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Abstract

In this note we develop a framework for computing upper and lower bounds of an exponential
form for a class of stochastic recursive equations with uniformly recurrent Markov modulated
inputs. These bounds generalize Kingman’s bounds for queues with renewal inputs.
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1 Introduction

Let (2, F) be a measurable space large enough to carry a R-valued random variable (r.v.) X, a
sequence of E-valued r.v.’s {Y,,, n = 0,1,...} and a sequence of R-valued r.v.’s {{,, n =0,1,...}.
The set R (resp. Ry ) denotes the set of all real numbers (resp. the set of all nonnegative real
numbers) endowed with the o-algebra B (resp. Bi). We will assume that IE is a general space
endowed with the o-algebra £.

Let {F(x;-), € IE} be a family of probability measures on (IE xR, £ x B) and let 7 be a probability
measure on (Ry x E, By x &). Let u(A) =n(R4 x A), A € €, be a probability measure on (E, £).

We postulate the existence of a probability measure P on (2, F), with expectation operator E, such
that forall Ae £, Be B, C € By,

P ((Xo,Yp) € C x A) = (C x A) (1.1)

and
P((Yiy1,6n) € AX B[ X0, Y0,..., Y0, 80,-.-,&n-1) = F(Y,; A X B) (1.2)

forall n = 0,1,.... The definition (1.2) implies, in particular, that Y = {Y,, n =0,1,...} is a time-
homogeneous Markov chain with state-space IE, transition kernel given by Q(z,A) = F(z; A X R)
for all x € IE, A € £, and initial probability distribution pu.

We will assume that the Markov chain Y is aperiodic, positive Harris recurrent (see [21, Theorem
13.0.1]) and will denote by = its invariant probability measure. Let {m,, n = 0,1,...} be a family
of probability measures on IE recursively defined by m9p = p and 7m,(4) = [ Q(z, A) mp—1(dx)
for A € &, n = 1,2,.... In other words, 7, is the probability distribution of Y;, given that the
probability distribution of Yy is p.

On (2, F) we define the new sequence {X,,, n =0,1,...} of Ri-valued r.v.’s by
Xn+1 =max(0, X, + &), n=0,1,.... (1.3)

In the queueing literature the recursion (1.3) is called the Lindley’s equation. For instance, X,, may
represent the waiting time of the n-th customer in a first-in-first-out G/G/1 queue, where &, is the

difference between the service time of the n-th customer and the interarrival time between the n-th
and the (n + 1)-st customer.

The aim of this note is to compute exponential upper and lower bounds for the tail distribution of
X,,, both for every n = 1,2,... and for the stationary regime X of X,, (when it exists), namely, to
find real numbers a, a, > 0, b, b,, 0 > 0 such that

an e—@s
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P(X, > s) <b,e ¥ (1.4)

0 P(X >s5)<be ” (1.5)

ae

AN

foralls >0, n=1,2,....



When E is a singleton — which implies that {£,, n =0,1,...} is a renewal sequence with common
p.d.f. denoted as H — the first upper bound for P(X > s) was obtained by Kingman [17] via
martingale theory. Successive refinements by Kingman [18] and Ross [22] have finally given the

following bounds (see also Borovkov [3, p. 139]):

(ig%g(s,&*)) e < P(X>5)< (supg(s,G)) e’ 5>0 (1.6)
s s>0
for all 0 < @ < 0* = sup{a > 0 : E[e*%] < 1}, where g(s,0) := (1 — H(s))/ [&°?“=)dH (u).
These bounds hold under the stability condition E[{y] < 0.

When E is a finite set, and if the stability condition E;[£y] < 0 holds, then Liu, Nain and Towsley
[20] have shown that the upper bound in (1.5) holds for every 0 < 6 < 6* = sup{a > 0, p(a) < 1}
with
Y mw({k}) F(k; {5} x (5,00))
b= sup hel = (1.7)
(€A N 1(k; ) / =) F(k; {5} x du)

kEE $

where (I(k;0), k € E) is the unique positive left eigenvector of the matrix [ Jg " F(k; {5} x du)] Iy
j

),

associated with its largest eigenvalue p(6) such that Y, g l(k;0) = 1. In (1.7) the set A is defined
as A = {(s,j) € Ry xE : F(k;{j} x (s,00)) > 0 for some k € E}. The lower bound (1.5) is
obtained for § = 6* and with the coefficient a defined as the r.h.s. of (1.7) after substituting “sup”

for “inf” in this expression. Transient bounds of the form (1.4) are also reported in [20].

Still for finite state-space E, steady-state bounds of the form (1.5) have been obtained by Asmussen
and Rolski [2] in the context of risk theory. It is not easy to compare analytically bounds in [2] to
those in [20]. Numerical experiments conducted in [20] indicate that, in general, bounds in [20] are
better than those in [2].

Upper bounds of the form (1.5) have already been derived by Duffield [9] for arbitrary set IE.
Duffield’s approach, based on the maximal inequality for positive super-martingales, does not yield
very tight bounds in general (see |20, Section 3.4]) and does not seem to easily yield a lower bound.
A more general setting than the one in the present note is studied by Chang and Chen in [6]. In
[6] the increment process {£,,n = 0,1,...} in (1.3) is in the form &, = a, — ¢ for all n = 0,1,...
with ¢ a nonnegative constant. Under the assumption that the process {a,, n =0,1,...} satisfies a
sample criterion, Chang and Chen derive lower and upper bounds for P(X > s); bounds for intree
routing networks are also reported in [6]. As acknowledged by the authors, their bounds are not
as tight as the bounds in [2] and in [20] when specialized to the case when {a,,n = 0,1,...} is a
Markov arrival process.

The results in this note generalize the bounds in (1.6) and the bounds in [20] to the case when
(E, &) is a general measurable space. Upper and lower bounds for P(X,, > s) and P(X > s) are
obtained through a unified and simple approach.



Besides the theoretical interest of obtaining bounds like those in (1.4)-(1.5), bounds on the tail
distribution of quantities such as buffer occupancy and response times can be used in the design
of high speed networks. In addition, bounds can also be used to develop policies for controlling
the admission of new applications or sessions to the network. The interested reader is referred to
[1, 5,7, 8,10, 11, 15, 16, 19, 20, 23] where these issues have been lately addressed.

We conclude this section by introducing some further notation and by stating some preliminary
results.

A first step toward the generalization to general state-space IE for the Markov chain Y is to note
that the process {(Yn+1, > 1o &i), n = 0,1,...} is a discrete-time Markov-Additive process [14] with

MA-kernel given by F(z; A x B). This observation will allow us to borrow several results from [14].

To this end, define the transform

Q(z,A;0) = /Oo e F(x; A x du) (1.8)

—00

forallz €, Ac&, 6eR.
Let F)(x; Ax B) = F(x; Ax B) and FO(2; Ax B) = [ [ FU=Y(2;dy x du) F(y; A x (B —u)),
i > 2, and define QU (x, A;0) = [*°_ e F® (z; A x du) for all i > 1.

—00 €

From now on we will assume that there exist a probability measure m on (IE x R, £ x B), an integer
1, and real numbers 0 < a; < a9 < oo such that

a1m(AxB) < FO(z;AxB)<aym(AxB), VeecE, Ac& BebB. (1.9)

The above condition is the “recurrence hypothesis” (3.1) in [14]. Condition (1.9) holds automatically
when [E is finite and when the Markov chain Y is irreducible and aperiodic. The interested reader
is referred to [14, Section 7] for a discussion on cases where condition (1.9) holds.

Define 1(A;0) = [g e m(A x du) for all A € £, and let D = {6 € R : m(E;0) < oo}.

By applying Lemma 3.1 in [14] we deduce that for each § € D, Q(-,-;0) has a maximal simple
eigenvalue p(#) > 0 with uniformly positive and bounded associated left eigenmeasure (see [13,
Theorem II1.10.1]) 1(8) = {I(A;0), A € £}. Recall that the left eigenmeasure I(f) satisfy the

relationship p(0)1(4;0) = [ Q(x, A;60)1(dx;0), for all A € £. We will assume without loss of

generality that the left eigenmeasure is chosen so that

I(E;0) =1, V6eD. (1.10)

2 Exponential Bounds

The approach used in this paper generalized Kingman’s in [18].



Let {yn(s,-), s >0,n=0,1,...}, be a collection of measures on (I, £) such that

/ / (s —u,dx) F(z; A X du) + F(x; A X (8,00)) mp(dx) < Yny1(s, A) (2.1)
E J-oo
foralls >0, A€& n=0,1,....

The following technical lemma holds:

Lemma 2.1 Let P, denote the property that
P(X, >s,Y,€A) <v,(s,A) (2.2)
foralls >0, A&, n=0,1,....

If Py s true, then Py is true for all n > 0.

Proof. We will use an induction argument on n. Assume that P, is true for m = 0,1,...,n and
let us show that P, is true.

We have for all s > 0, 4 € &,
P(Xn_|_1 > s, Yn+1 S A)

= /E/_oo P(X,>s—wu, Y41 €A &, €dulY, =x)m,(dr)

- /E/_s P(X,>s—u,Y,41 €A & €dulY, =z)m,(dx)
+/E /oo P(Y,+1 €4, &, €dulY, =z)m,(dx)

_ /E/ P(Yoi1 € A, én € du| Xn > 5 —u, Yo = ) P(Xn > 5 — u, Y, € dr)
—i—/EF(:r;Ax(s,oo))wn(dx)

- /E [/_oo Fa; A x du) P(X, > s —u, Y, € do) + Fla; A x (s,oo))wn(d:v)] (2.3)

IA

/E [ /_; (s =, de) Fz; A x du) + F(z; A x (s,oo))ﬂ'n(da:)] (2.4)
< Yoyi(s, 4) (2.5)

where (2.3), (2.4) and (2.5) follow from (1.2), the induction hypothesis and the definition (2.1),
respectively.

Introduce the set G = {a > 0 : p(a) < 1} ND. Observe that G is nonempty since p(0) = 1 and
m(IE;0) = 1 which implies that 0 € G.



We are now in position to prove the main result of this paper.

Proposition 2.1 Let 6 € G. Forn=0,1,..., define

/ F(xz; A X (8,00)) T (dx)
bn(0) = sup 5

(s, A)K / / 09 P(2: A x du) I(da; 0)
E Js

0<m<n

< 00 (2.6)

with K = {(s,A) e Ry X & : F(x; A X (5,00)) > 0 for some x € E}.

If
n((s,00) x A) < bo(0)1(A;0) e, Vs>0, Ac€ (2.7)
then
P(X,>s Y, €A <b,(0)l(A;0)e %, Vs>0,Ac& n=01,.... (2.8)
In particular,
P(X,>s)<b,(0)e %  Vs>0,n=0,1,.... (2.9)

Proof. Fix 6 € G. Define 7, (s, A) = b,(0) e % 1(A;0) for all s >0, A€ E, n=0,1,....

Thanks to Lemma 2.1, the derivation of (2.8) will follow if we can show that the mappings 7, (s, A)
defined above satisfy (2.1).

We have

/E /_soo Yn(s — u,dx) F(x; A X du) + F(z; A X (3,00)) mp(d)
= bu(f)e Y _/E /:>0 e F(x; A x du) l(dz;0) — bn(6) /E /OO e (W=%) F(z; A x du)l(dz;0)

+ [ Flas A (3,00) mala)

IA

ba(6) e~ / / ¢% F(z: A x du)l(dw;0), from the definition of by (6)
E J—oco

= O™ [ Qa,4:0)1(dz;0)
= bu(8) e " p(8) (430)
< Yng1(0)

where the last inequality follows from p(f) < 1 and b,(6) < bp41(6). This proves (2.8).

For the proof of (2.9) simply observe that
P(X, >s) = P(X,>sY,€eE)
< b(0)e % I(E;0) from (2.8)
= b(0)e %, Vs >0,n=0,1,...



by using the normalizing condition (1.10).

We conclude this proof by showing that the constants bg(6),b1(6),... are all finite for all § € G.
This result follows from the inequalities

/ F(x; A X (s,00)) T (dx) )
< sup < 0 (2.10)

E
s,A) €K : i o<m<n [(A;0)
(oy)én - F(z; A% (s,00))l(dw;0) 5%

bp(6) < sup

where the last inequality follows from the positiveness of the left eigenmeasure {(#) (see Section 1).
]

From now on we will assume that there exists 0 < B < oo such that m(E, (B,00)) > 0. If this
assumption does not hold then it can be shown from (1.9) and (1.3) that X,, —, 0 almost surely
and the system becomes trivial.

Define 6* = sup{# € G}. It is shown in [9] that when the set D is open then 6* > 0 if the stability
condition (see [4]) Er[&)] < 0 is satisfied, where E, stands for the expectation operator associated
with a stationary Markov chain Y (i.e. u = 7). In that case, 6* is the largest exponential decay rate
among all positive decay rates such that p(f) < 1. Actually, 8* is seen to be the largest exponential
decay rate among all 6 > 0 whenever (i) the set D is open, (ii) condition (1.9) holds and (iii)
E:[¢o] < 0. This result is a direct consequence of the identity lim, .~ (1/x) log P(X > z) = —6*
that holds under the aforementioned conditions (i)-(iii) (see Duffield [9], Glynn and Whitt [12,
Theorem 1]).

We now establish the transient lower bound.

Proposition 2.2 Forn=0,1,..., define

/ F(x; A x (s,00)) T (dx)
E

an = inf - . (2.11)
b [ [ e Flas 4 x du) i(d:6°)
- - E Js
Assume that Er[] < 0, D is an open set and p(6*) =1 (see Remark 2.1 below).
If
n((s,00) x A) > agl(A;0)e %%, Vs>0,Ae& (2.12)
then
P(X,>s, Y, €A >a,l(A;0) e, Vs>0,A€&n=0,1,.... (2.13)
In particular,
P(X, >s)>an 6‘_0*3, Vs >0,n=0,1,.... (2.14)



Proof. Let {6,(s,-), s >0, n=0,1,...} be a collection of measures on (E, ) such that
/ / 6u(s — u, dz) F(a; A x du) + F(a; A x (5,00)) 7n(dz) > 6py1(s, A)  (2.15)
E J—c

foralls >0, A€ &, n=0,1,.... Asin Lemma 2.1 we can easily show that if the property
P(X, >s,Y, €A)>b,(s,A), Vs>0,A€é& (2.16)
holds for n = 0 then it holds for all n = 0,1,....
Define 6,(s, A) = ane " 1(A;6*) forall s >0, Ac&, n=0,1,....
If the mappings {6,(s,A), s >0, A€ &, n=0,1,...} satisfy (2.15) then, according to (2.16),
P(X, >s Y, €A >a,e ?%1(4;6%)

forall s >0, A€ &, n=0,1,..., which in turn implies with (1.10) that

P(X,>s)=P(X, >s,Y,€E)>a, e~ 0"s,

It remains to check that {6,(s,A4),s >0, A € &, n =0,1,...} satisfy (2.15). This can be done
by mimicking the proof of Proposition 2.1 and by using the assumption p(6*) = 1. The proof is
omitted. -

Remark 2.1 The equation p(#) = 1 has always one and only one solution § = #* in DN (0, c0) when
the set D is open. This follows from the strict convexity of p(#) on D (which itself is a consequence
of the strict convexity of log p(6) [14, Lemma 3.4(i)]), of limy_gp p(f) = oo [14, Corollary 3.1], of
p(0) =1, and of p'(0) = E;[&)] < 0.

We now turn to the derivation of steady-state bounds. As already mentioned, we know that there
exists a proper r.v. X such that P(X,, < s) —, P(X <) for all s > 0 independently of the initial
distribution 7 of (Xo, Yp) whenever E;[€y] < 0 [9]. This result, combined with Propositions 2.1-2.2,
yields the following:

Corollary 2.1 Assume that E.[¢o] < 0. Then, V8 € G,
P(X >s)<b@) e, Vs>0 (2.17)

where

/ F(z; A x (s, 00)) m(dx)
b(f) = sup E

B < oo. (2.18)
(s,4)eK / / P0=9) Pz A x du)(da; 0)
E Js



If we further assume that D is an open set, then

*

P(X >s)>ae™ s, Vs>0 (2.19)

where

/ F(x; A x (s,00)) m(dz)

W= inf ooE ) (2.20)

(s A)eK / / e (=9 F(z; A x du) I(d; %)
E Js

As already noticed by Kingman [17] it is simple to construct examples where the coefficient a in

the lower bound is equal to 0. Instances where a > 0 are discussed in [20].
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