ¢ inf = logg. 2
iminf - log P(Q > x) > logg inf 0gq (27)

The r.h.s. of (27) follows from the inequalities

c—ptBH1_ le—ptpl+1

57 5 =

together with limg_.oo(c—p+3+1)/8=1.



(ii) G is Pareto. We have G(z) ~ ¢; 7 for some « > 1, ¢; > 0. Hence,
Gi(z) ~cyz ™! (28)

with ¢ = ¢1/((a — 1)). From Proposition 3.2 we get

.. PQ>=x o Sk
timint 27T > (¢ (e~ p) 1“(1— %) (29)

where we set ¢ := |c — p| + 1. In particular, (29) (or Proposition 3.1/ Corollary 3.1) yields

liminf

log P(Q > z) > (—a+1)(. (30)

(iii) G is Weibull. We have G(x) = e=“1%" for some 0 < v < 1 and ¢; > 0. Simple algebra yield

Gi(z) ~ cpe s glv (31)

with ¢g = 1/(c1v7) and T = F(l/v)/(yci/u) where ['(s) := [;° 2° ! exp(—z)dz for s > 0.

Proposition 3.2 yields a trivial lower bound (i.e. 0). By Proposition 3.1 we get (Corollary 3.1
does not apply since G; ¢ D)

lixrggf% log P(Q > ) 2 = inf le = p;ﬂ +1
— _min{ LC(L_cdp J—J;)L”aj; LC(EﬂpJ—J;)[”Cﬂ } ez (32)
_%, ifa<1
with a := (v]c — p] +¢)/(1 — v) and g := ¢ — p — |c — p]. Indeed,
inf Lc—p;VBJ +1 ~ min % (33)

with the mapping g(z) := (|c — p] +z)/(x — q)” being strictly decreasing in (0, a) and strictly
increasing in (a, 00), so that the mininum in (33) is reached when 8 = |a] or when 3 = [a] if
a>1and when g =1ifa < 1.

(iv) G is lognormal. The c.d.f. G of a r.v. o is lognormal if o el exp(Y) where Y is a Gaussian
r.v. with mean y and variance 62. Then, G(z) ~ (27)"1/2 (6/(logx — p)) e~(legz=1)*/(26%)
From this we get

. 3 . o—(logz—p)*/(262)
i) ~ 6’ xe

V27 (logx — p)? (34)

with & = exp(u+62/2). Proposition 3.2 yields a trivial lower bound (i.e. 0). From Proposition
3.1 (Corollary 3.1 does not apply since G1 ¢ D) we have

- 1 lc—pl+1
llmlnfﬁ log P(Q >.’L') Z —T

£ (log ) (%)



4 Upper Bounds

We begin this section by stating two lemmas that will be used in the derivation of asymptotic upper
bounds in the case when G and G; are subexponential probability distributions.

Lemma 4.1 (Cline [10]) Let F,F*,..., F* be probability distributions such that F (z) ~ ¢; F(x),
c; >0, forallj=1,2,....k. If F €S8 then F1 %---x F¥(z) ~ Z?Zl cj F(z).

Lemma 4.2 (Pakes [26]) Consider a GI/GI/1 queue with i.i.d. service times {0y, }n with common
c.d.f. F and i.i.d. interarrival times {1, }n. Assume that E[o,]| < E[r,].

If F, Fy €8, then

Eloy] yna
P (W ~———F
(W > z) Eir] - Elon] 1(x)
where W := sup,,cn ( n (o — Tm)) is the stationary waiting time.

We are now in position to derive the following asymptotic upper bounds for P(Q > z) and for
log P(Q > x) when G and G; arein S.

Proposition 4.1 (Upper bounds)

Assume that G,G1 € S. Then,

. P(Q > ) p
lim sup —= <p+ 36
r—00 Gl(a:) cC—p ( )
In particular, (36) implies that
log P
limsup 28 L@ > (37)
z—oo —log G1(x)
Proof. Define
b0
w = Y6 +1) (39)
j=1
as = Y [oj+Tj(s)—s], s=12... (39)
j=1

where vy denotes the number of arrivals in the M/G/oco queue in the interval of time [s — 1,s)

and Tj(s) is the time of the j-th arrival in [s —1,s) for s = 1,2,.... Since the arrival process in

10



this queue is Poisson with rate A, {vs, s € N} constitutes an ii.d. sequence of Poisson r.v’s with
intensity E[v,] = A, namely P(a; = k) = A exp(—k)/k! for all k € IN.

We first establish some preliminary results related to the r.v.’s ag, a1, . ... To begin with, we observe
from (8)-(9) and (38)-(39) that

(al) ap(t) < ap (a.s.) and as(t) <gasforall t=1,2,...,s=1,2,...,t—1;

(a2) ther.v.s a5, s =1,2,... are i.i.d. and independent of the r.v. ay,

where X <, Y if the real-valued r.v.’s X and Y satisfy E[f(X)] < E[f(Y)] for all measurable and
nondecreasing mappings f : (—o00,00) — (—00,00) such that the expectations exist.

To get the second inequality in (al) note from (9) that

t s

W) = 5 Y Io4T—s>i)= Y min(fo; +Tj—s],t—s)

s—1<T;<s =0 s—1<T;<s

BN

Vs Vs
Z min([o; + Tj(s) —s],t —s) < Z [0;+Tj(s) —s] =as fors=1,2,...,t—1,
j=1 j=1

where X £ Y if the r.v.’s X and Y have the same probability distribution. Next, we focus on the
asymptotic behavior of P(as > z) for s € N. Under the assumptions G,G; € S, the inclusion
S C L (see Lemma 2.2(a)) and Lemma 2.2(c) imply that

G(z) = Ploj>z)~Ploj—1>x2)€S (40)
G_l(x) = P(&j>$)~P(é’j+1>l‘)€S. (41)

On the other hand, the inequalities 0; —1 < [o; + T;(s) — s] < o; combined with (40) and Lemma
2.2(c) in turn yields
G(z) ~ P([o; + Tj(s) —s] >z) €S. (42)
By using now (41), (42) and [14, Theorem 1.3.9] we see that
Plag>z) ~ pGi(z) (43)
Plas>x) ~ AG(z) fors=1,2,.... (44)
We conclude these preliminary remarks with the computation of E[as| for s > 1. For fixed s > 1,
ther.v. s—Tj(s) is uniformly distributed over (0,1) (since the arrivals are Poisson) and independent
of o;. Hence, by applying Lemma A.1 with X = o and U = s — T} we find that E[[o; + T; — s]] =

Elo;], which in turn yields
Elas] = Elvs| El[o; +T; —s]] =p (45)

from Wald’s identity and the definition of p.

11



We are now in position to proof (36). We start from (cf. (6), (10), (al))

t—1
P(@Q@>z) = P (sup (ao(t) + Z as(t) — ct) > :c>

teN s=1

t
< P <a0+sup (Z as—ct> >:1c>
teN \5=1

= Plag+W > z) (46)
where ag and W := sup,cy (22:1 as — ct) are independent r.v.’s.

To proceed, we notice that under (a2), (45) and the (stability) condition p < ¢, P(W < x) is the
probability distribution of the stationary waiting time in a stable D/GI/1 queue with interarrival
times ¢ and i.i.d. service times {as}s. Therefore, by (44) and Lemma 4.2 [with o, = a,, and 7, = |
we find

P(W >zx)~ G1(x). (47)

c—p
By using now (43), (46), (47), the independence of the r.v.’s ag and W (see (a2)), and Lemma 4.1
[with F = Gq, F!(z) = P(ag < ) and F?(x) = P(W < z)] we conclude that (36) holds true.

It is known that both G and G; belong to S when G is (i) Pareto, (ii) Weibull or (iii) lognormal. We
conclude this section by specializing Proposition 4.1 to these particular probability distributions.

(i) G is Pareto. From (28) and (37) we get

lim sup log P(Q >z) < —a+1. (48)

T—00 log xz

Also note that the bound in (48) is tighter than Duffield’s corresponding bound (3) when
¢ — p < af(a —1); otherwise Duffield’s is tighter.

(i) G is Weibull. From (31) and (37) we get

1
lim sup oy log P(Q > z) < —1. (49)

r—00
(iii) G is lognormal. From (34) and (37) we get

1
li —— log P < ——.
el (log z)? og P(@>x) < 262 (50)

We observe from (29), (48) and (35), (50) that the bounds are tight when ¢ — p < 1:

12



Corollary 4.1 Assume that c — p < 1. If G is Pareto then

li log P = — 1 1
Jim log z og P(Q > x) a+ (51)
and if G is lognormal then
1
_~ _log P - 2
A og2y? 18 @>2)=—55 (52)

5 Concluding Remarks

We conclude this paper by addressing the situation when the multiplexer is fed by N independent
M/G /oo input processes, with arrival rate \; and c.d.f. of the service times G* for the system i
(t=1,2,...,N). Because the arrivals are Poisson this is equivalent to considering a single M/G /oo
queueing system with arrival intensity A := Zfil A; and c.d.f. G of the service time given by
G(z) = XN, (Mi/XN) G*(x). All of the results in the paper therefore apply to this pair (A, G). Of
particular interest is the case when one c.d.f. of the service times, say G', has a heavier tail than
the others, namely, Gi(z) = o(GY(z)) for all i = 2,3,...,N. Then, Gi(z) ~ (A /A) G(z) and we
may conclude from the results in Sections 3-4 that the source with the heaviest tail dominates the
other sources. In particular, we see from (11) and (37) that

log P log P
0, < liminf 8 P@>7) 8 P@>1)
=0 _log Gi(w c—oo  —log G1(x)

ol . . . log G1(x)
where the upper bound holds if G*,G7 € S, with 61 := infgs { 2(S) limsup, ——,
log G1(Bz)

h(B):==lc—p+B]+1and p=3; (M/N) J5° = G (da).

Acknowledgements: The authors would like to thank Rajeev Agrawal for a useful discussion
during the course of this work.

A Appendix

Lemma A.1 Let X and U be independent r.v.’s. We assume that U is uniformly distributed over

(0,1) and X is a nonnegative r.v. Then,

E[[X - U] = BX]. (53)
Proof. Since [X — U] is a nonnegative integer, we have

E[[X -U)|= ¥ P(X ~U] >n)
n>0

13



= ZP(X—U>n)=Z/01P(X>n+u)du

n>0 n>0

Il
]

/n+1 P(X > u)du = /Ooo P(X > u)du = E[X].

n>0 Y™
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