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Abstract

In this paper we are concerned with a discrete time, single server system in which packets
arrive from a finite population of sources. Under the assumption that arrivals from each source
are modulated by a Markov process, we consider the following metrics (i) the fraction of an
interval that the queue length exceeds a certain value, and (i) the fraction of a group of packets
from a single source that arrive to find the queue length above a certain value. For both metrics
we derive upper and lower bounds on the probabilities that they exceed a threshold. These are
important measures because they reflect more accurately the behavior perceived by applications
such as networked audio and video. An application of these results to call admission is also
given.
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1 Introduction

There exists a substantial body of work on the problem of providing guaranteed quality of service
(QoS) to different service classes in BISDN’s. Most of this work has been dedicated to guaranteeing
that the packet loss probability seen by a random packet or the probability that the delay of a
randomly chosen packet lies below some threshold, see [5, 8, 10, 17, 18] and references contained
within for examples. However, this type of QoS metric appears inappropriate for envisaged audio
and video services in BISDN’s [3, 22, 4]. For example, metrics such as losses and delays in talkspurts

[3] and losses within blocks of packets for packet video [3, 22, 4] are more appropriate.

The focus of this paper will be on two finite horizon QoS metrics, the interval QoS and the block
(oS, introduced in [21]. These QoS criteria are defined over intervals of time and finite groups of
packets from a single connection respectively. These metrics will be studied for a single network link
modeled as a discrete time, single server system in which packets arrive from a finite population of

sources. More specifically, we consider the following two metrics,

e the amount of time within an interval of time during which the queue length of the system

exceeds a fixed value,

e the number of packets within a group from an individual source that arrive to find that the

queue length exceeds a fixed value.

We develop upper and lower bounds on the probabilities that these quantities exceed a threshold
for the case that the arrivals from the sources are modulated by a finite state Markov chain. These
bounds are developed using bounds on the queue length distribution at an arbitrary time developed

recently in [18]. Last, an application to call admission is also given.

Several papers have studied finite horizon metrics. However, they have focussed on very simple
systems that usually contain a single source. For example, [20, 21] provides approximate analyses
of these metrics for the case of an M/M/1/K queue and simulation results for a finite population
of On-Off sources feeding a single server. Exact and asymptotic analyses of the block metric for a

discrete time queue and the M/M/1/K queue when fed by a single source are given in [7] and [1, 6].

This paper is organized as follows. Section 2 contains a description of the model and the finite
horizon metrics being considered along with a review of the results in [18] that will form the

foundation for our analysis. Sections 3 and 4 contain the derivations of bounds on the interval



and block metrics, respectively. Numerical results and an application to call admission are given in

Section 5. Finally, Section 6 summarizes the contributions of the paper.

2 Model and Preliminary Analysis

We model a statistical multiplexer as a single server serving an infinite capacity buffer in first in
first out (FIFO) order in a discrete time system where the server can transmit up to ¢ packets in one
time unit. Assume that M sources, M > ¢, labeled m =1,..., M, feed packets to this multiplexer
and denote by A}’ the number of arrivals from source m during the n-th slot. Let (@), be the

process describing the backlog in the queue at time n. It satisfies the following recursion,
Qn+1:(Qn+An_C)+7 n=20,1,...
where A, := >"M_, A™ is the total number of arrivals during the n-th slot.

We are interested in the following finite horizon performance measures (I > —1, N > 1):

I+N
P( > I{Qn>x}2L>

n=Il+1

N-1
P(Z 1{Q$>:::}2L), m=1,...,M

n=0

where (@), is the queue-length process embedded at arrival epochs of packets from source m. The
first of these will be referred to as the interval metric and the second one will be referred to as the

block metric.

We will develop upper and lower bounds for these quantities under the assumption that the ar-
rival processes (A7),, 1 < m < M, are modeled by M independent Markov Modulated Arrival
Processes (MMAP’s). That is we assume that A" = U(Y,"), where (Y,*),, is an irreducible, ape-
riodic, homogeneous Markov chain on the finite set S,, with transition matrix P,, and stationary
distribution =,,,, and where (U} (k))y, is a renewal process for fixed m and k. We further assume that
the Markov chains (Y,"),, (1 < m < M) and the renewal processes (U (k)) (k € Spm, 1 <m < M)

are mutually independent processes. It is worth noting [9] that the aggregate arrival process (A ),
is also a MMAP with state-space S = [[Y_, S,,, underlying Markov chain (V;,), = (Y,},...,Y,M),,

transition matrix P = @M_ P,,,, and stationary distribution 7 = ®M_,x,.m, where ® denotes



the Kronecker product. Last, define U, (k) = SSM_, U™(k,,) for k = (ky,...,ky) € S so that
A, =U,(Y,), and let p; ; be the (i, j)-entry of the transition matrix P.

We shall assume throughput the paper that the Markov chain (Y,,), begins in equilibrium, that is
P(Yo = k) = m(k) for all £ € S. Under this assumption the sequence (Ay), is a stationary sequence
and the stability condition for this model is E[A,] < ¢ [19]. We will assume from now on that
E[A,] < ¢ and will denote by @ the stationary regime of the process (Q;)n.

We conclude this section by introducing some additional notation and by reviewing several results

from [18] pertaining to the tail distribution of the backlog, P(Q, > x).
Define Fy(z) = P(Un(k) < z) for k € S and ¢ (6) = Elexp(0U,(k))] for k € S.

We will assume that the set © = {# > 0 : %(f) < co,Vk € S} is non empty and open. These
technical assumptions are satisfied in most cases of practical interest which includes r.v.’s with

phase-type distributions.

Let us introduce further notation. Let A be an n-by-n matrix with real entries. AT will denote its
transpose, A* its k-th power, and r(A) its spectral radius. For any vector a = (ay, ..., a,), diag (a)
or diag ((a;,i =1,2,...,n)) will denote the diagonal matrix with diagonal elements ay,...,a, and

|a| will stand for Y p_; a.

For 6 € ©, define the matrix
H(0) = (PT 2'(0)) @ --- © (P, ¥ (0))
where W™ (0) := diag (E[exp(0U*(k))], k € Sn).

Since H(#) is nonnegative and irreducible we know from Perron-Frobenius theory [14] that the
spectral radius 7(0) = r(H(#)) is an eigenvalue and that any right-eigenvector corresponding to
this eigenvalue has strictly positive components. Denote by z(6) = (2x(0), & € S) the unique
right-eigenvector such that |z(0)| = 1.

In [18] we showed that



for all § € © such that 7(0) < exp(fc), where

> e gm(k)(1 = Fr(x))

C()= sup —=<= = (2)
z>0,7€8 Z Pk %k (0)/ eG(ufx)dFk (u)
kes z
and
Be "* < P(Qn,>x), >0,n=12,... (3)

where 6* is the unique solution in (0, c0) of the equation 7(f) = exp(fc), and B is given as

> prgm(k)(1 — Fi(x))
B= inf kes : (4)

z>0,5€8 Z Dk (0)/ e@(u—ﬂ:)dFk(u)
keS z

The upper (resp. lower) bound in (1) (resp. (3)) will hold if it holds for n = 0. For instance, (1)
holds for n = 0 if the queue is initially empty. The same bounds hold for the tail of the stationary
backlog distribution, P(Q > x), without any additional conditions.

We will find it useful to use bounds on the backlog distribution conditioned on the state of the

Markov chain. These are, see [18],

P(Qn > x| Yn = k) < C(0) (2(0)/m(k)) ™" ()

and
P(Qn > | Yy =k) > B (2(0%)/m(k)) e """ (6)

forallz >0,k €S, n=1,2,... and for all § € © such that 7(0) < exp(fc).

It has been shown elsewhere (e.g., [18]) that it is much easier to compute 6*, C(6), and B for the
case of independent sources, than for the case of an arbitrary arrival process, even if the numbers
of states in the underlying Markov chains are the same. In addition, one can introduce the notion

of effective bandwidth (8, 11, 10, 13, 15, 16| for each source when the performance criterion is
P(Q>z)<e™ (7)

as © — 00. The effective bandwidth, ¢, (@) for source m is

m(6) = 5 log 7n(6)



where 7,,(6) =7 (P% \Ilm(H))
We have the following result (Proposition 3.1 in [18]).

Proposition 2.1

log P M
lim log P(Q > ) < —60 if and only if E em(0) < e

This carries the implication that admission control can consist of simply checking if there is sufficient
excess bandwidth at a server to cover the effective bandwidth requirement of a new source. This
type of result has been shown in more generality (see [18]). It has also spawn considerable interest

in developing practical call admission policies based on the idea; see [10] for one example.

3 Interval Metric

Our interest in this section is to develop, to the extent possible, an equivalent theory for the interval

metric P (Zg’:j}[ﬂ 1{Q, >z} > L) as exists for the backlog distribution which was described in

the previous section.

We begin by establishing an upper bound. An application of Chernoff’s bound yields

I+N 1
P(Z I{Qn>:1:}2L> < 7E

n=I[+1

I+N
Y HQn> w}]

n=I[l+1

<

~| =

C(9)e (8)

for all x > 0 and for all # € © such that 7(0) < exp(fc). The last inequality follows from (1).

We next obtain a lower bound. We have the following inequality

4N
P(Z 1{Qn>»’5}ZL)ZP(Ql+1>»’U,"',Ql+L>J»’)- (9)

n=I[+1
We focus on the right-hand side of (9). It can be expressed as

P(Qui1 >z, ,Quyr > )



= Y P@u>z,Qur > Y= g1, Yigr 1 = jr-1)

J1seeJL—1
> Y P(Qup > 2, U (Vi) > ¢, U1 (Yip 1) > ¢ (10)
jlr“:jL—l
)/l—}-l - jla S Y2+L—1 — jL—l)a
= Y P(Qur >V = 1)1 = Fjy(0) 7(1) H Pji—1,5:(1 — Fj;(c))
jlr“:jL 1
Z B B_G*w Z zjl (9 H p]z a]z 7,( )) (]‘]‘)
J1yeendL—1

(10) is a consequence of the definition of @, whereas (11) follows from the application of the
inequality (6). Combining (9) and (11) yields

I+N Be 7z for L=1
P(Z 1{Qn>x}2L> > (12)
n=i+1 201D PD) 21T Be ", for L > 2

with D = diag (P (U,(j) > ¢), j € S) and 17 = (1,1...,1).
We turn our attention now to the notion of effective bandwidth.

Assume now that the performance criterion is

I+N
P ( > 1{Qn >} > L) < exp(—0z) (13)

n=[+1
as £ — oo in such a way that log(L/N)/x — —¢ with 0 < ¢ < oo.
The following result follows from (8):

Proposition 3.1

log P (X5, 1{Qn > o} > L)

X

lim
r—00
log(L/N)/z——¢

M
Z 0+¢) <

We make the following observations. First, since ¢,,(#) is nondecreasing in 6, we see from Proposition

3.1 that fewer sessions will be admitted when applying criterion (13) rather than the criterion (7).



Second, Proposition 3.1 is not as strong as Proposition 2.1 in that we have not established that

P (Zg':%_l 1{Qn >z} > L) < e % (as x — oo) implies SM_, ¢, (0 + €) < ¢. We conjecture that

this is, in fact, true. However, our lower bound (12) is not tight enough for us to establish the

result.

4 Block Metric

We now turn our attention to the block metric P (E ' 1{Q" >z} > L) Again our objective is

to derive upper and lower bounds and to address the existence of an effective bandwidth theory for

the block metric.

Let T," be the time of the (n+ 1)-st arrival from source m. It is easily observed from the statistical
assumptions placed on the model that for every m = 1,2,..., M, (Q)},Y7m ), is a Markov chain,
further ergodic under the stability condition E[A,] < c¢. From now on we will assume that the M +1
Markov chains (Qn,Yn)n, (@7, Y1m)n, m = 1,2,..., M, all begin in equilibrium (this assumption
is made possible because of the property that any ergodic Markov chain on a countable state space
couples with its stationary version after a time which is finite a.s. [2, 143-144]). This assumption

implies, in particular, that

(QF Yrp) = (@, Yrp)  and  (Qo,Yo) = (Qu.Ya) ¥n=0,1,... (14)

We first establish an upper bound. Applying again Chernoff’s bound yields

N-1 1 Nl
p(Z1{Q,’?>x}2L> < 3 P(Qy > )
n=0 n=0
N
= T P(QF >2) from (14). (15)

On the other hand,

Py >z) = P(Qo>x|Af >0)

= 3 P(Qo> Yo =k| A7 >0)
kES
1

= P s 2 D@ > 71V =B P > 0% =) n(h)



c(6)

[ S m — —6x
< P(A6n>0) sz(ﬁ) P(AO >0|Y0 k)e

keS

c)

E]_T —0x
Plar >0 2O EL e

by using (5), where
E = diag (P(U,*(i) > 0),i € S).

By combining (15) and (17) we finally obtain
N-1
N\ _ <) T -0
P 1{Q" >L) <= =——"— E1l *
(ngo Q> > )—(L)p<A5n>o)&<9> ‘

for all # > 0 and for all # € © such that 7(0) < exp(fc).

We next obtain a lower bound.

We have

N-1
P(Z 1{Q?>x}ZL> >P(Qy >z,Q"" >x,....,QT | > )

n=0

= P(Qo>z,Q">zx...,Q7_1 >z| Ay >0) from the stationarity assumption (14)

(18)

= > P(Q>z,Q">x,...,Q7 >x,Yy=io,Yrm =i1,...,Yrm  =ip_ 1| Af' > 0)

;€S
§=0,1,...L—1
> Z P(Qo>$,QT>$,...,QT_1>.CL‘,YE):Z'0,YT1"1=Z'1,...,YT211:iL_l,
;€S
§=0,1,...L—1
at least c arrivals in each slot of the period [T}",T}%],j = 0,1,...,L — 2| Ag" > O)
1 L—-2
= e Y PQ> Y= y0) PAF > 0]¥o = i0)mlio) T] Ry
P(AFr > 0) : 1]
§=0,1,...,0—1
B* p L-2
—0* 3 .
Z PAT >0)° ’ Z 2io (0%) P(Ag" > 0] Yo = io) 1:[ Ri, i
ZJES ]_0
§=0,1,..,L—1

where (19) follows from (6), and

R; j = P(Yry = j, at least c arrivals in each slot of the period [Tg", T7"] | Y1z = i).



In order to compute the matrix R = [R; ;] we introduce the matrix R' = [R] ], where R ; is the
joint probability that the next arrival of source m will occur when the Markov chain is in state j
and that at least ¢ arrivals will be generated in each slot between the current time (say ¢) and the
arrival time of the next arrival from source m given that there is no arrival from source m at time

t and that the Markov chain is in state ¢ at time ¢, namely,

R;; = P(Yrm =j, at least c arrivals in each slot of the period [t, ;"]

We have

;',j = pij P(A > c| A =0,Y; =4) P(A7%, > 0|Yiqq =)

+> P P(Ar > c| A7 = 0,Y; = i) P(Af}; = 0| Y1 = 1) Ry
€S

Ri; = pijP(Ar>c|Ay" >0,Y;=1i)P(A; > 0[Y1 =)

+)  piaP(Ay > c| AP > 0,Y; =) P(A7} = 0|Yip1 = 1) Ry

leS
or, in matrix form,
R’ = G,PE + G,PER/ (20)
R = G;PE+ G,PER/ (21)
with
E = I-E

Gi1 = diag (P(4, >¢c|A'=0,Y,=1i),i €S)
G, = diag (P(4p > c|A™ >0,Y, = i), i€ S)

where the matrix E has been defined earlier.

Solving for R’ in (20) and substituting the obtained matrix for R’ in (21) finally gives
_ -1
R = G,P [I +E (1- G,PE) GlP] E. (22)

In summary, we have shown (cf. (19) and (22)) that

N—-1
B* .

n=0



Assume now that the performance criterion is

P (JVZ_I Hey >}t > L) < exp(—0z) (24)

n=0

as ¢ — oo in such a way that log(L/N)/xz — —¢ with 0 < ¢ < oo. The following effective

bandwidth-type result is a direct consequence of (18):

Proposition 4.1

log P ZT]:[:_I Q' >z} > L M
Jim_ ( o 1 ) ) <-0 if Z em(@+¢) <c.
log(L/N)/z——¢ v m=1

Again, the discussion following Proposition 3.1 for the interval metric applies equally as well to the

block metric.

5 Call Admission

Consider a single T1 channel serving a population of voice sessions. For simplicity we discretize

time into 16 ms segments and model each voice source as an on-off source with transition matrix

975 .025
P = l .045 955 ]
where the number of arrivals in a time unit is 0 when the source is in state 0 and 1 otherwise. The
mean on and off periods correspond to 355 ms and 640 ms, respectively. The service rate of the
channel is taken to be ¢ = 48 which corresponds to each source generating data at a peak rate of
32 Kb/s. With this data, it is easily seen that the size of a packet is 512 bits and that the available

bandwidth is 1,536 Mb/s, which in turn implies that the time needed to serve a packet is 1/3 ms.

Observe that there is no contention if the number of sources M is less than 49 and that the system

is unstable whenever M > 134.

Define D,, and D, as the delay at time n and as the delay at the n-th arrival epoch of a packet

from source m, respectively.

We ask ourselves the following questions:

10



(1) What is the maximum number Mj,, of voice sessions that can be supported by the channel

such that P (Zﬁfﬁrl 1{D, > b} > 1) <q?

(2) For fixed m, what is the maximum number My, of voice sessions that can be supported by

the channel such that P ( 2 1{Dm" > b} > 1) <q?

Here b represents the maximum tolerable delay (in ms) and ¢ a tolerance. Note that N = 22
corresponds to the average duration of an on period. Hence we are interested in the probability
that the delay exceeds b at least once during an on period (L = 1) and in particular, the number of

sessions that can be supported while ensuring that this probability lies below the tolerance q.

We shall only concentrate here on determining a lower bound on Mj, (resp. Mpy,) which we will
denote as Mo"er (resp. Mo"er). Since D, = Q,/3 ms and D™ = Q™ /3 ms from the definition of
the model, the distribution bounds in (8) and in (18) can be used to obtain these lower bounds —

namely

Mim > argmaxg9< pr<134 {M :In (22 C(@*)/q) — 3b0* < O} _ Milr(;lwer

Mpm > argmaxg< pr<134 {M : In (22 D/q) —3b0* < 0} = Mtl)(;:lver

where D := C(6*) 2(6*) E1T /P(AZ* > 0).
Hints for the computation of #*, C'(#*) and D are given in Appendix A.

Figures 1 and 2 give lower bounds on M, and on My,,, respectively, as a function of the tolerable
delay, b and for tolerances of 1%, 5% and 10%. Also included are approximations for the lower
bounds on My, and My, based on the effective bandwidth approach (cf. Propositions 3.1 and 4.1),
where we let £ = In(1/22)/b for every fixed b € (0,1000]. We observe, as in[10], that the effective

bandwidth approach is very conservative for small values of b (i.e. for b < 100).

6 Summary

In this paper, we have derived lower and upper bounds of an exponential form on two QoS metrics,
the interval metric and the block metric. In addition, based on these bounds, we have partially
developed a theory of effective bandwidths for there two metrics. An application to call admission

has been presented to show the applicability of the bounds. Future work will focus on completing

11
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Figure 1: Supportable number of voice sessions for the Interval Metric (N =22, L = 1)
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Figure 2: Supportable number of voice sessions for the Block Metric (N = 22,L = 1)
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the theory of effective bandwidths for these two metrics and on tightening the bounds presented in

this paper.

A Appendix

This section contains simple formulas for the numerical computation of the upper bounds both for
the interval metric and for the block metric in the case where the offered traffic is the superposition

of M independent, identical, on-off sources as described in Section 5.

More precisely, we assume that each on-off source is modulated by a Markov chain (Y,)*),, with state

space S, = {0,1}, where 0 (resp. 1) corresponds to the off (resp. on) state, with transition matrix

p,—| 1P P
q 1-¢q

and where UJ*(Y,") = A if ¥, =1 and 0if ¥" = 0 (A = 1 in Section 5). In this case, it is
easily seen that the stationary distribution =,, = (mp,71) of the Markov chain (¥;"),, is given by
T = (¢/(p + q),p/(p + q)). We now examine the computation of the different quantities involved
in the upper bounds reported in (8) and in (18).

Computation of 6*.

Let v(6) be the spectral radius of PL ¥™(6) (note that v(6) is independent of m since the sources
are all identical). From an elementary result from the theory of Kronecker products [12, p. 27] we

have

so that 6* (cf. Section 2) is simply the unique position solution of the equation M log(v(6)) = fc,

where

/(0) = (1—p)+(1—Q)€)‘0+\/((1—P)+(1—Q)e)‘9)2—4(1—1)—@)6)‘0
= 5 :

Computation of C(0).

14



By observing that 1 — Fi(x) = 1{\ elk| > x + ¢} for all k € S = {0,1}M we get (cf. (2))

> e (k) (1 — Fi(x))

C(0) = sup — =
529 > prjzn(9) / "I dFy (u)
keS z
M
Yo D> prgm(k)
= max max = keS, k= (25)

0<r<M | lo<i<M M .
jes,m:rz Z pk,jzk(e)e)‘e(l’l)

i=l keS, |k|=i
where [y := inf{l = 1,2,... : IA > c¢}. The right-hand side of (25) can be further simplified by noting
that 7(k) = 7} 7}7 " for all k € S such that |k| = i. Similarly, we get that z;(8) = v1 ()" vo(9)M~*
for all £ € S such that |k| = 4, where v(0) = (vo(0),v1(0)) is the unique right-eigenvector of
the matrix PL U™ () corresponding to the eigenvalue v() such that |v(f)] = 1 (here we use

the result that z(6) = @M _,v(6) [12, p. 27]). By a simple algebraic computation we obtain
vo(0) = (e” — v(6))/(e” — 1) and v1(0) = (v(0) —1)/(e” —1).

Reporting these simplifications in (25) yields

M
e)‘wZ(m/?TO)Z Z Pr,j
o \M i=l kES, |k|=i
co) = max max . (26)
0<r<M | lo<i<M M 0 i
sesiii=r Y2 (@) M /w0(@) Y by

=l kES, |k|=1

Define ¢;, = P(|Yn| =7 ||Yn=1| =4) for all 4,7 =1,2,..., M. In words, ¢;, is the probability that
there are r sources active at the beginning of a time-slot given that there were i sources active at the

beginning of the previous time-slot. It is not difficult to show that for all j € S such that |j| =7,

()

Yo pr= o din 27)
keS, ‘k|:2 <M>
T

and

min(¢, M —r) . .
o W 1gq it M—i r—(i—l) (1 _ \M—r—1
Gip= Y | (z) ¢ (1-q) (T e l)> P (1-p) :

15



Combining (26) and (27) finally yields

M AlGZ( >7T1/7T0 Qi,r

(o) = (vo(e)> 2)%2% f: ( ) (

) /00(8))’ g

It can be shown that the maximun is always reached for { = M if (w1 /70)/(v1(0) exp(A0)/vo(8)) > 1.
In this case C(6) = (my/v1(6)M.

Computation of the upper bound for the block metric.
Fix 6 € © such that 7(0) < exp(fc). From (15)-(16) we have
N C(
(Z HQ, >}t > L) ( ) % > 2(8) P(AT > 0| Yy = k) e . (28)
P(AT > 0) =%

Since P(AJ* > 0|Yy = k) = 1{ky, = 1} for all k = (k1,...,kn) € S from the definition of the

model, we have

> w(0) P(A7 >0|Yo=k) = > zl(0)

keS keS,km=1
M-1
= w®) ¥ i (6) (29)
1,€{0,1} =1
1=1,2,....M—1
= ’U1(9) (30)

where (29) and (30) are direct consequences of the identities z(6) = ®@M_, v(0) [12, p. 27| and
|u(@)| = 1, respectively.

By combining (28) and (30) and by noting that P(Af* > 0) = m; from the definition of the model,

P <§ Q™ > 2} > L) <c) (%) (M> e 0o, (31)

Ut

we finally obtain
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