

COMPETITION FOR POPULARITY IN SOCIAL NETWORKS

Part 1: Theory

Game Theoretic Tools

1 Networking Games Examples and Classification

1.1 The Association Probelem

-To which WIFI shall we connect?

Figure 1: The Association Problem (1)

The man-machine interface

1 Connexion réseau sans fil			
Gestion du réseau	Choisir un réseau sans fil		
\% Actuaker lo hite des ritsomax	portion supser obtenie ols diffomutions.		
4if Corfigure un résesu sors hif pour la mision cu une pette enticerise	(\%)	dink Robesus sans fil not sefarteb	
	(c)	netgear	Automatique of
Táches apparentées 1) En surci plas a propos des resosur sars fl		Resesu sans fil men securis	v003]
\$\% Modie forcte des theousp piferes	(co)	belkins 49 Y. Résesu sars fi starise	Autontarlique \qquad
Y) Modrier les pawamitues avancts		Wanadoo_dczB 4. Reseow smen fistarise	ulll
		віснот I' Resesusars fi stourse	*ij]
	(\%)	SOLENEHP 1) Refsesu surs fil stourse (WPA)	vill

Figure 2: The association problem: the display

The Association Problem

Figure 4: The Association Problem (3)

1.2 Routing

-Objectives:

- Cooperative case: minimize global cost.
- non-cooperative case: minimize individual cost.

Example: The highway around Amsterdam

European project DRIVE II:
The vehicles have to decide the direction on the ring.
Objective: signalisation

Games with finite number of actions

2 Introduction to non-cooperative games

2.1 Example: The Prisoner's Dilemma

- Emil and France are suspected of a crime.
-lf both admit, they get 1 year in prison each.
-If both do not admit, they get 10 year in prison each.
- If one admits, he gets 15 years and the other is freed.

Figure 5: Prisoner's Dilemma
-The solution $(1,1)$ is unstable: each prisoner may try to improve by deviating. Only stable solution is $(10,10)$.

Optimality Concepts

- Nash Equilibrium: A "stable" solution: no player has an incentive to deviate unilaterally.
-Pareto Equilibrium: A cooperative "dominating solution": there is no way to improve the performance of one player without harming another one.

2.2 Inefficiency of Nash equilibria

\square Pareto Equilibrium
\square Nash Equilibrium

- Nash Equilibria may be very inefficient!
$\bullet(10,10)$ is called an equilibrium in pure strategies

2.3 Non-monotonicity of Nash equilibria

Assume we change the " 0 " to " 5 ": a prisoner that does not admit is always punished (we may have prior information that the crime was committed together).

$(1,1)$ is Nash equilibrium and unique Pareto solution!

2.4 Pure and Mixed Nash equilibria

- Matrix U: the utility for player 1 is one if his action is different than that of player
j. Else it is zero. Player 2 wants to minimize that utility: zero-sum game.
- No pure Nash equilibrium! Consider mixed actions: $p=\left(p_{T}, p_{B}\right)$ and $q=\left(q_{L}, q_{R}\right)$ are probabilities to choose actions by the players. The utility for player 1 is $\mathcal{U}(p, q)=p U q^{T}$.
$\bullet p=q=(1 / 2,1 / 2)$ is an equilibrium. With mixed policies, every matrix game has an equilibrium

Definitions

Let a be a given action vector and let $\mathrm{J}(\mathrm{i} ; \mathrm{a})$ be the utility function of player i

Define $a(-i)$ the vector obtained from a by omitting a(i).

Define [$a(-i), b(i)$] to be the action vector obtained from a by replacing the i-th component $a(i)$ of a by $b(i)$.
$a(i)$ is said to be a best response action for player i at $a(-i)$ if it maximises

$$
J(i ;[a(-i), b(i)]) \text { over all possible } b(i)
$$

An action vetor a is an equilibrium if for all player i, $a(i)$ is a best response at a(-i)

Concave Games with Continuum strategy set

Theorem [Rosen]
Assume

- Action space of each player i is a convex compact subet of real valued vectors of finite dimension $n(i)$
- Assume that the utility J(i;a), a=(a(1),...,a(I)) of player i is concave in $\mathrm{a}(\mathrm{i})$ and continuous in $\mathrm{a}(\mathrm{j})$ for $\mathrm{j} \neq$ i.

Then the game has a Nash equilibrium in pure strategies.

Example: power control

- Assume each of I mobile terminals controles its transmission power $p(i)$ to a common base station
- Assume symmetric Gaussian channels with no attenuation such that $p(i)$ is also the received power from terminal i
- Shannon Theorem states that the throughput that can be achieved by mobile i is

$$
\operatorname{Thp}(\mathrm{i})=\log (1+\operatorname{SINR}(i))
$$

where

$$
\operatorname{SINR}(\mathrm{i})=\frac{p(i)}{N+\Sigma_{j \neq i}^{p(j)}}
$$

and where N is some constant (thermal noise at the BS)

The equilibrium

The utility for player i is given by

$$
J(i ; p)=\operatorname{Thp}(i)-g p(i)
$$

It is concave in $p(i)$ and continuous in $p(j)$ so a pure equilibrium exists

Equivalent game

- The value of $a(i)$ that maxmises the utiliy function $J(i ; a)$ of player i is unchanged if we add to $J(i ; a)$ a constant.
- It is unchanged if we add to $\mathrm{J}(\mathrm{i} ; \mathrm{a})$ a function of the actions of players $\mathrm{j} \neq \mathrm{i}$
- It is also unchaned if we replace it with $h(J(i ; a))$ where h is any strictly monotone increasing function

Example: the power control game

- Let $|\mathrm{p}|:=\sum_{j=1}^{I} p(\mathrm{j})$. Then for given $\mathrm{p}(\mathrm{j}), \mathrm{j} \neq \mathrm{i}$,
$p(i)$ maximises Thp(i) - $g p(i)$ if and only if it maximises
Thp(i) - g |p|

Potential

$$
\begin{aligned}
\operatorname{Thp}(\mathrm{i}) & =\log \left(1+\frac{p(i)}{N+\sum_{j \neq i} p(j)}\right) \\
& =\log \left(N+\sum_{j=1}^{I} p(j)\right)-\log \left(N+\sum_{j \neq i} p(j)\right)
\end{aligned}
$$

Note that the second term does not depend on $\mathrm{p}(\mathrm{i})$. Thus $\mathrm{p}(\mathrm{i})$ maximises $\mathrm{J}(\mathrm{i} ; \mathrm{p})$ if and only if it maximises

$$
V(|p|):=\log (N+|p|)-g|p|
$$

V is the same for all players. Any optimal solution of $\max \mathrm{V}$ is an equilibrium for the original game. V is called a potential.

Potential Games

- V is a potential if for every i and every vector a and action b(i)

$$
J(i ; a)-J(i ;[a(-i), b(i)])=V(a)-V([a(-i), b(i)])
$$

Equivalently, for all i

$$
\frac{\partial V(a)}{\partial a(i)}=\frac{\partial J(i ; a)}{\partial a(i)}
$$

Convergence to equilibrium

- Define a best responsee sequence as a couple ($t(n), i(n)$) where $t(n)$ is a strictly increasing seqence of times such that at time $\mathrm{t}(\mathrm{n})$ player $\mathrm{i}(\mathrm{n})$ updates its action using a best response to the current actions of the other players. We assume that each player appears infinitely often in i(n)
- A change of a policy by a player results in higher utility if and only if it results in a higher potential.
- This implies that any sequence of best responses of the players converges to a local maximum of the potential in finite time
- If the potential is strictly concave then it has a uniqe local maximum which is a global maximum
- Therefore there is a unique equilibrium and any sequence of best responses of the players converges to it in finite time

Congestion games over parallel links [Rosenthal]

- There are M parallel links between a source S and a destination D.
- Each of I players have one unit flow to ship. It has to decide through which link to ship that flow.
- Let $x(m)$ be the total flow sent to link m under some action vector a
- The cost to ship a unit of flow through link m is $f(m, x(m))$
- Assume payer i decides to change from link k to n. Then

$$
C(i ; a)-C(i ;[a(-i), n])=f(k, x(k))-f(n, x(n)+1)
$$

- Define

$$
\mathrm{V}(\mathrm{x})=\sum_{m=1}^{M} v(m, x) \text { where } v(m, x):=\sum_{j=1}^{x(m)} f(m, j)
$$

Then V is a potential.

Conclusions and comments

- There exists a pure equilibrium
- Each local minimum of the potential is an equilibrium.
- If $f(m, x)$ are integer convex then there is a unique local minimum of V and thus a unique equilibrium

Application to a content provider (CP) game

- There are M types of contents and I CPs.
- Each CP has to decide in what content to specialise
- A utility of a CP i if it specializes in coontent type m is a function $f(m ; x(m))$ of the total number $x(m)$ that specialize in m . It is assumed to be strictly concave decreasing.
- Indeed, the more CPs specialize in a content m, the less is the revenue of those that specialize in that content.
- Then there is a unique equilibrium in pure strategies to which any best response sequence converges

Generalized Kelly mechanism

- Some resource, C is to be split between I players.
- Each player i makes a bid a(i)
- The fraction of C received by a player is proportional to its bid
- It has to pay some cost proportional to its bid.
- The utility of player i

$$
J(i ; a)=U(i, d(i))-a(i)
$$

otherwise 0

$$
\mathrm{d}(\mathrm{i}):=\frac{a(i)}{\sum_{j=1}^{I} a(j)} \mathrm{C} \text { if }|\mathrm{a}|>0 \text { and is }
$$

- $U(i,$.$) is a utility that may depend on the player i$.

A potential game

- Define $\mathrm{V}(a)=\sum_{i=1}^{I} v(i, a)$ where

$$
v(i, a)=\left(1-\frac{d(i)}{C}\right) U(i, d(i))+\frac{d(i)}{C}\left(\frac{1}{d(i)} \int_{0}^{d(i)} U(i, z) d z\right)
$$

V is a potential for the game and an equilibrium is obtained by maximizing V over nonnegative vectors d satisfying $|d| \leq C$. Indeed

$$
\frac{\partial V(a)}{\partial a(i)}=\frac{\partial U(i, d(i))}{\partial a(i)}
$$

If U are concave continuous then the equilibrium is unique

References

- B Hajek and Gopalakrishnan
- Johari and Tsitsiklis, MOR, 2004

This document was created with Win2PDF available at http://www.win2pdf.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only. This page will not be added after purchasing Win2PDF.

