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Abstract— We consider a system of identical parallel queues
served by a single server and distinguished only by the price
charged at entry. A Poisson stream of customers joins the queue
by a greedy policy that minimizes a ‘disutility’ that combines price
and congestion. A special case of linear disutility is analyzed
for which it is shown that the individually optimal greedy queue
join policy is nearly socially optimal. For this queueing system, a
Markov decision theoretic framework is formulated for dynamic
pricing in the general case. This queueing system has application
in the pricing of Internet services.

I. INTRODUCTION

Traditional pricing models for Internet services have been
fairly simple such as flat rate or connect time charges for the
retail user and a flat rate depending on the interconnection band-
width for the bulk user. These pricing models do not account
for the traffic volume or the distances traveled by these traf-
fic as is done, for example, in the telephone network or pro-
vide differential grades of service in terms of the bandwidth,
delay or packet drops. It is now well recognized that the tra-
ditional pricing structures of the Internet are not economically
sustainable because the volume and variety of traffic on the In-
ternet is growing at an explosive rate and the issue of pricing
is becoming increasingly important. This is not only because
of the economic imperatives, but also because pricing promises
to provide a relatively simple mechanism for traffic control in
a system that is far too complex to be amenable to the analytic
tools of traditional control theory. Thus, not surprisingly, there
is a rapidly increasing body of literature on pricing of the Inter-
net. However, it is also true that the Internet traffic process is
less amenable to sophisticated pricing models. For example, of
the four categories of charges – access, usage, congestion and
quality (see [16]) it would be computationally expensive to de-
velop pricing structures for all but the access charges. Albeit,
there has been some effort at developing mechanisms for usage
based billing. Currence et al discuss the pros and cons of usage
based billing for IP networks and also review some commercial
usage based billing products [6]. There is also a large body of
literature on congestion charges. For example, Kelly considers
a congestion price model where different users get a share of the
rate depending on the prices that they are willing to pay [10].
The share also depends on the maximization of a utility func-
tion. In this paper we consider a model for pricing of quality.

Specifically, we consider pricing in a multiclass service system
like the diffserv model of the IETF [3], and our pricing scheme
is compatible with it.

In the differential service model, the basic idea is to divide
the available bandwidth among the multiple classes of traffic in
a static or dynamic manner. Each node in the network main-
tains a separate logical queue for each class for each outgoing
link and services them according to the rules of the bandwidth
sharing policy. The simplest way to provide multiclass service
is through the traditional priority queue model. A lower class
queue is not served until the queues of the higher classes are
empty. We could have preemptive and non preemptive service.
This has the obvious disadvantage that the lower priority queues
can be starved for extended periods of time. An alternative to
the priority model is proposed by Odlyzko [13] which is more
friendly to the lower priority customers and is called the Paris
Metro Pricing scheme (PMP). In the PMP scheme the network
is logically partitioned in a static manner with each partition
being allocated a fixed share of the network resources and the
access price for each class is differentially priced. The specific
case of equal division of resources among the multiple classes
is similar to that used by the Paris Metro till recently when the
first class was abolished. A similar model is proposed in [2] and
is called the Olympic pricing scheme. An excellent overview
and bibliography on Internet pricing issues and models can be
found in [9].

Our aim here is to propose a very simple scheme that is ap-
pealing in its simplicity of implementation and provide some
theoretical justification for it. We cannot, however, claim any
originality for the scheme, as it is fashioned after a queue man-
agement scheme already in practice at Tirupati, one of the ma-
jor pilgrimage centers in India. Suffice to say that it has been
operating there with an efficiency that leaves even a casual visi-
tor greatly impressed. With this background in mind, we dub it
the ‘Tirupati scheme’. In the following we discuss the scheme
with reference to a queueing system but is easy to see that our
discussions includes the case of a feedforward (i.e., loop-free)
network.

The contribution of this paper is to first analyze the social
optimality of the proposed Tirupati pricing model. We will see
that the user behaviour in the Tirupati pricing model is similar
to that in a system of identical parallel queues for which it is



well known that the “join shortest queue” join policy is both
individually and socially optimal. We will show that the dif-
ference between the social cost of the optimally priced system
and that of the Tirupati system is K̄ε for constants K̄ and ε that
will be defined later. Another, possibly more practical, con-
tribution of this paper is the dynamic pricing using a dynamic
programming equation and a reinforcement learning based on-
line pricing algorithm.

The paper is organized as follows. In the next section we de-
scribe the general Tirupati queue pricing model and specialize
it to an analytically amenable ‘linear’ model for a single class
of customers. In Section III we analyze this simplified model.
Some extensions are also pointed out. Section IV introduces
the dynamic pricing problem in the general framework. Sec-
tion V introduces learning algorithm for dynamic pricing and
Section VI provides some simulation results on its performance.
We conclude in Section VII.

II. THE TIRUPATI PRICING MODEL

The simplest formulation of the Tirupati scheme is as fol-
lows: We have a single server serving K > 1 queues with a
total service rate µ̄. The service rate is equally shared among
the non empty queues. The K queues have different join prices
p1 ≤ p2 ≤ · · · ≤ pK . The arrivals form a Poisson process
according to a rate λ. The customers belong to M ≥ 1 distinct
types, with the type of an arriving customer being independent
of other customers. On arrival, a customer is informed of the
queue length and prices of the different queues and joins the
queue that offers the least disutility (to be defined later), any
tie being resolved by randomization. The queues are served in
a round robin fashion (non preemptive), with FCFS discipline
within each queue.

The Tirupati scheme is similar in spirit to the multiclass pric-
ing schemes like the Paris Metro scheme [13] or the Olympic
pricing scheme [2] except for the following differences. Firstly,
it is easy to see that the Tirupati scheme as defined above is
work conserving. This is different from the Paris Metro Pric-
ing model where the capacity of the server is partitioned among
the classes. Also, in the Tirupati scheme the congestion level
in terms of the queue length of each of the queues is posted
to enable the customers to calculate their disutility. Also, the
above two schemes do not explicitly involve a model of cus-
tomer behaviour based upon a “disutility” calculated from the
posted prices and congestion levels. Further, note that it retains
the spirit of the Internet in being simple to implement with a flat
pricing model similar to the PMP.

The extension of this queueing system to the Internet is fairly
straightforward and we will continue our discussion on the
queueing system. Our analysis is based on Markov decision
theory. See [5] for an earlier work in this spirit.

A. Model for Analysis

For the purpose of analysis we make a simplification of the
general Tirupati model by replacing the single queue by K par-
allel queues each with an effective service rate of µ = µ̄/K.
What this ignores is the fact that when one or more queue is

empty, the extra service made available would get evenly dis-
tributed over the remaining queues in round robin, not so in the
simplified picture above. We opt for the simplification because
it simplifies the analysis and also because in the heavy traffic
situations one is interested in, empty queues would be suffi-
ciently rare so as to cause small error. We make this precise
later. (See comments at the end of Section III.)

Consider a customer of type m arriving at time t. Let Qi(t)
be the number of customers in queue i, 1 ≤ i ≤ K and
let Q(t) = [Q1(t), Q2(t), . . . , QK(t)]T be the overall queue
length vector. Q(t−) will denote the queue vector ‘just before
t’. The disutility of the i-th queue for the above customer is
given by Ψi(Qi(t), pi,m), where the map Ψ is increasing in
the first two arguments. We also admit

• Balking: Constants αim > 0 can be prescribed such that a
type m customer balks from joining queue i if its disutility
for that queue is strictly greater than αim. If this is true for
all i, the customer leaves without joining any queue, or
simply ‘balks’.

• Finite buffers: Queue i can have finite buffers to allow at
most Bi customers at any time.

Thus the above customer joins the i-th queue if i
minimizes Ψj(Qj(t

−), pj ,m) among all j for which
Ψj(Qj(t

−), pj ,m) ≤ αjm and Qj(t
−) < Bj . We call

this the ‘Join the Minimum Cost Queue’ policy, JMCQ for
short. This policy is clearly optimal for this customer alone,
regardless of what the customers before or after do. That is, it
is individually optimal. Note also that the balking mechanism
can either be customer induced (i.e., reflecting price/congestion
sensitivity of the customer) or system induced (i.e., reflecting
implicit prioritization by the system).

We now specialize to the case when m = 1, i.e., a single type,
and the disutility is linear: Ψi(q, pi, 1) = qi+pi. For notational
simplicity, we denote it as Ψi(q). We further assume that the
pis are integers. The customer does not join queue i whenever
the disutility strictly exceeds βi = min(Bi + pi − 1, αi1). In
the latter case, we shall say that queue i is ‘blocked’. This case
is amenable to analysis, which is provided in the next section.
The aim is to evaluate the performance of JMCQ in compari-
son with other queue join policies. For this purpose, the most
general class of policies we consider will be the nonanticipa-
tive policies, represented by a process {Zn} taking values in
{0, 1, 2, . . . ,K}, with the interpretation: Zn is the index of the
queue joined by the n-th arrival. Zn is set equal to 0 if the n−th
customer balks. We shall call the queue join policy Markov if
Zn = v(Q(τn)) for a suitable map v(·), where τn is the arrival
instant of the n−th customer. Note that the JMCQ that we dis-
cuss above and the ‘Join the Shortest Queue’ (JSQ for short)
are nonanticipative Markov policies. The JSQ policy without
queue join prices has been analyzed in literature. See, for ex-
ample [7] and [12].

Remark 1: Even for a single class of customers, offering dif-
ferentiated services may make sense because it gives the ‘sys-
tem manager’ flexibility in optimizing revenue without signif-
icant loss of customers. We can argue that a simple monotone
increase of waiting times in a single queue will lead to increased
balking.

For any queue join process Zn, we introduce the social cost,



J({Zn}) defined as follows

J({Zn}) = lim sup
n→∞

1

n

n
∑

m=1

E[ΨZn
(Q(τm))].

From the above definition, the social cost is essentially the
average disutility of the customers in the limit. In case of
a Markov policy Zn = v(Q(τn)), n ≥ 1, Q(·) is a time-
homogeneous Markov chain with a unique stationary distribu-
tion and by PASTA (Poisson Arrivals See Time Averages), the
above will equal E[Ψv(Q(τn))(Q(τn))] where the expectation
is with respect to the stationary distribution. For JMCQ, this
reduces to

E[min
i

Ψi(Q(τn))] = E[min
i

(Qi(τn) + pi)].

Letting {tn} denote the successive event times (i.e., arrival
or potential departure times - a potential departure is a true de-
parture if and only if the queue in question is nonempty), we
can consider the problem of controlling the Markov decision
process {Q(tn)} so as to minimize the social cost. Standard
Markov decision theoretic results [14] then tell us that it suf-
fices to consider Markov policies. Our main result, proved in
the next section, will be that under heavy traffic assumption,
JMCQ is nearly optimal.

III. ANALYSIS OF THE LINEAR CASE

The analysis will be based upon a comparison with another
process which we call the pseudo-queue. This process, denoted
by Q̃(·) = [Q̃1(·), · · · , Q̃K(·)], has the same dynamics as the
original queue, but Q̃i(t) is allowed to take values {j : j ≥
−pi}. That is, we allow departures out of an empty queue so
that the queue length can go negative, as long as it does not
drop below the negative price. Let Q̂(·) = [Q̂1(·), · · · , Q̂K(·)]

be defined by Q̂i(t) = Q̃i(t) + pi, 1 ≤ i ≤ K. Then Q̂(·) is a
legal (i.e., nonnegative) queue length process and JMCQ policy
for Q̃(·) corresponds to the JSQ policy for Q̂(·).

Let S = ΠK
i=1{0, 1, · · · , Bi}, S̃ = ΠK

i=1{−pi,−pi +

1, · · · , Bi} and Ŝ = ΠK
i=1{0, 1, · · · , Bi + pi} denote the re-

spective state spaces for Q(·), Q̃(·) and Q̂(·).
Define

J̃({Zn}) = lim sup
n→∞

1

t

∫ t

0

E

[

K
∑

i=1

(Q̃i(s) + pi)

]

ds

and

Ĵ({Zn}) = lim sup
n→∞

1

t

∫ t

0

E

[

K
∑

i=1

Q̂i(s)

]

ds.

Lemma 1: 1) JMCQ minimizes J̃({Zn})
2) JSQ minimizes Ĵ({Zn})
Given the relationship between the pseudo-queue Q̃(·) and

the queue Q̂(·), the two claims are clearly equivalent and it
suffices to prove either. We prove part 2 in the Appendix by
adapting the ‘forward induction’ argument of [15], section 8.3.

Corollary 1: For the pseudo-queue, JMCQ minimizes the
social cost.

Proof: By standard Markov decision theory, it suffices to
consider the minimization over Markov policies. By the rela-
tionship between Q̃(·) and Q̂(·), it suffices to show that JSQ
minimizes E[Q̂Zn

(τn)] over all Markov policies, where the ex-
pectation is w.r.t. the corresponding stationary distribution. Re-
call that Zn is the index of the queue which the n-th customer
joins. By Little’s theorem, under a Markov policy,the following
relation holds between the corresponding stationary expecta-
tions:

E

[

K
∑

i=1

Q̂i(τn)

]

= λ

(

K

µ
E

[

Q̂Zn
(τn) + 1

]

)

,

where the term in the parentheses is the mean waiting time.
The claim now follows from Lemma 1. �

To compare the social costs of the real queue and the pseudo-
queue, we shall first compare their stationary distributions un-
der a common Markov policy and heavy traffic conditions. The
latter refers to :
Heavy Traffic Assumption: There exists a ‘small’ ε > 0 such
that under any Markov policy, the stationary probability of the
event {Qi(t) = 0 for some i} is less than ε.

This requires that λ should not be much smaller that µ.
Lemma 2: Under the heavy traffic conditions, there exists a

constant K̄ > 0 such that under any Markov policy, the social
costs for the real queue and the pseudo-queue do not differ by
more than K̄ε.

Proof: Fix a Markov policy. Furthermore, using the fact that
S ⊂ S̃, view Q(·) as an S̃−valued chain, with transition prob-
abilities out of states in S̃ − S being the same as those for the
pseudo-queue. Note that these additional states will be transient
for Q(·) and thus have zero probability under the stationary dis-
tribution. Let P, P̂ denote the transition probability matrices
for Q(·), Q̃(·) respectively and π, π̂ the respective stationary
distributions, written as column vectors. Letting e denote the
|S̃|−dimensional vector of all ones, we then have

(I − P T + eeT )π = e,

(I − P̂T + eeT )π̂ = e.

Thus

π − π̂ = (I − P̂T + eeT )−1(PT − P̂T )π,

from which it follows that ||π− π̂|| < K̄ε for a suitable K̄ > 0.
We use the fact that P and P̂ differ only on rows correspond-
ing to states that have at least one queue empty and P − P̂ is
non zero only in those rows and zero in other rows. The claim
follows. �

Corollary 2: The minimum of the social cost for Q(·) and
Q̃(·) respectively differ by at most K̄ε for K̄ and ε as above.

Proof: Immediate from above. �

Theorem 1: The social cost of JMCQ for Q(·) is within 2K̄ε
of the optimum for K̄, ε as above.

Proof: This follows on combining Corollary 1 with
Lemma 2 and Corollary 2 �

This result states that JMCQ is nearly optimal under heavy
traffic conditions for our simplified version of the Tirupati pric-
ing model.



We conclude this section by pointing out some immediate
extensions.

1) The approximation already made in the beginning of the
article, viz., passing from round robin between nonempty
queues a la Tirupati to K parallel queues, also introduces
an error that is O(ε). This can be shown along lines sim-
ilar to the above. Thus the above in fact extends to the
case when the available service is split among nonempty
queues in a round robin fashion.

2) The arguments above and in the Appendix extend to the
‘processor sharing model’, more relevant for virtual cir-
cuit switched networks where the queues of the above
model may correspond to virtual paths (VPs) and the cus-
tomers correspond to virtual circuits (VCs). The link
bandwidth is divided among the VPs and the bandwidth
available to each VC will be the bandwidth available to
the VP evenly divided among all the VCs in the VP. This
is because the analysis depends only on the arrival and
departure processes, which remain the same. Also, the
rationale for the above choice of disutility remains the
same.

Remark 2: It would be interesting to extend Theorem 1 to
the multiclass case. One particular case of multiclass is when
the threshold αi,m = αm ∀i for class m. The social optimality
of JMCQ extends to this case of multiclass customers and can
be proved along the lines of proof for Theorem 1.

IV. DYNAMIC PRICING

Dynamic pricing refers to the case when the ‘system man-
ager’ adjusts the price vector with time to maximize revenue.
It is reasonable to assume that customers follow the individu-
ally optimal JMCQ policy, which fixes their behaviour given
the pricing policy. Thus from the point of view of the system
manager, it is a Markov decision process, described in detail
below. We shall consider the general set-up introduced in the
beginning of the paper, not just the single type, linear case.

Standard Markov decision theoretic arguments show that
we may consider the embedded discrete time Markov chain
{Q(tn)} controlled by the process of dynamically adjusted
prices {pn = [pn

1 , · · · , pn
K ]}, where for each n, pn

i ∈ Pi and
is the price for joining queue i at the nth event time. At each
event time tn, there is a potential departure from the i−th queue
with probability µ

(λ+µ)K , which is a real departure if the queue

is nonempty. With probability rmλ
λ+µ

there is an arrival of type
m, who joins the queue j that minimizes Ψj(Qj(t

−

n ), pn
j ,m)

among those queues which are not blocked for his type, if any,
and balks otherwise. For simplicity, we shall assume that Pm

i is
compact. The systems manager’s aim then is to maximize the
expectation of the revenue

lim sup
N→∞

1

N

N
∑

n=1

E
[

c(Zn,Q(t−n ),Q(tn))
]

,

where c(Zn,Q(t−n ),Q(tn)) is the price paid by an arrival at
n-th event time if this is an arrival instant and zero otherwise.
Zn is a K valued “control” process (the price vector at the n-th
event time).

Observe that {Q(t−n )} is an irreducible Markov chain un-
der every stationary policy. This is a standard ‘average cost’
Markov decision problem [14] with the associated dynamic
programming equations given below. Let ek for 1 ≤ k ≤ K
denote the K−dimensional unit vector in the k-th coordinate
direction. The dynamic programming equations are a

V (q) + γ = max
p∈U

λ

λ + µ

M
∑

m=1

rm

K
∑

k=1

1

|ArgminjΨj(qj , pj ,m)|
(pk + V (q + ek)) ×

×I{Ψk(qk, pk,m) ≤ min(Ψj(qj , pj ,m),

j 6= k,Bk + pk − 1, αkm)})] +

µ

(λ + µ)K

K
∑

k=1

V (q − ekI{qk > 0}),

where γ is the optimal revenue. It is known that these equations
specify γ uniquely and V : S → R uniquely up to an additive
constant. Also, if p = p̂(q) minimizes the r.h.s., then Zn =
p̂(Q(tn)) is the optimal pricing policy.

Thus the optimal policy is known if one can compute V (·).
This can be done by standard methods such as value iteration,
policy iteration or linear programming described in [14]. In
case the transition probabilities are not known, one can employ
simulation-based approximate methods based on reinforcement
learning, see, e.g., [1], [11]. This is an important situation, be-
cause transition probabilities depend not only on the arrival pro-
cess and the service rates, but also on the disutility functions
which may not be known even approximately. In the next sec-
tion we present an on-line algorithm for solving the dynamic
programming equation (1). The algorithm belongs to the class
of actor-critic algorithms proposed in [8]. It may be noted that
although we propose this as an online adaptive algorithm, it can
also be used for offline learning based on simulation using ac-
cumulated statistics.

V. AN ACTOR-CRITIC TYPE ALGORITHM

The state space Q of our MDP is finite. We have a finite ac-
tion space P, which is the possible set of values for the price
vectors. Let ρxy(p) denote the probability that the next state is
y, given that the current state is x and the current action (the
value of price vectors) is p ∈ P. A randomized stationary pol-
icy (RSP) is a mapping µ that assigns to each state x a prob-
ability distribution over the action space P. We consider a set
of randomized stationary policies {µθ; θ ∈ Rn}, parametrized
in terms of a vector θ. For each pair (x, u) ∈ X × P, µθ(x, p)
denotes the probability of taking action p when the state x is
encountered, under the policy corresponding to θ. Under the
assumptions (see ASSUMPTION 2.1 in [8]) for each θ ∈ Rn

consider the average cost function γ : Rn → R, given by

γ(θ) = E
[

c(Pn, Q−

n , Qn)
]

,

where the expectation is w.r.t. the stationary probability of the
Markov chain {Qn, Pn} of the state-action pairs.



The aim is to find a RSP that maximizes γ(θ) over all θ. To
this end we employ the actor-critic algorithm proposed in [8].
To deal with “state-space explosion” we employ an exponential
approximation for the RSP µθ

µθ(x, p) ≈
e
∑n

j=1
θifi(x,p)

∑

p e
∑

n
j=1

θifi(x,p)
, (1)

where f i(x, p) are the actor’s features.
When the actor parameter vector is θ, the job of the critic

is to compute an approximation to ∇γ(θ) which is then used
by the actor to update its policy in an approximate gradient
direction. As established in [17] this requires the computa-
tion by the critic of the projection of a certain quantity (de-
noted as qθ in [8]) on the subspace spanned by the Rn val-
ued function θ → Ψθ(x, p) = ∇ ln µθ(x, p) defined for each
(x, p) ∈ X × P.

We again employ a linearly parameterized approximation ar-
chitecture for this projection (calling it Qr

θ(x, p))

Qr
θ(x, p) =

m
∑

j=1

rjφj
θ(x, p) (2)

where r = (r1, . . . , rm) ∈ Rm denotes the parameter vector of
the critic and φj

θ, j = 1, . . . ,m are the critic feature vectors.
Without going into further technicalities of the algorithm

we next present the updation steps of actor and critic (which
takes place in a single sample path simulation of the controlled
Markov chain). Let γ̂ be the scalar estimate of the average rev-
enue and an m-vector Ẑ be Sutton’s eligibility trace [8]. At the
kth iterate, let rk, Ẑk, γ̂k be the parameters of the critic, and let
θk be the parameter vector of the actor. Let X̂k+1 be the new
state, obtained after action P̂k is applied. A new action P̂k+1 is
generated according to the RSP corresponding to θk. Then:

• Critic update:

γ̂k+1 = γ̂k + bk(c(P̂k+1, X̂
−

k+1, X̂k+1) − λk),

rk+1 = rk + bkdkẐk,

where

dk = c(P̂k, X̂−

k , X̂k) − γ̂k +

+rk
′φθk

(X̂k+1, P̂k+1) − rk
′φθk

(X̂k, P̂k)

and

Ẑk+1 =

{

Ẑk + φθk
(X̂k+1, P̂k+1), if X̂k+1 6= x∗

φθk
(X̂k+1, P̂k+1), otherwise

where x∗ is any fixed state and ak is a positive step-size
parameter.

• Actor update:

θk+1 = θk − akΓ(rk)rk
′φθk

(X̂k+1, P̂k+1)

Ψθk
(X̂k+1, P̂k+1),

where Γ(.) is a scalar that controls the step-size ak of the
actor.

• The step sizes bk and ak are deterministic, non-increasing
and satisfy

∑

k

bk =
∑

k

ak = ∞,

∑

k

b2
k < ∞,

∑

k

a2
k < ∞ and

∑

k

(

ak

bk

)d

< ∞

for some d > 0.
• The function Γ(·) is assumed to satisfy the following in-

equalities for some positive constants C1 and C2:

C1

1+ | r |
≤ Γ(r) ≤

C2

1+ | r |
.

VI. SIMULATION RESULTS

We show some preliminary simulation results for a simple
two queue system with a single class of customers and linear
disutility. More extensive simulations are being planned, in-
cluding the multiclass, nonlinear disutility case.

The arrival process is assumed to be Poisson with rate λ = 5
and the two servers each have exponential service time with rate
µ
2 for µ = 4. Let αi = 8, Bi = 5 and Pi = {1, 2, 3, 4, 5} for
i = 1, 2. (Thus the queues are symmetric.) Take x∗ = (1, 1),
initial queue lengths Q(t0) = (3, 3) and initial price vec-
tor p0 = (2, 4). The actor features are f i = xi + pi and
f i+2 = I(xi + pi < αi and xi < Bi) for i = 1, 2. The
critic features are

φj
θ(x, p̄) =

∂lnµθ(x, p̄)

∂θj

= f j(x, p̄) −

∑

p̄ f j(x, p̄)e
∑n

i=1
θifi(x,p̄)

∑

p̄ e
∑

n
i=1

fi(x,p̄)θi ,

for 1 ≤ j ≤ 4. We take

ak =
1

k
, bk =

1

k0.85
, Γ(rk) =

100

1 + |rk|

The critic and actor weights ri
k, θi

k respectively and the esti-
mated average revenue γk is plotted in Figs. 1-3. In Fig. 4, the
latter is plotted for four different values of balking thresholds,
(α1, α2) = (3, 4), (5, 5), (6, 7), (8, 8), respectively. It may be
noted that the convergence is slow, which is typical of rein-
forcement learning algorithms, and is in tune with the well
known dictum of adaptive control that there is a trade-off be-
tween learning speed and prior knowledge (‘no free lunch’).

VII. CONCLUSION

The round robin service of K parallel queues by a single
server with differential join prices to each queue, that we call
the Tirupati pricing scheme, is directly applicable to the provi-
sion of differential quality by an Internet service provider. We
have shown that for a single class of customers with a linear
disutility function this system is nearly socially optimal. It can
be argued that the linear disutility is a reasonable assumption
under a general model of congestion posting. If we consider
either virtual circuit connections or long lived flows in the In-
ternet the congestion information should be the number of ac-
tive flows and in this case the bandwidth that will be seen by
an arriving connection reduces in direct proportion to the num-
ber of active connections (or flows) in the system. Likewise, if
the flows are short lived then the throughput performance, and
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hence the response time, is directly affected by loss probability
and, under a reasonable buffer management policy, this is deter-
mined by the number of packets in the queue. The congestion
information for this case should be the number of packets in the
queue.

The dynamic pricing algorithms that we have presented are
fairly general and can consider multiclass customers and gen-
eral disutility functions. An immediate future work involves a
more detailed study of the performance of the algorithms in a
multiclass customers environment with different disutility func-
tions and different balking thresholds.

APPENDIX

We prove here Lemma 1 2. Thus a customer arriving at time t
finds the i-th queue blocked if Qi(t

−) > βi = min(Bi+pi, αi)
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and joins the minimum length unblocked queue if any, balks
otherwise. We shall show that in this case, JSQ minimizes the
average total queue length

lim sup
t→∞

1

t

∫ t

0

E[

K
∑

i=1

Qi(s)]ds.

The proof will closely mimic the ‘forward induction’ argument
of Section 8.3, [15], with two important differences. The first is
that we allow for balking. Secondly, we fill in some subtle de-
tails that seem to have been glossed over in [15]. The analysis
uses the following partial ordering of K−dimensional nonneg-
ative random variables : Given x = [x1, · · · , xK ], xi ≥ 0, de-
fine Hi(x) =

∑i
j=1 xkj

for 1 ≤ i ≤ K, where [xk1
, · · · , xkK

]



is a permutation of [x1, · · · , xK ] arranged in a nonincreasing or-
der. Given K−dimensional nonnegative random variables X,
Y, we say that XbY if there exist random variables X̄, Ȳ on a
common probability space such that X, X̄ (respectively, Y, Ȳ)
agree in law and

P (Hi(Ȳ) ≥ Hi(X̄), 1 ≤ i ≤ K) = 1.

The following is then proved as in [15], pp. 262.
Lemma 3: XbY implies E[

∑i
j=1 Yi] ≥ E[

∑i
j=1 Xi], 1 ≤

i ≤ K.
Consider now two realizations of the Q(·) process, denoted

by X(·), Y(·) respectively, on a common probability space
such that the arrival and departure instants as well as the ini-
tial condition are identical for both, X(·) obeys JSQ, and Y(·)
is governed by some other policy. In particular, X(0)bY(0).
Furthermore, it is assumed that when there is a potential depar-
ture from the i-th largest queue in the former, it is also so in
the latter. As pointed out in [15], this affects the joint distribu-
tion of the two processes, but not their individual law. We shall
show that X(t)bY(t) for all t, which in turn implies the claim
in view of Lemma 3. To prove this, we assume that X(t)bY(t)
for some tn−1 ≤ t < tn, n ≥ 1, and prove that X(tn)bY(tn).
We need to consider several different cases.
Case 1: Departures from both systems

Suppose there is a departure from the k-th ranked queue in
both X(·) and Y(·) and that it makes the queue move down in
rank by m1 ≥ 0 places in the former and m2 ≥ 0 places in the
latter. This implies that the queues ranked k, k +1, · · · , k +m1

have equal lengths in X(·) and likewise those ranked k, k +
1, · · · , k+m2 have equal lengths in Y(·). It suffices to consider
m1 6= m2 as clearly X(tn)bY(tn) when the two are equal.

• m1 < m2: For i < k + m1,

Hi(Y(tn)) = Hi(Y(t)) ≥ Hi(X(t)) = Hi(X(tn)).

For i ≥ k + m2,

Hi(Y(tn)) = Hi(Y(t))−1 ≥ Hi(X(t))−1 = Hi(X(tn)).

For k + m1 ≤ i < k + m2,

Hi(Y(tn)) = Hi(Y(t)) > Hi(X(t)) − 1 = Hi(X(tn)).

Thus X(tn)bY(tn).
• m1 > m2: As above, Hi(Y(tn)) ≥ Hi(X(tn)) for

i < k +m2 and i ≥ k +m1. Suppose for some k +m2 ≤
i < k+m1, Hi(Y(tn)) = Hi(Y(t))−1 < Hi(X(tn)) =
Hi(X(t)). Since Hi(Y(t)) ≥ Hi(X(t)), we must have
Hi(Y(t)) = Hi(X(t)). Also, since Hi+1(Y(t)) ≥
Hi+1(X(t)), we have Ỹi+1(t) ≥ X̃i+1(t) where we use
Ỹj(s) (resp., X̃j(s)) to denote the j−th ranked queue in
Y(s) (resp., X(s)) for s ≥ 0. Thus

Ỹi(t) ≥ Ỹi+1(t) ≥ X̃i+1(t) = X̃i(t).

If Ỹi(t) > X̃i(t), then for Hi(Y(t)) = Hi(X(t)) to hold,
we must have Hi−1(Y(t)) < Hi(X(t)), a contradiction.
Thus Ỹi(t) = X̃i(t) and Hi−1(Y(t)) = Hi−1(X(t)).
Repeating this argument, one can show that Ỹj(t) =

X̃j(t), Hj(Y(t)) = Hj(X(t)) for k + m2 ≤ j ≤ i.
But

Hk+m2+1(Y(t)) < Hk+m2
(Y(t))

= Hk+m2
(X(t))

= Hk+m2+1(X(t)).

The inequality above follows because the k−th ranked
queue in Y(t) moved to (k + m2)−th place at tn, the first
equality is proved above and the second equality follows
from the fact that m1 > m2. Thus Hk+m2+1(Y(t)) <
Hk+m2+1(X(t)), a contradiction. Thus Hi(Y(tn)) ≥
Hi(X(tn)) for all i.

Case 2: Departure from only one system
In the case where at time tn there is a departure from the k-th

ranked queue of X(·) but none from the k−th ranked queue of
Y(·) (because Ỹk(t) = 0), it is easy to see that X(tn))bY(tn)).
Thus consider the case when X̃k(t) = 0 and there is a de-
parture from the k−th ranked queue in Y(t) which moves
down to rank k + m, m ≥ 0. This will be the case when
Ỹi(t) = Ỹk(t) for k ≤ i ≤ k + m. Thus Hi(Y(tn)) ≥
Hi(X(tn)) for i < k + m. Suppose for some i ≥ k + m,
Hi(Y(tn)) = Hi(Y(t))−1 < Hi(X(t)) = Hi(X(tn)). Since
Hi(Y(t)) ≥ Hi(X(t)), we must have Hi(Y(t)) = Hi(X(t)).
But Hi−1(Y(t)) ≥ Hi−1(X(t)), thus Ỹi(t) ≤ X̃i(t) = 0,
leading to Ỹ (tn)) = −1, a contradiction. Thus X(tn)bY(tn)
must hold.
Case 3: Arrival without blocking

If no queue is blocked for an arrival at tn in either X(·) or
Y(·), it will join the K−th ranked queue in the former and
k−th ranked queue in the latter for some k ≤ K. It is then easy
to see as in [15], p. 263, that X(tn)bY(tn).
Case 4: Arrival with blocking

If X(t)bY(t) and an arrival at tn balks from X(·), it is easy
to see that X(tn)bY(tn) no matter what. Thus we only need
consider the case when some but not all queues in X(·) are
blocked for the arriving customer. Also, suppose that in either
of the processes the arriving customer joins j−th ranked queue,
which then moves up to k−th rank for some k ≤ j. Then
it must be that k−th, · · ·, j−th queues had equal lengths and
(k − 1)−st queue had a strictly higher length. Thus without
loss of generality, we may assume that when the arrival joins
one of a set of queues with identical lengths, it is always the
one that has been ranked the highest and therefore the ranking
does not change.

Now suppose the arriving customer joins j−th queue in X(·)
and k−th queue in Y(·) for some k ≤ j. Then Hi(X(tn)) =
Hi(X(t)) for i < j and = Hi(X(t)) + 1 for i ≥ j, similarly
for Hi(Y(tn)) with k replacing j. Since k ≤ j, it follows that
Hi(X(tn))bHi(Y(tn)).

Next suppose that k > j. Suppose that for some i, j ≤ i < k,
we have

Hi(X(tn)) = Hi(X(t)) + 1 > Hi(Y(tn)) = Hi(Y(t)).

Since Hi(X(t)) ≤ Hi(Y(t)), we must have Hi(X(t)) =
Hi(Y(t)). Now there are two possibilities: Either
(i) X̃i+1(t) = X̃j(t) or (ii) X̃i+1(t) < X̃j(t). Consider



the former case. Argue as in Case 1 above with m1 > m2

to conclude that X̃`(t) = Ỹ`(t), H`(X(t)) = H`(Y(t)) for all
j ≤ ` ≤ i.

Since Hi+1(X(t)) ≤ Hi+1(Y(t)), we must have X̃i+1(t) ≤
Ỹi+1(t) ≤ Ỹi(t) = X̃i(t). Thus if X̃i(t) = X̃i+1(t) =
X̃j(t), then Ỹi(t) = Ỹi+1(t) = X̃i(t) and Hi+1(X(tn)) >

Hi+1(Y(tn)). Repeating this, if X̃r(t) = X̃j(t) for i ≤

r ≤ `, X̃r(t) = Ỹr(t) and therefore Hr(X(t)) = Hr(Y(t)),
Hr(X(tn)) > Hr(Y(tn)) for i ≤ r ≤ `. Hence we may
replace i by ` if necessary and suppose that X̃i+1(t) < X̃i(t),
which is the case (ii) above. In this case it must be that X̃r(t) =
βjr

for i < r ≤ K, where jr is such that X̃r(t) = Xjr
(t). Then

we must have Ỹs(t) ≥ βjs
for s ≥ r > i. Then queues ranked

(i + 1) onwards for X(t) would also have ranks (i + 1) on for
Y(t), in the same order as for X(t), i.e., in the order of decreas-
ing βjr

’s. It then follows that these will be blocked for Y(t) as
well. This contradicts the fact that k > j. Thus X(tn)bY(tn)
must hold.

The case when the customer joins the j−th queue in X(·)
and balks in Y(·) is easy. Since the customer balks in Y(·),
Ỹi(t) = Yki

(t) = βki
, where {k1, · · · , kK} is a permutation

of {1, · · · ,K} such that βk1
≥ βk2

≥ · · · ≥ βkK
. Suppose

for some i ≥ j, Hi(X(tn)) > Hi(Y(tn)). Then as above,
Hi(X(t)) = Hi(Y(t)) =

∑i
s=1 βks

, which is possible only if
X̃s(t) = βks

for 1 ≤ s ≤ i. Thus all queues up to i−th, in
particular the j−th queue, are blocked for X(·) at time t−n , a
contradiction.

REFERENCES

[1] J. Abounady, D. Bertsekas and V. S. Borkar, “Learning Algorithms for
Markov Decision Processes with Average Cost,” SIAM J. Control and
Optim., to appear.

[2] F. Baumgartner, T. Braun and F. Habegger, “Differentiated Services: A
New Approach for Quality of Service in the Internet”, in H. van As (ed.):
High Performance Networking, Kluwer, 1998,ISBN: 0-412-84660-8, pp.
255-274.

[3] S. Blake, et al, “An Architecture for Differential Services,” IETF RFC
2475, Dec. 1998.

[4] D. P. Bertsekas, “Dynamic Programming and Optimal Control”, vol. 2,
Athena Scientific 1995

[5] I. C. Paschalidis, J. N. Tsitsiklis, “Congestion-Dependent Pricing of Net-
work Services”, IEEE/ACM Trans. Networking, vol. 8, no. 2, pp. 171-184,
Apr. 2000.

[6] M. Currence, A. Kurzon, D. Smud and L. Trias, “A Causal
Analysis of Usage-Based Billing on IP Networks”, URL: cite-
seer.nj.nec.com/currence00causal.html

[7] A. Ephremides, J. Walrand and P. Varaiya, “On the Optimality of Join
Shortest Queue Policy,” IEEE Transactions on Communications, 1987.

[8] V. R. Konda and J. N. Tsitsiklis, “Actor-Critic Algorithms”, submitted
to SIAM Journal on Control and Optimization, Feb 2001, available at
http://www.mit.edu/people/jnt/publ.html.

[9] M. Falkner, M. Devetsikiotis, I. Lambadaris, “An Overview of Pricing
Concepts for Broadband IP Networks, IEEE Communications Surveys,
Sept. 2000, pp. 2-13.

[10] F. Kelly, “Charging and Rate Control for Elastic Traffic,” European Trans-
actions on Telecommunication, vol 8, 1997, pp 33-37.

[11] V. R. Konda, V. S. Borkar, “Actor-Critic-Type Learning Algorithms for
Markov Decision Processes,” SIAM J. Control and Optim. 38(1), 1999,
pp. 94-123.

[12] R. D. Foley and D. R. McDonald, “Join Shortest Queue: Stability and Ex-
act Asymptotics”, submitted to Annals of Applied Probability, available
at http://www.isye.gatech.edu/ rfoley/pub.html.

[13] A. Odlyzko, “Paris Metro Pricing for the Internet”, in the Proc. of ACM
Conf. on Electronic Commerce, 1999, pp. 140-147.

[14] M. I. Puterman, Markov Decision Processes, John Wiley, New York,
1994.

[15] J. Walrand, Introduction to Queueing Networks, Prentice Hall, Engle-
wood Cliffs, NJ, 1988.

[16] J. Walrand and P. Varaiya, High Performance Communication Networks,
2 Ed, Morgan Kaufman, 1999.

[17] P. Marbach and J. N. Tsitsiklis, “Simulation-Based Optimization of
Markov Reward Processes”, IEEE Trans. Automatic Control 46(2), Feb.,
2001, pp. 191-209.


