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Abstract— We consider in this paper packets which arrive ac-
cording to a Poisson process into a finite queue. A group of consec-
utive packets forms a frame (or a message) and one then considers
not only the quality of service of a single packet but also that of the
whole message. In order to improve required quality of service,
either on the frame loss probabilities or on the delay, discarding
mechanisms have to be used. We analyze in this paper the perfor-
mance of the Early Message Discard (EMD) policy at the buffer,
which consists of (1) rejecting an entire message if upon the arrival
of the first packet of the message, the buffer occupancy exceeds a
threshold K, and (2) if a packet is lost, then all subsequent arrivals
that belong to the same message are discarded.

Index Terms—EMD policy, packet model, queue-length distri-
bution, goodput.

I. INTRODUCTION

Quite often quality of service have to be studied with respect
to not only a single packet, but to a whole message or a frame.
For example, in ATM a transport layer protocol (AAL) is re-
sponsible for grouping packets into a frame, and a lost packet
implies the corruption of the whole frame. Selective Message
Discarding (and EMD in particular, on which we focus here)
have been proposed to achieve the twin goals of increased good-
put and reduced network congestion by discarding the packets
which do not belong to (or have potentials of not belonging to)
good messages (a message is good if it is entirely received at
the destination). Rejecting entire messages could also serve to
guarantee an acceptable average delay bound for accepted mes-
sages. The goal of this paper is to present explicit expressions
for the queue-length distribution and the goodput (defined as in
[10] as the ratio between total packets comprising good mes-
sages exiting the network node and the total arriving packets at
the input). Our starting point is the Markovian model proposed
in [10]: a Poisson process of packet arrivals, geometrically dis-
tributed frame size, and exponentially distributed service times
of packets. In [10], recursive procedures have been proposed
for the computation of the performance measures, but explicit
expressions have not been obtained. Our analytical results on
closed form expressions for performance metrics (in particu-
lar the queue-length distribution and the goodput) may be quite
useful in dimensioning the buffer size that should be used for
a given goodput, in the study of the sensitivity of the goodput
to different parameters for e.g., the message length, the buffer
size, the load and most importantly in finding an estimate of the
optimal discarding threshold etc.

In a previous work [5], we analyzed the Partial Message Dis-
card (PMD) policy in which only if some packet of a message
is lost, subsequent packets are rejected (but entire messages are
not discarded, in contrast with EMD). As the packet level anal-
ysis turns to be quite complex and involved, we studied in [3],
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Fig. 1. Transition structure under the EMD policy

[4], [5], [6] some fluid approximations. Some other references
on numerical studies of PMD and EMD policies are [8], [7].

In Section Il we describe our queueing model and present our
main results on the z-transform of the queue-length distribution
and then the explicit expressions for the steady-state probabil-
ities. In Section 111 we present an approach for obtaining the
explicit expression for the goodput ratio using algebraic tech-
niques. We provide some calculation details in Appendices A
and B.

Il. PACKET MODEL

The packet model is the same as the one proposed in [10].
We first describe the model in brief. In terms of packet the net-
work element is a M/M/1/N queue with arrival rate X and
service rate  and the load p = % A message length (in terms
of packets) is considered to be geometrically distributed with
parameter ¢. Under the EMD policy, a threshold level K (K
is an integer, 0 < K < N) is fixed. If a message starts to
arrive when the buffer occupancy is at or above K packets,
then all the packets of that message are discarded. Also, if a
packet belonging to an accepted message is discarded due to
buffer overflow then all the subsequent packets belonging to
the same message are also discarded. To model the policy, two
modes for working of the network element are defined: the nor-
mal mode, in which packets are admitted, and the discarding
mode, in which arriving packets are discarded. The state tran-
sition diagram for EMD policy under this model is shown in
Figure (1). Let P, ,;(0 < ¢ < N,j = 0,1) be the steady-
state probability of having ¢ packets in the system and the sys-
tem is in mode j (5 = 0 for normal; j = 1 for discarding).

We now define the transform functions 4,(z) = S 2*P, ;,
Bi(2) = Yilicy 2Py and Q4(2) = 4;(2) + By(2) for
j=0,1.



A. PGF and distribution of the number of packets in the queue

Proposition 1: The probability generating functions A;(z)
and B;(z) for j = 0,1 are given by,
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Proof: Refer to Appendix A.

Corollary 1: The transition probabilities are given by,
For1<i< K,
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where 6; = 6.

Proof: Refer to Appendix B.

Having obtained the explicit expressions for the stationary dis-
tribution of the queue-length we next proceed to obtain the ex-
pression for the goodput ratio (as defined in Section I).

_ Py o(pdn—iy1—0Nn—i)
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I1l. GOODPUT RATIO

Let W be the random variable that represents the length
(number of packets) of an arriving message. Let V be the ran-
dom variable representing the success of a message, V = 1 for
a good message, and V = 0 for a message which has one or
more dropped packets. Then G can be expressed as (see [10])
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Denote the conditional probabilities S,, ; 2 PV =1W =
n,Q = 1). In [10], recursions for evaluating these probabil-
ities and hence G were given. We will present here an ex-
plicit expression for G. To do this we will use the multi-
dimensional generating function for probabilities S,, ; which
was obtained in a different context in [1] and in [9]. We
define the two-dimensional generating function of S, ; for
1<n<ocand0 < i < N,as S(z,y), ie, S(z,y) =
S SN Sne™ 1yt, We will next reproduce the Proposi-
tion we developed in [5] for the case of Partial Message Dis-
card(PMD) policy. APMD is an EMD with K > N.
Proposition 2: The probability generating function S(z,y)

can be expressed as S(z,y) = YN, ci(x)y* where for 0 <
i < N —1,¢;(x) is equal to
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and ey (z) = 0 with,
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For the EMD policy, the conditional probabilities S,, ; are same
as that for the PMD policy fori < K. If the head of the message
arrives when the system occupancy is at or above the threshold
the message as a whole is rejected. Thus for the EMD pol-
icy we define the transition probability generating function as
S(x,y) = X5  ei(x)y?, where ¢;(x) is given by Proposition
(2). And the expression for Goodput ratio can be expressed
(like in Proposition (3) in [5], with NV in the summation re-
placed by K — 1) as,
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where stationary probabilities P(Q =
known from Corollary 1.

i) = Pio + Py are

A. Exact expression for G

In this section we aim to derive an exact expression for G
for EMD policy. From (1) we find that we need an expression

for Y50 ei(z)P(Q = i). Observe that 10" ei(2)P(Q =
i) = co(z)P(Q = 0) + EZ 1 Lei()P(Q = i). We have
P(Q = 0) = Py, o+ Pp,1 with Py o and P, ; given by Corollary
1. We next find a general expression for P(Q =4)fori=1to
K — 1. From Corollary 1, by adding P; o and P; ; fori = 1 to

K — 1 we can express P(Q = 1) as,
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We will now find an expression for Z ' eiP(Q = i) 2 From
(2) and Proposmon 2 we write after some algebra (see [2] for
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Observe that the last expression contains terms of the form

SE eat (witha = 1,972, 937, p, (1+gp)). We now obtain
these terms from the expression for ¢; from Proposition 2. For
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Thus after some rearrangements we can express the expression
for "K' e;P(Q = i) from (3) as 3

(K —1)(1+ K34,)[Ks — K¢ — K9 — Fy

+F) + (KuBiy{ — KzAsyl' ') [Fs — Fua

—Fy — Fs + Fg] + (K4Boyy — K3Asyy ')

[Fr — Fi1a — Fg — Fy + Fyq]

where
Ks = p(1 1—_,0;(_1)1(77 Kg = (1+qp)1(£(1(1+4;257)K I)K
Fy = E1(y1) B2 (1), Fy = Eq1(y2)Ea(y2)
F3 = Ei(y1/p)K7,  Fy= Ei(y1/(1+qp))Ks
Fy = By (v?)Ex(y1), Fs = E1(y1y2) E2(y2)
Fr = Ei(y2/p)K7,  Fs = Ei(y2/(1+qp))Ks
Fy = E1(y192) Ea (1), Fio = E1(y3)Ea(y2)

Fi1 = Ei(pyr), Fi2 = Ei(py2)

2\We shall not explicitly show z in parentheses for function c;
31t should be noted that Ay, A, A3, By, B2, Kz and Fy,i =1,2,...,12.
are all functions of x.
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Having obtained an expression for S>% ' ¢; P(Q = i), one can
directly obtain the expression for G from (1) (however, we also
need derivative of Y- 7" ¢; P(Q = i) with respect to z which
is easy to obtain).

1V. CONCLUSION

We provided explicit expressions for the stationary distribu-
tion of the queue-length and the goodput for the EMD policy.
An interesting extension will be to study the asymptotic behav-
ior of EMD policy, either from the generating functions or from
the explicit expressions and to obtain simpler approximations
valid for asymptotic regimes (large buffer, heavy traffic etc).

APPENDIX A

We have the following set of equations from [10] (with r =
1—gq).

pPoy = Pig 4)
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Taking ztransforms of (6), (7), (8) and (10) and from (4) (5)
and (9) after some algebra we get 4, (z) and B;(z) as in Propo-
sition 1 in terms of Py o, Py.1, Px,0, Pr+1,0, Pr,1 and Py .
Next observe that all the transform functions A;(z), B;(z),
j = 0,1, are polynomial in z (IV is finite) and hence analytic.
Thus the numerator of the right hand side of the expressions
for A;(z), B;(z) vanishes at the zeros of the denominator of
the right hand side. Thus, substituting the zeros of the denom-
inator in the numerator and equating it to O in the expressions
for A;(z), B;(#) we get the following set of five independent
equations:
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with W, , as defined in Proposition 1. We also have

SN o(Pio + P;1) = 1 which is same as

Ao(1) + Bo(1) + A1 (1) + Bi(1) = 1 (17

Since, Ag(z) and By (z) have the form of 0/0 at z = 1 we shall
take, A()(l) = limzi,]_ Ao(Z) and B]_(l) = limzﬂl B]_ (Z)
Thus, we have the following equation from (17)
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Thus, the six unknowns Py, Po1, Pk,0, Px+1,0,Px,1 and
Py can be obtained by solving the six equations, (12), (13),
(14), (15), (16) and (18) in six unknowns.

APPENDIX B
We have,
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Grouping the terms with the same constants of the type P; ; we
express the expression for Qq(z) in the following format,
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Applying partial fraction approach to the last equation and after
some rearrangements (see [2] for details) we get,

Qo(z2) =

Pk [

(19)

1 (ZK+2 -1 B ZK+2 _p—(K+2)> 3

(1-p=H)\ z-1 z—p!



1 L2 K2 K42 gk

(Wl—WQ) Z—Wl Z—WQ
PK+1 0 LK+ _ W1K+1 LK+ _ W2K+1
’I“p(Wl - WQ) z — W1 - z — W2
T(W1 _ Wz) ZK+1 -1 ZK+1 _ p—(K-l—l)
o (1-pY ( z=1  z—p! )]
N PN,O ZN+2 _ W1N+2 3 zN+2 _ W2N+2
(Wl—Wz) Z—Wl Z—W2
Pk 1q 2K+2

(I+ap) \(1=p™)(A =1 +gp) )(z=1)
(zK+2 _p—(K+2))
Q—p )t =1+gp) Nz—p?)
ZK+2 _ (1 + qp)_(K+2)
(1=(1+gp) Nt =(1+ap) " )z-1+gp)")

B Poiq <22 —-p?
(1+ap)(pt=(L+gp) ) \z—p"
2= (l+gp)~"

= (l+ap)

We can now find the inverse transform of Q,(z) and obtain the
steady-state probabilities P; o for 0 < 4 < K. This can be eas-

ily done as the last equality contains terms of the form %

m

Thus, we by the inverse z-transform of last equation, we get the
expression for P; o as in Corollary 1. The expression for P; 1
is obtained by finding the inverse z-transform of Q1 (z) along
similar lines. We are not providing here the details which can
be found in [2].
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