COMPETITION FOR
POPULARITY IN SOCIAL
NETWORKS

Part 1: Theory
Game Theoretic Tools
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1.1

Networking Games Examples and Classification

The Association Probelem

o [o which WIFI shall we connect?

WIFI

WIFI
\

= WIFI
WIFI =

Figure 1: The Association Problem (1)
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The man-machine interface
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Figure 2: The association problem: the display
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WIFI

Figure 4 The Association Problem (3)




E. Altman, Networking games

/

1.2 Routing

eObjectives:
e Cooperative case: minimize global cost.

e non-cooperative case: minimize individual cost.
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/ Example: The highway around Amsterdam

European project DRIVE |II:
The vehicles have to decide the direction on the ring.

Objective: signalisation
AB

Ring North

Zeeburger

Ring Tunnel

A4

Ring South

_ =
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Games with finite number of actions

2 Introduction to non-cooperative games

2.1

eEmil and France are suspected of a crime.

olf both admit, they get 1 year in prison each.

olf both do not admit, they get 10 year in prison each.
olf one admits, he gets 15 years and the other is freed.

-
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stable solution is (10,10).

.

FRANCE

1

y)

1| (1,1)

(15,0)

11| (0,15)

(10,10)

Figure 5: Prisoner’s Dilemma

eThe solution (1,1) is unstable: each prisoner may try to improve by deviating. Only

/
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Optimality
Concepts

eNash Equilibrium: A "stable” solution: no player has an incentive to deviate

unilaterally.

ePareto Equilibrium: A cooperative "dominating solution”: there is no way to

improve the performance of one player without harming another one.

18
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Inefficiency of Nash equilibria

FRANCE
1 2

1]\;:/1 Il (1,1) | (15,0
L 11 (0,15) (10,10)

Pareto Equilibrium

Nash Equilibrium

eNash Equilibria may be very inefficient!

¢(10,10) is called an equilibrium in pure strategies

-
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2.3 Non-monotonicity of Nash equilibria

Assume we change the "0” to "5": a prisoner that does not admit is always punished
(we may have prior information that the crime was committed together).

FRANCE
1 2

1{;3/1 1| (L) | as,5)
L 11 (5,15 (10,10)

(1,1) is Nash equilibrium and unique Pareto solution!

N 7
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/2.4 Pure and Mixed Nash equilibria \
Player II
L. R
T 0 (0 1 §=4)
Pl. 1
B 1 (1) 0 (0

eMatrix U: the utility for player 1 is one if his action is different than that of player
j. Else it is zero. Player 2 wants to minimize that utility: zero-sum game.

eNo pure Nash equilibrium! Consider mixed actions: p = (pp,pp) and
g = (qr,qRr) are probabilities to choose actions by the players. The utility for player
LisU(p,q) = pUq".

op =q = (1/2,1/2) is an equilibrium. With mixed policies, every matrix game has

\an equilibrium /
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Definitions

Let a be a given action vector and let J(i;a) be the utility function
of player i

Define a(-i) the vector obtained from a by omitting a(i).

Define [ a(-i) , b(i) ] to be the action vector obtained from a by
replacing the i-th component a(i) of a by b(i).

a(i) is said to be a best response action for player i at a(-i) if it
maximises

J(i;[ a(-i) , b(i) ] ) over all possible b(i)

An action vetor a is an equilibrium if for all player i, a(i) is a best
response at a(-i)



Concave Games with Continuum
strategy set

Theorem [Rosen]
Assume

* Action space of each player i is a convex compact
subet of real valued vectors of finite dimension n(i)

* Assume that the utility J(i;a), a=(a(1),...,a(l)) of
player i is concave in a(i) and continuous in a(j) for j #
i

Then the game has a Nash equilibrium in pure
strategies.



Example: power control

e Assume each of | mobile terminals controles its
transmission power p(i) to a common base station

e Assume symmetric Gaussian channels with no
attenuation such that p(i) is also the received power
from terminal i

e Shannon Theorem states that the throughput that can be
achieved by mobile i is

Thp(i)=log( 1 + SINR(i) )
where

SINR(i) = —2W
N+ Zjii r(J)

and where N is some constant (thermal noise at the BS)



The equilibrium
The utility for player i is given by

J(i;p) = Thp (i) — g p(i)

It is concave in p(i) and continuous in p(j) so a pure
equilibrium exists



Equivalent game

e The value of a(i) that maxmises the utiliy function J(i;a) of
player i is unchanged if we add to J(i;a) a constant.

 |tis unchanged if we add to J(i;a) a function of the actions of
players j # i

 |tis also unchaned if we replace it with h(J(i;a)) where h is any
strictly monotone increasing function

Example: the power control game
e let |p| := §=1p(j). Then for given p(j), j #1,

p(i) maximises Thp(i) - g p(i) if and only if it maximises
Thp(i) - g |p|



Potential

Thp(i) = log( 1 + —2& )
N+ 3z, PO

= log (N+Z§-=1P(]') )—log (N+2z,p(j) )

Note that the second term does not depend on p(i).
Thus p(i) maximises J(i;p) if and only if it maximises

V(|p|):=log(N+|p|) - glp]

V is the same for all players. Any optimal solution of
max V is an equilibrium for the original game. V is
called a potential.



Potential Games

e Vis a potential if for every i and every vector a and action
b(i)

J(iya)- Ui [al-)b(i)]) =V(a)- V([a(-i)b(i)])

Equivalently, for all i

dWV(a) d/(a)
da(i) 0da(i)




Convergence to equilibrium

e Define a best responsee sequence as a couple (t(n), i(n))
where t(n) is a strictly increasing segence of times such
that at time t(n) player i(n) updates its action using a
best response to the current actions of the other
players. We assume that each player appears infinitely
often in i(n)

e A change of a policy by a player results in higher utility if
and only if it results in a higher potential.

* This implies that any sequence of best responses of the
?Iayers converges to a local maximum of the potential in
inite time

* If the potential is strictly concave then it has a uniqge
local maximum which is a global maximum

e Therefore there is a unique equilibrium and any
_se?_u.ence_ of best responses ot the players converges to it
In Tinite time



Congestion games over parallel links
[Rosenthal

e There are M parallel links between a source S and a
destination D.

e Each of | players have one unit flow to ship. It has to decide
through which link to ship that flow.

e Let x(m) be the total flow sent to link m under some action
vector a

e The cost to ship a unit of flow through link mis f( m, x(m) )

e Assume payer i decides to change from link k to n. Then
C(i;a)—Cli;[a(-i),n] )=f(k, x(k)) -f(n, x(n)+1)

e Define

Vix)=Y¥M_v(m,x) where v(m,x):= Z (m)f (m,j)
Then Visa potentlal



Conclusions and comments

* There exists a pure equilibrium
e Each local minimum of the potential is an
equilibrium.

 If f(m,x) are integer convex then there is a unique
local minimum of V and thus a unique equilibrium



Application to a content provider
(CP) game

 There are M types of contents and | CPs.
* Each CP has to decide in what content to specialise

e A utility of a CP i if it specializes in coontent type m is
a function f(m;x(m)) of the total number x(m) that
specialize in m. It is assumed to be strictly concave
decreasing.

* Indeed, the more CPs specialize in a content m, the
less is the revenue of those that specialize in that
content.

 Then there is a unique equilibrium in pure strategies
to which any best response sequence converges



Generalized Kelly mechanism

e Some resource, Cis to be split between | players.
e Each player i makes a bid a(i)

. Thebfglaction of C received by a player is proportional to
its bi

* |t has to pay some cost proportional to its bid.
e The utility of player i

J(i;a)=U (i,d(i)) -ali

d(i) := Zf-jlla(i)c if |a|>0 andis

otherwise O
e U(i,.) is a utility that may depend on the player i.



A potential game

* Define V(a) = Yi_,v(i,a) where

0 a1
v(i,a)=<1— —> U(i,d(D) +— d(i)f Ui, 2)dz

Vis a potential for the game and an equilibrium is obtalned by
maximizing V over nonnegative vectors d satisfying |d| < C. Indeed
ov(a) _aU(i,d(i))

da(i)  9a()

If U are concave continuous then the equilibrium is unique
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