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Abstract

The purpose of this paper is to study the loss probabilities of messages in an M/M/1/K
queueing system where in addition to losses due to buffer overflow there are also random
losses in the incoming and outgoing links. We focus on the influence of adding redundant
packets to the messages (as in error correction coding e.g. Reed-Solomon code etc.).
In the first part we use multi-dimensional probability generating functions for solving
the recursions which generalize those introduced by Cidon, Khamisy and Sidi [5] for
computing the loss probabilities and derive analytical formulae for a special case. In the
second part of the paper we use combinatorial arguments and Ballot theorem results to
alternatively obtain the loss probabilities. The analytical results allow us to investigate
when does adding redundancy decrease the loss probabilities.

Keyword: queueing analysis, forward error correction, Poisson process, loss probabilities,
generating functions, Ballot theorems.

1 Introduction

The loss probability of packets in queueing networks is an important performance measure in
telecommunication networks and some other applications. Rapid progress in the development
of fiber optics allows to achieve a bit error rate of 107*; information loss is then essentially
due to congested nodes and buffer overflow. However, in wireless networks random losses of
packets also occur in the channels/links apart from congestion losses.

Often, when a message is divided into several packets, the loss of one packet results in the
loss of the whole message. In order to reduce the loss probabilities, one may add redundant
packets, so that lost packets can often be reconstructed. Indeed, there exist erasure recovery
codes that, by adding k redundant packets to a message, enable to reconstruct up to k losses
(see [5],[7],[10], [9] and references therein). We note, however, that by adding redundant
packets, the workload increases and thus the loss probability of a packet may increase ([1]).
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Alternatively, if redundancy is added in such a way that the total workload remains unchanged
then this will result in a decrease in the throughput of useful information transmitted by the
source. Thus there are two types of tradeoffs to be studied (according to whether we want
to keep the total transmitted throughput the same, or only the throughput corresponding to
useful transmitted information).

In this paper we are concerned with studying the loss probabilities of messages in queueing
systems where in addition to losses due to buffer overflow there are also random losses on
the incoming and outgoing links to the bottleneck node. In particular, we study the tradeoffs
mentioned in the previous paragraph.

The problem of analyzing loss probabilities due to congestion losses in the presence of
redundant packets has been addressed in earlier works [7, 5, 4, 9]. In [7], the authors have
used an approximation based on the assumption of independence between consecutive losses,
and have shown that redundancy results in a decrease of loss probabilities by 10 to 100.
Exact numerical methods based on recursions in [5] led, to an opposite conclusion, i.e.,
adding redundancy causes an increase in the loss probabilities. Explicit expressions for the
losses have then been developed in [4, 9] and references therein which allowed to obtain
regions of parameters in which Forward Error Correction (FEC) ! is useful. In particular,
in [4] information theoretical type of channel capacity has been obtained for channels with
congestion losses (and general service and inter-arrival times). All these references studied
models where losses are only due to congestion. Such models are useful in fiber-optic networks,
where the main source of losses in the network is indeed overflow of the bottleneck buffer(s).
There are however other situations in which non-negligible amount of losses may also occur
at the links, such as in wireless and in satellite communications.

The goal of this paper is therefore to determine the role of redundant packets in networks
in which losses may be due to both phenomena: link losses (which we call random losses)
and losses due to buffer overflow (which we call congestion losses). We obtain expressions
that permit us to study two scenarios for adding FEC. In the first, we assume that the
global transmission rate is unchanged, so that when adding FEC we reduce the rate of useful
information. We then analyze how does the received rate of useful information depend on
the FEC. In the second scenario we keep the rate of useful information unchanged; adding
FEC then increases the congestion and hence the losses, but on the other hand allows one to
recover some lost packets. We note that not only is our model a generalization of the previous
work in considering both congestion as well as random losses, but also the first scenario that
we investigate has not been considered earlier even in the context of congestion losses only
[7, 5,4, 9]

The paper is structured as follows. In Sec. 2 we present our model and its motivation.
In Sec. 3 we present our main results derived using an algebraic approach involving multi-
dimensional generating functions; the proof is provided in Appendix. In Sec. 4 we provide
numerical examples and discuss the region where adding redundancy improves the perfor-

'the technique of transmitting redundant information with original information is called FEC
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Figure 1: A motivational scenario: FEC for satellite communication

mance. In Sec. 5 we employ a combinatorial approach using Ballot theorems to obtain explicit
expressions for loss probabilities employing techniques developed in [9]. Finally, we conclude
in Sec. 6 with directions for further work.

2 The Model and its Motivation

We consider networks consisting of a noisy link (in which random losses occur) followed by
a bottleneck buffer, or more generally, of a buffer that is in-between two noisy links. The
latter is a suitable model for satellite connections (see Fig. 1) in which there is a noisy
uplink and a noisy downlink connection with further losses that may be due to congestion
inside the satellite (in which the buffer sizes are typically much smaller than in the terrestrial
networks). We assume throughout that a packet that is corrupted before it arrives to the
bottleneck queue is discarded and thus does not occupy any space in the buffer.

In the analysis below we shall model random losses in the incoming link (uplink) and
congestion losses at the node. We consider an M/M/1 queue with a finite buffer of size K
(including the packet in service). We assume that losses can be caused either by a buffer
overflow or randomly with probability r in the incoming link. The arrival process from the
source is assumed to be Poisson with rate A and the service times of packets is exponentially
distributed with rate p. Hence, the effective arrival process to the system (buffer) can be

assumed to be Poisson with rate A, = (1 —r)A. Define 7 29 r,p = Ae/ 1, and p, = pJT.
We present a recursive scheme for computing P(j,n) which is the probability of j losses
(including random losses in the incoming link and congestion losses at the node) among n
consecutive packets in such a model.



Remark 1 The case when there are losses in both the incoming and outgoing links can be
analysed once we have P(j,n). For example, let the random loss probability in the outgoing
link be u and let Pj, be the probability of j losses among n consecutive packets of a message
when there are random losses with probability v in the incoming link, congestion losses due to
buffer overflow at the node and random losses with probability u in the outgoing link. Then

J n—j+w\ , n—7j o/ -
Pin = Z( 1]1) u? (1 —uw)" 7 P(j —w,n).
w=0

Thus knowing P(j,n), which is the loss probability in the model we consider (i.e., random
losses in the incoming link and congestion losses at the node) one can obtain the loss prob-
abilities for the case when random losses can occur both in the incoming and the outgoing
links.

3 Approach Using Generating Functions: Main Results

For the system with Poisson arrivals with rate A\ and exponential transmission rate u, in
steady state, the probability of finding ¢ packets in the system at an arbitrary epoch is given
by

i

- _r

Zl[io Pt .
Define Q;(k) to be the probability that & packets out of i leave the system during an inter-
arrival epoch. We have

11(2) (1)

Qi(k) = partt 0<k<i-—1
Q:(i)) = o, where a:=(1+p)7" (2)

Denote by P?(j,n) the probability of j losses in a block of n consecutive packets, given that
there are ¢ packets in the system just before the arrival of the first packet in the block. Since
the first packet in the block is arbitrary, we have

K
P(j,n) =) T[&)Pj,n). (3)
1=0

The recursive scheme for computing P#(j,n) is then

r 3=0
Pi(j,1) = ¢ r j=1 i=01,.,K—-1 (4)
0 j>2
. 1 57=1
Pg(5,1) = {0 20,2 (5)



For n > 2 we have

7+1

Pz‘a(jan) = TZQH-l z+1 k]a +TZQZ —1,n-1)

0<i<K-1 (6)

Pg(j,n) = ZQK ) PG —1,n —1).

Next, we state the main results, whose detailed proofs are given in the next section. Define
the probability generating function (pgf)

Let x1(y, z) and x2(y, z) be the solutions in z of x2 — (14 p — rpyz)x + 7pz) = 0:

1+p—rpyz++/(1+p—rpyz)? —47pz
1+p—rpyz— /(1 + p —rpyz)? — 47pz
2(y7 z) = 2 *

We shall often write simply x; and zy for z1(y,z) and z3(y, z). Define, for all & > 1,

6 = ak —ak, o = (F+71y)26k_1 — 8. Let R = (XK, pH) 1.

Proposition 1 The pgf q is given by

q(y,2) = 1—(77R+rm/)z [(f+Ty)R?(l—1 +yp™
+2p(ap) " (F(y — ) — apy) Ay, 2) + rzy(ap)  B(y, 2)] , (7)

where A(y,z) and B(y, z) solve

( zpa(a:cl)KH(y(F —amr) —Ta) za?(F(z1 —p) + Txly(a:vl)K) ) (

zpa(oz:cg)KH(y(f —axy) — Ta) 202 (7(x2 — p) + T‘.Q?Qy(Oé.’EQ)K)

(1- aml)axfﬂ'ly + (1 = ary)ax (ry +7) Tz

(1 — azg)azy Ty + (1 — axy)axy (ry + 7)




For y = 0, Proposition 1 simplifies to:

00,2) = P8 Ry — 20 40, 2)] (9)

Having obtained the probability generating function, the explicit expressions for the re-
quired probabilities can be obtained by inverting ¢(y,z). In particular we shall focus on
P,(> j,n), the probability of losing more than j packets out of n. We investigate, in partic-
ular, the cases of j = 0,1, in order to be able to decide whether adding a redundant packet
to each message results in a decrease of the loss probability.

To stress the dependence of the different quantities (such as the pgf ¢) on the random loss
parameter r and on \, we shall sometimes add r and A explicitly to the notation as subscript
(e.g. we shall write ¢)(y,2)). The next Corollary shows that there is a simple product form
expression for the probability of no losses among n consecutive packets. In this product,
the first term corresponds to the probability of no random losses (in a system that has no
congestion losses), and the second one corresponds to the probability of no congestion losses
(in a system that has no random losses, and in which the arrival rate is reduced to 7).

Corollary 1 The following holds: (i) ¢}(0,z) = ¢i*(0,72)7, (ii) PX(0,n) = 7 Py*(0,n).

Proof:
From (9) we have:

R
A _ . b —1 K 4\
q, (07 Z) - Tl — 72 [RK+1 zp Ar (0,2)] ’ (10)
(1-={%
(lfazl)axli—ml
where AX0,2) = — e ) +(;<ai)2)f<+1(zl_,,))- Now
7 Rk - 7
M0, 2) = T3 [RK1+1 - szAO)‘(O,z)] ,
(1-=1)
F (1—azy)oxs G+
where AOA(O’ z) - z2a2(P(am1)K+1(I2—P)+(P1(aacl2))K+1(ﬂ31—P)) - Thus,
7 _ RK _ _ 7 _
oM0,72) = T [RK1+1 — T'ZpKAO)‘(O,TZ)]
_ Rk -1 K 4\
T 1 —F2 [RK+1 —zp AT(OVZ)} :

Hence (i) follows. Now,

1 0"'g)0,2)
(n—1) 9zt

1, 0" gg*(0,72)
-

A _ —
Pr (Oa n) - - (n _ 1)! 8(7‘~z)”_1

z=0 z=0
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from which (ii) follows.

Proposition 1 yields the following Corollary:

Corollary 2 The probability of losing one packet out of n consecutive packets, i.e., P(1,n)
s given by

n—l] 8q(y, Z)

P(1,n) = |z oy

= ["T1F(2) + [T Fa(2)
y=0

with

Fi(z) = —& 7 [R;Q_l - Z(ap)KHA(UaZ)] (—1 + 12_74{,)72) ’

C1—-7z

Fy(y)

where A(0, z) and B(0,2) are values at y = 0 of A(y,2) and B(y, z) defined in Proposition 1
and A(0,z) is the derivative of A(y,z) with respect to y, evaluated at y = 0.

[R;(l_l + pK — z(ap)KHT"A(O, z) + Tz(ap)KB(O, z)] ,

One can derive expressions for A(0, z), B(0, z), A(0, z) from 8 and hence an explicit expression
for P(1,n) by looking for the corresponding coefficients in the Taylor’s expansions of F} and
Fy. But finding Taylor’s expansions may be computationally involved. In Sec. 5 we provide
an alternative approach for directly evaluating P,(> j,n), Vj,0 < j < n — 1. Of course for
Jj=mn, P,(>n,n)=0.

4 Numerical Examples

In this section we compare the loss probabilities of a whole group of n consecutive packets,
which we call a block, with and without j additional redundant packets. The group of
packets that include the original block plus the additional redundant packets (if these are
added) is called a frame. If at least n packets out of these consecutive n + j packets reach
the destination then no loss of frame occurs. In this section we restrict ourselves to the case
of 7 =0, i.e., no redundancy and j = 1, one redundant packet per n packets. Without loss of
generality, we may scale the time so that the service rate is unity: g = 1. In the numerical
examples we are looking only at the random losses in the incoming link with probability r
and congestion losses. We take K = 25. When we numerically compared P,(> 0,n) with
P,(>1,n+1) we always obtained P,(> 1,n+1) < P,(> 0,n), which should be of no surprise:
this observation means that if redundancy is added in such a way that the total load on the
system remains unchanged then indeed redundancy improves performance in terms of loss
probabilities. However, the assumption that the total load remains the same means that the
throughput of the wuseful information decreases (in real time applications this would mean
that a higher compression rate should be used before transmission). This type of comparison
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(keeping the total load unchanged) has not been performed previously in [7, 5, 4, 9] even
for the case of congestion losses only. E.g., if we add k redundant packets to n (which gives
frames of n + k) and if the load is unchanged, then this means that the throughput of useful
information carried by a frame has decreased by a factor of n/(n+ k). Yet we have less losses
of packets. Thus the question that needs to be addressed is whether we gain in goodput in
this case. Let us define the goodput as the throughput arriving well to the destination. Then
this is given by
(input rate of blocks) x n/(n + k) x P,(< k,n + k).
So a meaningful thing to compare is P,(0,n) with 27 P,(< 1,n + 1) for fixed A. In Fig. 2,
we plot the relative gain, i.e.,
S P(£1L,n+1) - P(0,n)
P(0,n) )
From Fig. (2) we observe that the benefits of adding FEC grows as the amount of random
losses increases, and also as n increases. Also for very low r (very close to 0) and very low
n (as compared to buffer size) we loose by adding FEC. Fig. (3) plots the same curve for

A = 0.99. We observe that curves for A = 0.3 and A = 0.99 are identical » > 0.1 and larger n
and for r close to 0 the difference is very small.

(11)

Remark 2 Consider a scenario in which there are only random losses (with probability r)
and no congestion losses. Then we have:

P,(0,n) = (1—7)", P,(1,n) =nr(1—r)""" (12)
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If we want to study the effect of adding FEC on recovering from different type of losses we
can compare the relative gain defined in (11) for the cases when r = 0 (congestion losses but
no random losses) to the case when there are no congestion losses but only random losses
with loss probabilities given by (12). We plot this comparison in Fig. (4) and observe that
FEC is more helpful in recovering from random losses than congestion losses.

Next we look at the case where the transmission of useful information is kept unchanged
when adding redundancy. This implies that the total packet arrival rate increases due to
adding redundancy. We assume that the rate at which frames arrive is the same for the two
cases and is given by z. In the case of no redundancy, the rate at which packets arrive is
A = p =nx and in case of redundancy A = p = (n+ 1)z. A frame is lost in the latter case if
more than one packet is lost out of n 4+ 1 consecutive packets. We are thus interested in the
difference D = P,z(> 0,n) — Ppy1)o(> 1,n +1). If D > 0 then the redundancy decreases
the loss probability of messages. Observe that

D = 1- in(oan) - [1 - P(n+1)x(oan + 1) - P(n+1):c(17n + 1)]
= P(n—|—1)a:(17 n+ 1) + P(n+1):!:(07 n+ 1) - P'MC(O’ TL) (13)

We next plot the relative gain as a function of n for x = 0.03 (this means the load

D
Prz(>0,n)
nx, varies from 0.03 (for n = 1) to 0.75 (for n = 25)) in Fig. 5 and for x = 0.4 (load varying
from 0.4 to 10) in Fig. 6. The curves show that for fixed r, there exists a value of the frame
size at which the gain obtained by adding FEC as defined in (13) is maximum. These figures

can thus be used in order to optimize the size of blocks to which we should add FEC.
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scenario when there are no congestion losses. Also shown is the gain when there are no
random losses (r = 0) and only congestion losses with A = 0.3 and A = 0.99. Observe that
the curves for » = 0 and A = 0.3 and A = 0.99 have negligible differences.

Remark 3 From Fig. 5 we observe that for r = 0.1, adding one redundant packet for a
block size of 10 packets will result in the maximum gain in D. The redundant packet can be
constructed as follows: Let the packet sizes be say M bits. Then the 1th, 1 <1< M , bit of
the redundant packet is obtained by an XOR operation on the ith bits of all the 10 packets.

All the above curves establish that we benefit from adding redundancy when 7 is not very
small, and this is a valid remark or observation at any load. However when the random loss
probability is very low (close to 0) we may loose by adding redundancy.

5 Combinatorial Approach Using Ballot Theorems

We next employ combinatorial arguments together with the Ballot theorems [6] to alterna-
tively obtain explicit expressions for all the probabilities of the previous section. In particular,
we shall find the probability P{(j,n). Let us denote the loss probabilities in a system with
no random losses but only congestion losses and Poisson arrival process with parameter 7
by P*(j,n), 0 < j < n. Observe that these probabilities can be obtained from [9].

10
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Consider the case when j 2 losses consist of j,.(0 < j, < j) random losses and j.(0 < j. < j)
congestion losses. For n = 1 we have, P*(j,n) from (4) and (5). We shall now deal with
n > 2. For j, = 0, we have P2(j,n) = (1 — r)"P2(j.,n) with j. = j and P2(j.,n) given from
[9]. We next consider the case for j, > 1. The number of ways in which j, random losses
J
Je
probability depends on the position of the lost packets in the frame. Let us denote by r; the
position of the ¢th random loss, 1 < i < j, in the original frame. Also i < 7; < n — (j, — 7).
Thus 7 = 1, when the first packet was lost by random loss and 7;, = n, when the last packet
was lost by random loss.

can occur among j losses is ( ) We calculate the probability of one such outcome. The

The following analysis is for the case of j, > 2,71 # 1,r;, #n and j, =1, r; #1 or n. We
shall supplement the analysis with the other cases at appropriate places. Observe that the
random losses can be isolated or they can occur in burst. In fact since our message length is
finite (n), the probability that all the random losses occur in a burst is > 0 3. Also observe
that only the packets of the original message which are not subject to random losses have
the potentials of getting lost at the queue due to congestion (as we have assumed these are
the only packets that actually reach the queue). Thus we shall look at the packets of the
original message between consecutive random loss events. A random loss event is formed of
consecutive random losses. Say that consecutive packets actually coming to the queue and
are not corrupted due to link losses form an interval. Let T be the number of such intervals.
Thus T includes:

e The interval consisting of packets coming to the queue before the first random loss event

(lf T1 7é 1)

e The interval consisting of packets coming to the queue after the last random loss event

(if rj, # n).

e The interval consisting of packets coming to the queue between two random loss events.
Let k; be the number of consecutive random losses in the ¢th random loss event.

Remark 4 The value of T depends on n, j, and the position of random losses. For e.g., for
n:j'M TZO; forn:jT—}—l,T:l etc.

Define .
z(t) :== Z kp.
h=1

2Observe that here we are looking at the case when the random losses (if any) occur before the frame
enters the buffer. The complementary case of random losses occurring after the frame leaves the node can be
handled as discussed in Remark 1. And then one can obtain the loss probabilities for the case when random
losses can occur both in the outgoing and in the incoming link.

3 Although bursty loss occurrence is more a characteristic of congestion losses.

12



We now distribute the j. congestion losses in the T intervals of lengths 71 — 1, 7144, — 7k, —
1,71k +ky — Thy+ky — Ly -y — Ty r_1) — 1. Let ny be the number of congestion losses in the
yth such interval. Observe that (for 2 <y <7 —1)

0<ny < min(T1+z(y_1) —Ta(y-1) — 1, Je)-

For y =1, 0 < ny < min(r; — 1,4.) and for y = T, 0 < ny < min(n — r 71y — 1,j). Also,
ny satisfy 2521 Ny = je. Now the number of ways in which n, losses can occur in the yth

interval is
T14z(y—1) — Ta(y—1) — 1
Ny

for2<y<T—-1landis (i) fory =1, (Z;TZ(T_I)_I) for y = T. We shall calculate the
probability of one such event. We shall look at three types of intervals: A-starts with the
first arrival after a random loss event and ends with the last arrival before a random loss
event; B-starts with the arrival of the first packet of the message (if r; # 1) and ends with
the last arrival before the first random loss event; C-starts with the first arrival after the last

random loss event and ends with the arrival of the last packet of the message (if r;, # n).

In a sample path with j,. > 2,71 # 1,r; # n, and with A; an interval of type A, the order
of occurrence of the intervals is B — Ay — Ay... — Ar_y — C. For j, > 2,71 =1,rj, #n,
the order is A; — Ay... — A7_1 — C and no interval of type B. For j, > 2,71 # 1,7;, =n,
the order is B — A ... Ar_; and no interval of type C. Similarly, for j, > 2,7 =1,r;, =n,
there will be no interval of type either B or of type C. For j,. = 1, there can either be intervals
B — C or C or B and no interval of type A can occur.

Let the queue length at the beginning of the yth interval be o and at the end of the interval
be S.

We shall first calculate the probability of a path that starts with « packets in the buffer,
ends with 3 packets in the buffer, has n, losses in it by congestion and consists of a, =
(T142(y—1) — T2(y—1) — 1) arrival events. We employ the arguments as in [9] to evaluate this
probability. However here in our analysis we also need to know the queue length at the
arrival of the last packet of an interval. We shall denote this probability by P, z)(ny, ay).
Let f; denote the jth lost packet. We shall decompose an interval into three types of events
as follows: (i) V,(f1)-the first packet to be lost is fi; given that upon the arrival of the first
packet of the interval there are o packets in the buffer; (ii)S(fi, fi+1)-packet fi41 is lost given
that packet f; was lost; (iii)U(fn,,8)-packet f,, is the last to be lost and the queue length
at the arrival of the last packet of the interval is .

Observe that an interval consists of the succession of events V,(f1),S(f1, f2), S(fe, f3),

o2 8Fnyts fg )5 U(Fny B)- Lt valfs), 5(fir fir1) and u(fa,, B) be the probabilities of the
event Vo(f1), S(fi, fiy1) and U(fn,, B), respectively. Thus

Ay —Ny+1ay—ny+2 ay

Pog(ngay) = > > o Y vlfi)s(fr, fa) - 5(fa,—1,ny)u(fa,, B)-

f1:1 f2:f1+1 fny:fny—l+1

13



The computation of the probabilities v, (f1) and s(f;, fi+1) is similar to that in [9]. However
the computation of u(fy,, 8) requires some combinatorial arguments. We shall, for complete-
ness summarize the results in the following Proposition and shall provide the proof for the
expression for u(fn,,3).

Proposition 2 The probabilities v (f1), s(fi, fiy1) and u(fn,,3) are given as

s 0 <K—-a
1 =1
v(f)={ ' ; valf1) = a# K (14)
k(1 0 o.w. 1 prl_(bzerﬂﬁ:&(a +1,K) 0. .
s(fi, fir1) = p—L-¢2(fl+1—fz—1> (K, K) (15)
¢2(ay—fny)+K_5(K7 /8) fny < Cly
u(fn,,8) = 1 fo, = ay and B =K (16)
0 fn, = ay and B # K

where ¢p(a, B) is defined as the probability of a path that starts with o packets in the buffer,
ends with 8 packets in the buffer and consists of n events (arrivals and departures) and is
defined as

H

$n(e, ) = enla, )+ WaY™ 127 (17)
r=1
where, fora > 1,6 >1
en(a, B) = (18)
n—atp nta=p
n p \ 2z 1 =
;K’”“ﬁ (K+1)>‘(W—T(K+1) )] (m) (ﬂ) ’
Woz - eoz 6a+2 0)7 o 76a—|—2(’H—1)(a7 0))
Zz = (6 677 a— 2(0 /6)5"'3677—04—2(7‘(—1)(0’6))
64(0 0) 62(7-{_1)(0,0)
62(0 0) 62(7-{_2)(0,0)
Y = : : 3
0 0 €2(0,0)
0 0 0
B n—a—_
H = 14— 2
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and €,(0,8) = ep—1(1,8), B>1, €y(a,0) = 1+p€?7 1(a,1), a>1, ¢/(0,0) = 1+ en—2(1,1)
where —oo < Y < oo takes on values in the sum in the definition of e;(a, ) in (18) so that
the binomial coefficients are proper, for e.g. in the first sum in (18) ﬂ+'§—_’6 >T(K+1) and

n >l (K +1).

Proof: For proofs of Egs. (14) and (15) see [9]. We shall here provide a proof for Eq. (16).
Observe that for f,, = ay,8 = K, u(fn,,B) = 1. For 8 # K, u(fn,,3) = 0. We look at
the case fp, < ay. Observe that after the f, th packet there are a, — f, more packets to
come. And at the loss of f,, th packet, the buffer is full, that is queue length is K. Thus we
need the probability of a path that starts when there are K packets in the buffer ends with
B packets, consists of 2(a, — f,,) + K — 8 events (arrivals and service completions) and no
packets are lost. This is nothing but the probability (bmy_ fg K5 (K, B) from the definition
n (17). o

We also need the probability of the evolution of a path after the end of interval A; and before
the start of interval A;;1 and having k;(> 1) packets lost by random losses. Observe that
the duration of this random loss event has the distribution of the sum of k; + 1 independent
exp(\) distributed random variables, i.e., Erlang(k; + 1, A). Let X; be the number of service
completions exp(p) in an interval with distribution F % F % ... (k — times) = F** where
F ~ exp(A) and * denotes the convolution operation. Then the probability that A; ends with
B1 packets (including the last arrival in the interval A;) in the buffer and A;y; starts with (35
packets (not including the first arrival in the interval A;;1) in the buffer and has k; random
losses can be written as

(e )P
dF™\" f0< By <
/0 (61 — B2)! () i hzh

POG=Pr=puk) = ¢ 95 [T piny e —g (9
m=p1

\ 0 B2 > i

Remark 5 Indeed, the end of service times are a Poisson process with intensity u. The
PGF of the number of such points during a fiz interval T is G(z) = exp(—u(1 — 2)T). If T
is a random interval then it is G(z) = Elexp(—pu(1l — 2)T| = T*(u(1 — z) where T*(s) 1is the
Laplace Stieltjes transform of T. If T were exponential (\) then this would give

A 1 0z A P

G(z) = T =2) :;1_(1_]))2 where@z—)\_i_ﬂ :—1—/)'

We see that G(z) is the PGF of Y = X — 1 where X has a geometric distribution with
parameter 0, so P(Y =n) = (1 — 0)"0. The number of points in an Erlang(k; + 1,\) RV,
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say X;, has thus the distribution of the convolution of ki + 1 copies of Y, which gives:
(ki +1)!

n _ ki+1
lysl... !(9 (1-6) '
Y1+ tyn=ki+1 Y1:Y2:.--Yn

This can now be used to for the expressions in (19).

We will now consider a path in which the first packet (out of n packets in a frame) sees 4
packets in the buffer, and out of n packets in a frame, j, packets are lost by random losses j.
packets are lost by congestion losses, j. + j» = 7 with T intervals. Let r; be the position of
the ith random loss. Let P;(jc,jT,T, n) be the probability of such a path . Then for r; # 1
and r;, #n, jr > 2 and for j, =1 and r; # 1 or n:

Pp(jC’]TaTan) (20)
. . . . T-3 k
_ ' Bg=K ap=K n—jr Jjr Jr—k1 Jr =2 ip=1 "h
= =)t Y )IEED DD DI SRS
By=0,0<g<T—1ap=1,0<h<T—1711=2 k1 =1 ka=1 kp_a=1
. 2 . T—2 . . T—2
n—jr—ai ”_Jr—zizl a; n_J"_Zizl @i min(a1,jc) min(as,jc—n1) mm(anlajc_Ehzl np)
az=1 az=1 ar_1=1 n1=0 n2=0 ny_1=0

C(n1,a1) Py gy)(n1,a1)P(X1 = o — a1, k1)C(na, a2) Po, g,)(n2,a2)
P(Xy = 1 — az,ky)...C(nr_1,ar 1) Pap_y pr_p)(nT-1,07-1)
P(Xr-1 = PBr-2 — ar-1,kr-1)C(nr,ar) Py, pr_) (0T, ar).

where 3% fy =0 fori <0and a; =71 — 1, ar = n — jr — S0t ay, kr—1 = jr — X1 % kas
ny = je — Z{;ll np. Also C(n,a) = (a_“in'),n, We now consider the other cases:

e j, =1,71 = 1: Here T = 1 and k; = 1. For this case we can write P;(jc,jr,T,n)
as r(1—r)""! 220:0 P(Xy =1i— Po, 1)1350 (Jeym — 1) with Pgo(., .) obtained as [9] and
P(Xy = .,.) having same distribution as (19).

e j, = 1,1 = Here again T =1 and k; = 1. We can write P;(jc,jr,T,n) as
r(1 = r)" tP%j.,n — 1) with P?(.,.) obtained as in [9].

o j.>2,r1 =1,r; #n: We have P;(jc,jT,T,n) =
_ - i
P (L =) Y S P(Xo =i — o, k1) B0 (e, G — k1, Tyn — k).
k1=1 Bo=0

with P(.,.,.,.) given as in (20).

4We use the subscript p to distinguish the notation from Section 3
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e jr>2.1r1 #1,r;, =n: We have P;(jc,jT,T,n) :

'  B=K ah=K  n=jr jr jo—kr  Gr=Dh_gkn
= rl-nte Y )IEEED DD DD DI D
Bg=0,0<g<T—1 ap=1,0<h<T—-1r1=2kp=1kp_1=1 ko=1
n—jr—ay "I =31y @i m—jr= Y i ) @ min(a1,je) min(as je—m1)  Min(er_1je=3 7 na)
as=1 az=1 ar_1=1 n1=0 no=0 np_1=0
C(n1,01) P o) (n1,a1) P(X1 = fo — a1, k1)C(n2,a2) Pa, 5,)(n2, a2)
P(Xy = p1 — az,ka)...C(nr—1,ar-1)Play_y pr_o)(r-1,07-1)
P(Xr-1 = fBr—2 — ar—1,kr—1)C(nr,ar)Po, g, )07, ar). (21)

where 22:1 fi=0fort<0anda;=r1—1,ar =n—7j,— Z;fr:_ll a;, k1 = Jr — ZZZQ k.,
ny = je — ZiT:_ll Nh.
o j.>2,r1 =1,r; =n: We have P;(jc,jT,T,n) =
_ e
rr(L=r)"m NN P(Xo =i — Bo, k1) P (jes jr — k1, Tym — ky ).
k1=1 Bo=0
with Pfo(., .y -,.) in last equation given by (21).
Having obtained the expressions we have (with appropriate range for values of T)

Py(jesjrin) = D Pljerjr, o) and  Pa(jyn) = (4,) Pi(jes jrsm)-
T

And finally,

K

Pp(jan) = ZH(Z)P;(.% n)
=0

where II(7) is defined in Equation (1). The probability P,(j,n) here is the same as the
probability P(j,n) in Sec. 3.

6 Conclusion and Scope of Further Research

We have studied the steady state loss probabilities of messages in an M /M /1/K queue where
there are both random losses and congestion losses using an algebraic approach involving gen-
erating functions and a second approach based on ballot theorems. The explicit expressions
we obtained allowed us to investigate numerically when it is profitable to add FEC, and what
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should the optimal block size be when we add a single redundant packet per block (e.g. using
a XOR operation).

Our method can easily be generalized to include multiple sessions (by generalizing the
recursions in [4] to include random losses also). Also instead of fixed random loss probabilities,
we can include the case where loss probabilities are dependent on the state of the channel,
for e.g., one can employ the Gilbert loss model for channels [2] or its generalization ([3]). We
can write recursions for the steady state loss probabilities as a function of channel state, say
P*(j,n,s), i.e., conditioned on the state s of the channel upon arrival. If we assume that
during the arrival of a message the channel state remains unchanged, say s, (this is the case
when the time scale of the Markov chain describing the channel is considerably slower than
the duration it takes for a message to be served) the unconditional loss probability P?(j,s)
is

S
‘P'L'a(ja n) = Z ina(ja n, S)PC(S)
s=1

where S is the total number of possible channel states and P,(s) is the steady state probability
that the channel is in state s. Another interesting direction will be to model bursty sources.
The source can be modeled as an Interrupted Poisson process and again recursive equations
can be written for loss probabilities.

Appendix
Proof of Proposition 1
Define
K .
71'J,”('T) - lepia(]an)a n 2 17 J >0
i=0
It follows from (6) for n > 2,
K=1 i+l K-1
Tin(@) = 7Y @Y Qipr(k)PYy_x(Gyn—1) +7 Y o' Y Qi(k)PLy(j —1,n — 1)
=0 k=0 =0 k=0

K
+2" Y Qi (k) PR _4(j —1,n —1).
k=0

We substitute (2) in the last equation, introduce 7;,(z) and also use the facts that 7;,(0) =
P§(j,n) and 1 — pa = a. We then obtain forn > 2, 5 > 1

¢

K-1
ﬂ-j’n(x) =T Z o (Z pak_H 'ﬁkl—k(jan - 1) + az+1P0a(j7n - 1)>
=0 k=0
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K-1 i—1
(Zpak+1P“ (G—1,n—1)+a'P¢(j — n—l))
0

Z
K ( P (- 1,n—1)+a"Pi(i —1,n - 1))

1— (ax)¥

= an "i-1n-1(0)

K-1
D p
k=0
K-1 i
=T Z ' ( pak+1 i+1— k:(]a 1) + 1+1Pa(]7n - 1)) +r
=0

re .
+T1 f oL (”j—l,n—l(x) —Tj—1,n—-1(0) — xKPK(j —-1,n— 1))
K
alax B ~ '
_T% (”jflmfl(o‘ D=7 1 1(0) —a KPR —1,n — 1))
K-1
* (Z pa* P (j—1,n—1)+a"Pi(j —1,n - 1))
k=0
=2
Tpa 1 K .
T 1-ax (ax Tjm—-1(z) — (az)” mjn—1( 1))
ST (L aa)K) I el )
1— ar (aw (ax) ) Tjn-1(0) + Fau T—— Tin-1(0)
a —
2 o) (0 50
1—(az)® K » p
+’I“aﬁ7rj—l,n—l(0) + Oép(Oz.Z') 7Tj—1,n—1(04 ) + a(am) 7Tj—1,n—1(0)- (22)

Define, with some abuse of notation, the generating function of P?(j,n)

T, Y,z Z Zy 2" 17Tjn ZL’) (23)

7j=0n=1

When we fix y and |z| < 1, the above generating function is polynomial in z, and therefore
an analytic function. In order to use (22), which holds only for n > 2 and j > 1, we note
that

0o oo oo
Zzyjzn 17TJ, ) :ﬂ-(xayaz)_zz 7.(-0'” Zy 7'('], +7I'01( )
j=1n=2 n=1

=n(z,y,z2) — n(x,0,2) — n(x,y,0) + 7(z,0,0).
From (4) and (5) we get

l—azK
7m(x,0,0) = (i (24)
and K X
—x 1—=x
(r,y,0) =7 - +yr T2 + ya. (25)



In (24) and (25), as well as in the rest of the paper, we understand that for + = 1 and for
all K, (1 — 2K)/(1 — ) = K. Thus we obtain

1— K 2
w(,y,2) = m(x,0,2) = yaX +r=——y + 7 (n(x,y,2) - n(x,0,2)]
1—=x 1—arax
_ 9 = 2
_ Trpa K -1 _ -1 _ rpa i . K _
T2 (a)z [rla ) — e 0,2)] - 72 (= (@) ) 2 [A(0,,2) = 7(0,0,2)]
1 (aa:)K K 1 1
+ra 1— ar Z [W(O,y,z) - ’/T(0,0, Z)] + Oép(Oé.iC) 2y W(a 7yaz) + ;”T(anaz)
K
Tpo 3 K_, -1 1 — (az)
1—zK _ pa’z TpAYZ
=y tr——y+ N -—— [r(@,y,2) = m(@,0,2)] + T——n(2,y,2)
(Fa +ry)

+pa(az)® (y - ) z [7?(04_17% z) + %w(O,y, Z)]

1-—oax

= 2 — 2 K
- 1
) o) w009 + s et 4 Lo
T'O[yz K
. 2
1_M(0@") 7(0,y,2) (26)

We note that in order to establish the proof of Proposition 1, it follows from (3) that it
suffices to obtain 7(z,y, z) at © = p, since

Q(yvz) = RKTF(p,y,Z)- (27)
From (26), we have
1—pK
1-p

[7(p,y,2) — m(p,0,2)] (1 = (T + rpy)z) = yp™ +7r y

+z (y —F— %) (pa) Tt [w(a‘l,y, z) + %W(O,y, z)]

(ap)”
p

1
+2r(pa) KT [W(Ox‘l,O,Z) + ;W(O,O,z)] +rpyz lW(AO,Z) + 7(0,y,2)

To compute the function 7(p,y, z) it suffices to compute the functions in the square brackets
as well as 7(p, 0, z). To do that, we first compute 7y, by proceeding in the same manner as
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n (22). Since P#(0,n) = 0 we have for n > 2,

_ ,ooz2 1 () — 7 pa2
T —mon—1(x) — T
1—arax 0n—1 1—ax

Tom(z) = (az)¥mp1(at)

T Loy A L)
T Ty ot "T "oz \az T0,n—118)-

By taking the generating function of both sides of the above equation and substituting (24),
we can write

1— K
(1 - azr)arm(x,0,2) =7 1 _xw (1 — ax)ax + rpa’zr(x,0, 2)
1
—7pa’(az)KT, [7‘(’(@_1,0, z) + =7(0,0,2)| 4+ 7o (x — p)2x(0,0, 2). (28)
P

From (26), we have
((1 —ax)ar — pa2fz) [m(x,y,2) — w(z,0, 2)]

1— X

= (1-ax)ayz®™ + 1 - azx)azxr .

Y
-

_ 1
7'('(0( layaz) + ;ﬂ-(O?:% Z)

+zpalaz) T (y (1 — az) — (Fo +ry)] x
1

+7pa?(ox)E Ttz [ﬂ'(al, 0,2z) + —=(0,0, z)] + o?rpzyzn(x,y, 2)
p

+04277(:1c —p)z[m(0,y,z) —m(0,0,2)] + azmzyz(ax)KW(O, Yy 2). (29)
Substituting (28) in (29) yields
((1 — azx) ax — pa® (Fz + m:yz)) (x,y, 2)

1—zK

= (1 -ax)ayz™™ + (1 - az)ax (ry + 7) 1
-z

+zpalaz) T (y (F — az) — Fa) x [ﬂ(oz_l, y,z) + %71’(0, Y, 2)

t+2a? (#(z = p) + ray(az)) 7(0,y, 2). (30)

For each i = 1,2, when = = z;(y, z), the term that multiplies 7(z,y, z) in the left hand side of
equation (30) vanishes. Since 7(z,y, z) is polynomial in x and therefore analytic in x, the left
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hand side of (30) vanishes at = x;(y, z). Thus by substituting x; for = into (30), we obtain
two equations (Equation (8)) with two unknowns: A(y,z) = [W(a_l,y,z) + %W(O,y,z)] and

B(y,z) = w(0,y,z). Equation (7) of the proposition, finally, follows from (30) with x = p
and (27).
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