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On Optimal Call Admission Control in a
Resource-Sharing System

Eitan Altman, Tania Jiménez, and Ger Koole

Abstract—In this paper, we consider call admission control ficient resources are automatically blocked. There is a central
of multiple classes without waiting room. We use event-based controller who can reject arriving customers based on full state
dynamic programming for our model. We show that sometimes ¢ormation. Each classcustomer who enters the system gives

the customer classes can be ordered: if it is optimal to accept a . ¢ d of. In thi ill study admissi
class, then to accept a more profitable class is optimal too. We rse to a reward or;. In this paper, we will study admission

demonstrate submodularity of the minimum cost for the 2-classes Policies for this model for the discounted reward criteria.
problem and establish some properties of optimal policies. Then  This problem is also known as tséochastic knapsadiRoss
we formulate a fluid model that allows us to study the optimal gnd Tsang [1], Gavious and Rosberg [2]). In [1], the optimal
control for the large-capacity case. We show that in the case ., inate convepolicy is determined. This class of policies

of same service time distributions, the control problem can be . . . . .
reduced to a model with a one-dimensional (1-D) state space,(t0 which the optimal policy does not belong in general) is of

and a trunk reservation po“cy is optimaL We present numerical particular interest as it leads to prOdUCt-form solutions of the

examples that validate our results. steady state probabilities (the influence of changing the param-
Index Terms—Fluid model, stochastic knapsack, submodularity, €ters for coordinate convex policies are studied by Ross and Yao
trunk reservation. [3] and Nain [4]). In [2] a good policy is found based on an ap-

proximation of the value function. The special case where the
service rates and the reward per acceptance do not depend on
the customer’s class was studied in Feinberg and Reiman [5]
HE advent of ATM has renewed the interest in resourc@ander some constraints), and the optimality of a trunk reserva-
sharing models with different resource requirements. Fgon policy is established (see Miller [6], [7] for early results on
example, in the ATM context a video connection will demangtunk reservation).
more (effective) bandwidth (i.e., more resources) than a regulamve study the optimal policy for the unconstrained case. For
voice connection. Traditionally these models are called trumike model with differenj:; we derive several monotonicity re-
reservation models, due to the most often used policy for admiilts, the strongest for the model with= 2 andb; = by = 1.
ting new customers, based on thresholds depending only on Vg illustrate with numerical results the nonmonotonicity of the
currently available resources (where the resources are the trgpkimal policies (see also [8]).
lines in a telecommunication network). In this paper, we study Although these results give insight in the structure of the op-
such a resource sharing model: we derive structural propertiggal policy, it does not help us much in finding a good policy.
for the optimal policy for the actual model, and we fully deterTherefore we considered also an approximation of the model
mine the optimal policy for the approximating fluid model.  for which we could find the optimal policy, namely the fluid
This model is defined as follows. Traffic fronV classes model. We computed the optimal policy for several parameter
share B resources. Traffic of class arrives according to a values, both for the original model and its fluid approximation.
Poisson process with parametgr. Each customer demandsFor other related fluid models, see also [9]-[12].
b; resources, witly; integer. All the resources taken by a class
1 customer are released simultaneously after an exponentiall
distributed service time with parametey. States are denoted
with z = (z1, ..., 2y ), wherez; signifies the number of class A, pynamic Programming
i customers in the system. We assume gt bz, < B, _ _ _ . .
i.e., there is no waiting room, customers who do not find suf- Our resu_lts are de”"?‘d by inductively proving properties of
the dynamic programming (DP) value function. To formulate
the DP equation we will make use efent-based DRas intro-
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for f € I'. The functionl4, f (=) may be interpreted as the op-inequality, then so do€s, /(=) for all event operators. As the

timal value function for a one-stage problem in which one mustequality is maintained under linear combinations, the lemma

decide to accept or reject a clasarrival, after which a terminal follows directly by induction om.

state-dependent revenue is earned according to the funfttion Consider firstl’s, for somei. Suppose thaf is decreasing in
For the departures the situation is more complicated. Healtcomponents. Themax{r; + f(z +¢;), f(x)} > max{r; +

we have|B/b;| event operators for clags namely fork = f(z + e; + ¢;), f(x + ¢;)} forall z, ¢, andj. This shows that
1,...,1B/b] T, f is decreasing in all components for all
The terms concerning th@"fj’? are even easier. Note that

acj 1 wj 1
@ TSV fe) = T fla+e). n

For ease of notation we consider classes 1 and 2; as we can
Denote byC(z) the costs associated with stateThese costs renumber, this does not restrict generality.
are only used to prevent the system from leaving the state spacé,emma I.2: Consider theV-class problem withV > 2. If

f(z), otherwise.

ng)f(a?) _ { fle—e), faz; >k

i.e., we take by < beandu; > pa, thenfor allz andn we haveV,, (z+e;) >
N Vilz + e2).
C(z) = { 0, |if Zizl_ bixi < B Proof: The cost function-C and thud/, satisfy the above
oo, otherwise. inequality becausg, < b,.

Using the above the DP operat®r for the continuous time V_Ve_show that iff(,x) s depreasing in all its components and
model as defined in the introduction becomes (using the weetisfies the above inequality, then so d@g$ () for all event

N N LB/bi] I1.1).
Tf(x) = —C(x)+3 Z AiTa, f(x)+5 Z 1 Z ng)f(a:). Suppose thaf satisfiesf(x +e¢1) > f(z +¢2) and is mono-
i=1 i=1 k=1 tone decreasing.

®) Consider firstl’, f ] g
) ) v s, for somei. Then clearlymax{r; + f(z +
Here we have assumed without loss ofgeneralltyEﬁ;1 i+ 14 e), flz +e1)}t> max{r; + f(z +es + ;). f(z+e2)},

Z;l LB/biJgi =1;8€(0,1)is the qliscount factor (when an-go 7, f satisfies the inequality if does.
alyzing the discounted reward criterion). One may also analyzeThe terms concerning t
the average reward criterion by takifg= 1. In [13] itis shown
how to generalize this to general (but state-independent) arriq
streams, by adding an environment state. We will not deal with, (z, +1 2o+l
that generglizationghere, but the results of this section hold afébT’()I )f(x te)+ NQT’(% )f(x +e)
for general arrivals. > Tt flw + e2) + T2 o+ eo)
The operator?’ is a linear combination of event operators. . | ]
This is typical for continuous time models: only one event caifhich is equivalent tqu, f () + pia f(z +e1) > p f(z + o) +
happen at a time. Using the same event operators we can 4fz4(*) Thisholds because > o, f(a+e¢1) > f(a+e2)and
model discrete time models, by taking convolutions of eveht*) = /(¥+e¢2). The Lemmais now established via induction.
operators, representing events happening simultaneously. Note o ) =
however that not all the results that follow are valid for dis- NOt€ thatwe used explicitly the form of (3) in the proof. Now
crete-time models. We discuss this issue when appropriate. e formullate the_flrst result of this section concerning the form
In the following we prove certain properties of tnalue func- ©f @n optimal policy. .
tion V., defined byVi.,1 () = TV, (z) andVy(z) = —C(z). ~ Theorem IL.3:1f by < by, piy 2 p2 @andry > 12, and in a
As these properties hold for al, they hold also for the lim- staFea: it is optimal to accept class 2 customers, then it is also
iting optimal policy (for discounted or average reward), as foPPtimal to accept class 1 customers.
lows from standard results in Markov decision theory, see e.g,, Freof: By Lemma ll.2 and, > r» we have that +
Puterman [14]. Note that no additional assumptions are nee(?/eé“’j +e1) 2 124 Valz + ). Thus ifry + Vi (o + e2) >

(%) (z1+1)
HE;, * are easy, exceflty, and

(“;2“). For the value function (3) we need that

because our model has a finite state space. V.(x), i.e., admission of_a class _2 (_:ustomer is optimal, then
r1 4+ V(x4 e1) > V,(x), i.e., admission of a class 1 customer
B. Ordering Classes is also optimal. ]

Sometimes two or more of the customer classes can be @I- supmodularity forV = 2
dered, in the sense that if it is optimal to accept the less prof-
itable one in a certain state, then an arriving customer of theAssume thatV = 2.
more profitable class should also be accepted. Lemma Il.4: For alln andz > 0
This idea i.s formalizgd in the foll_owing I_emmas. First We V(2 + 1) + Vilz + e2) > Va(z) + Vil + €1 +e2). (4)
show thatV,, is decreasing (we use increasing and decreasing
in the nonstrict sense) in all of its components. Proof: Itis clear thatl} (i.e., —C) satisfies the above in-
Lemmall.1l: Forallz, j andn, we haveV,,(x) > V,.(z+e;). equality. We show that iff (x) satisfies the above inequality,
Proof: It is easily seen thal; (i.e., —C) satisfies the then so doed, f(z) for all event operators. As the inequality is
above inequality. We show that if(x) satisfies the above closed under linear combinations, the lemma follows directly.
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The proof for the operatolgp, is easily given, using the in- reserved) for other traffic classes. Of course capacity is only
ductive assumption; let us therefore consider in detail the dgept free for traffic classes that give a higher profit. This can be
eratorTy, (T4, is similar). Denote by:; (a2) the maximizing shown as follows. LeT; be the threshold for clasgraffic, and
action inT, f(y) for y = = (z + e + e2), where action 0 (1) assume that; > --- > 7. Using Theorem 1.3 we conclude
refers to rejecting (accepting) a customew{f= ao, then the thatalsol; > --- > 7. Thus we can say th& — 7Ty trunks

result follows easily. lfz; = 1 andas = 0, then are reserved for traffic of the classks. . , V — 1, of which B —
Tn_1 trunks are reserved for traffic of the clasges. ., N — 2,
Ta, f(z+er) +Ta, f(z+e2) etc.
> flz+e)+r+ flo+er+e) A similar model, with two types of traffic and in the context

— T, f(x) + T, f(z + 1 + c2). of cellular communications, has been studied in [17].

If a; = 0anday = 1, then Ill. FLuiDb MODEL
In this section, we present a fluid model that approximates the
Ta flr+er)+Ta, flz+e2) original model when the number of resourd@ss well as the
>r1 4 fle+2e) + f(z+e2) rate of call arrivals\ are large. Explicit solutions are obtained
> f(z) + 71+ f(z+ 2e1 + e2), for the fluid model, which can be used to construct almost-op-
timal policies for the original problem.
the second inequality follows by using (4) twice. - Let us make some general observations before specifying the

Inequality (4) is known assubmodularity The following Model. A fluid model is characterized by the absence of ran-

monotonicity result is a direct consequence of it (see, e.§omness in the system. This makes a fluid model usually per-
Altman and Koole [15]): form better than the originating queueing system. (In [18] this
Theorem I1.5: For every fixed value of;, i = 1,2, thereisa 9general observation is proven for a specific model.) Indeed, in a
threshold leveL(z;) such thatin state = (1, z») a customer dueueing system with two classes, trunk reservation will always
of typei is admitted if and only if;; < L?(x;) wherej # i. be optimal if the reward of customer class 1 is high enough, even
In [16]and [15], a theory is developed around submodularitif. there is enough capacity to accommodate the average total
This was done in the setting of costs instead of rewards:traffic load. This is because capacity is reserved in case, due to
general theory around supermodularity could not be develop&#g random behavior, a burst of class 1 customers arrives. This
Translating the current model to costs would change sub—RBenomenon does not play a role in the fluid model. But still, as
Supermodu|arity_ This makes our model interesting from We will see, trunk reservation can be Optimal, even if the total
theoretical point of view, and explains as well the restriction f6affic load does not exceed the service capacity.
N = 2.
Unfortunately, for every fixed value of, there does not A- The Model
exist in general a threshold levél’(z;) such that in state e« The statesThe discrete state space is replaced with a con-
x = (x1,72) a customer otype 2is admitted if and only if tinuous oneX = {z e RY :z >0, Eﬁ\;l biz; < B},
xz < L'(x1). To prove that such a threshold exists typically  yepresenting the amount of sessions in the system.
requires that concavity be established, which, in general, does. The arrivals:We replace the discrete arrivals by a contin-
not hold in our case. In fact, it is easy to establish counter |,5us stream; the amount of classaffic that arrives per

examples for the case thiat # b», where the monotonicity is time unit is assumed to be deterministic with rate

reversed due to the boundaries, see Section IV. « The departure rateThe departure rate of one unit of ses-
) _ sion of typei is u;. Hence, if there are; sessions of type

D. The One-Dimensional (1-D) Case i in the system, then the departures of typsessions is

So far we have derived two partial results: one for the case ;.
that customer classes can be ordered in some special way, and Control and policiesThe arrivals are controlled;;, the
one forN = 2. A special case for which the optimal policy is admission control for clagsrepresents the fraction of the

fully characterized is the one where gall are the same (equal arrivals that are accepted to the system. The evolution of
to 11, say), andy; = 1 for all <. V,,(z) then depends only on the the system is given by
total number of customers present, so we assume here that thgx(t)
argument ofV/, is 1-D. — = = f(z(t),u(t)), wheref;(z,u) = u;A; — pizi. (5)
Theorem 11.6: (Miller [6], Lippman [7]): dt
i) Forallz < B — 2 andn we have thatV, (z + 1) > The control actions are admission vectors which are ele-
Vi (z) + Vi (x + 2), i.e., V,, is concave. ments ofU = [0, 1]"¥. We consider policies that are mea-

i) For each class the optimal policy is of threshold form, sqrable functiqns of the time qf the form R — U,_
i.e., for each customer class there is a critical level above ~ With the following state constraints. If at tint¢he state is

which no customers are admitted. x and actionu is used, then
This theorem shows that the optimal policy uses the idea of N N
trunk reservation: the thresholds assure that some of the servers Z(uw — i) < 0if Z biz; = B. (6)

(called trunk lines in the telephone network) are kept free (are

=1 i=1
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A policy satisfying (6) is called feasible. Defin@(x) to incurred reward during a tim& as\;(n)Ar;(n) (wherer;(n)
be the set of actions that can be used at state depends on), since a reward of;(n) is earned by each ar-

» The reward:r; > 0 is a reward per unit of typesessions rival and there are approximateh\;(n)A arrivals. The dis-
admitted to the system. With(u) = Ef;l 7;A;u; being counting in the original model was related to events: each time
the immediate reward, we consider the total discountesh event occurred we multiplied by the discount fagtoirhe
costJg(x,m) = [ e~?'r(u;)dt, whereuw, is the action total number of events that occur during the petoih thenth
at time ¢, obtained when a policy is used. (Note that, model is of the order ok A of which the number of arrivals is
although the immediate reward is related only to the aof order ofn AA (recall that in the original model, the sum of ar-
tion and not the state of the system, the state of the systemal rates plus maximum service rate was taken to be one unit).
plays an important role since the feasible admission athe total discounting during the period Afis thus(3(n))".
tions are constrained once the boundﬂ?;l bix; = B The overall reward for classis thus approximated by

is attained.) - 0o
Our aim s to find a policy’ that achieves/s(x, v) = / I (u)dt ~ 3 (B(n)™) ™ Ai(n) Ery(n)A.
Jo(x) = sup, Ja(z, m). 0 m=0

Remark l1l.1: The constang used inJg is not the same as This gives us the above scalings. We do not include a mathemat-
the one used in the previous section for the discretized modehl study of the convergence of the discrete model to the fluid
Writing the discounting as an exponent is usual in continuousodel, this is beyond the scope of this paper.
time models. However, there is an easy formula relating bothNext we derive certain useful properties of our fluid model.
forms of discounting (see, e.g., [19] for this and other detaifirst note that the model is indeed totally deterministic. This
concerning uniformization). means that the trajectory can be calculated for each policy and

The above model can be interpreted as a limit of a sequerngiial state. These trajectories are the solutions of the linear dif-
MDP (n) of MDPs of the form of the original one, in which ferential (5), which are given by
the parameters are chosen appropriately. This is done by scalingemma 111.3: (Trajectories): The state trajectories under any
both the intensities and the states by the same factor. We shalicy . ¢ U/ are given by
add below the superscripto denote the parameters of the con- .
tinuous queueing model, i.e., the one appearing in (5). zi(t) = e it (0) + )\i(;mt/ ePiouy(s)ds @)

© D Xi(n) = 0 = aXi(1), pi(n) = pf = pi(1) (due 0
to the next item, this will mean that all rates ardimes wherew,(¢) is the action used at time
faster in thenth model). We will also need the equivalent of the DP value function
* 2)z;(n) = x;(1)/n; this is the rescaling in space by of the previous section for the current continuous time and
The state space now contains fractions instead of integestate space model. It is the following Hamilton-Jacobi-Bellman
and the basic unit corresponding to a single session in ifi&JB) equation:
nth model isl/n. The arrival and departure operatots
andD; have to be redefined accordingly in (1) and (2) by pu(z) = ulengé){T(x) + fz,u) - Vo(z)} (8)
letting ¢; correspond td /n times the (original¥th unity
vector. Thus, keeping the initial statén,0) constant in Where
n means that we multiply the number of ongoing sessions wr du(z)
by n. fz,u) - Vo(z)= Zﬁ(w,u) 3
» 3) B and thel;s are kept unchanged; due to the transfor- i=1 Li

mation of the state space, this means that the constraintQLs .« 1 t0 be the set of functions : X — IR which are uni-
the total number of calls, weighted by thgs, increases formly continuous oveiX. We have the following ([20] The-

linearly With s o orem. 3.3, see also [21] Sections 111.8-9, [22] and [23]).
* 4) The discount factog(n) of thenth model is given as | arama |11.4: There is a unique viscosity solutione D of

Bln) = (BAN/" =7 /m, 8) and =
« 5) The rewardr;(n) = r:(1)/n = ¢ /n. (8) andv(z) = J(x).
Remark 111.2: The above scaling allows for the convergencB. Optimality Results

of not only the rewards, but also of the state process. In practice|n this subsection we study the general model. We derive
if we only want to compute the rewards using DP, we may us&gme results for the special case of light load. We obtain
simpler scaling. i) We need not rescale the state, so we may t@kg structure for arbitrary load in the following subsection,

z;(n) = z;(1) in step 2) above. In that case, the veatpused restricting to the special case of equal service rates.

in (1) and (2) is just as originally defined: thith unit vector.  Theorem II1.5: Assume thaEﬁ\;l bi\i/p; < B. Then

But then, ii) we need to rescal@ to nB in step 3). The other i) Any optimal policy starting from any initial state € X

parameters are the same as in the previous scaling. results in a trajectory that converges to the pointgiven
The motivation for the above scaling is the following. The by zf = i/ for all 4;

number of arrivals in a time uni\ in the nth model is of the i) Therze existz’ 6 X such that

order ofnASA. Assume thatA is small,»n large, and that the

policy « is constant duringh. Then we can approximate the i < g, for all ¢ (9)
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It can well be the case that the trajectory belongingto= 1
for all £ and< goes outside oK. We study this case in the next
z2 subsection.

C. A Simpler Equivalent Model

We make in this subsection the following assumption:
z' Assumption Il1.6: (A1) The service rates do not dependipn
i = ph
As we will see below this assumption suffices to treat the
z1b1 + 230y = B system as a 1-D system. To do the same in the discrete model
we needed thé; to be equal as well.
Define

A = Tip

N N
z1 y(a:)défz:a:ibi, w(u)défz:ui)\ibi. (11)
i=1 i=1

Fig. 1. lllustration of Theorem Il1.5.
Lemma I1.7: Consider two models with initial stateg0)

) .
and for any initial state with » < ' componentwise it is andz’(0), respectively, such that

optimal for all timet > 0to accept all arriving customers. N N
_Proof: Note that the pointz* exists if and only if > bizi(0) =Y biai(0) = y(x(0)).

Ef‘zl b;X\;/1ni < B. We start with proving ii). The set of i=1 i=1
possiblez’ consists of allz’ € X with &/ > z*. Itis easy Then
to see that it is optimal to accept all cus_tomers if,_ by do?ng i) Any policy that usesu(t) at timet that is feasible for
so, the _boundar;B IS not cro;sed. Any policy not do'f‘g S0 1S initial statez(0) is also feasible for initial state’(0), and
sub-optimal, ag; > 0 for all <. We prove that it is optimal to APV i the © ]
accept all traffic forz’ as specified in the theorem. Because the . I? = Zit=1 Vi Z;.“.( ) mt € c\ch,’ iase? . A =
trajectories forz are upperbounded by those fef; the result i) w?;?(gil) va(;)r F;cl)l'??ﬁé ( tzsgctqf) r(ie)szj(at)lszmggz((?)());r;i
for = follows then directly. Indeed, from (7) we have V() = y(x/(£)) are the same, and if() is a feasible

/ o L t policy, then so is/().
z;(t) =c i (0) + e )\i/o ds Proof: It follows from (5) thaty, satisfies
. A
=) - (1= ) (410 = 3 ) 5 4i0) W oy~ y 12)
(10)

with the constraintly/dt < 0if y = B. The evolution ofy,
is then the same in the two cases. Since the constraints on the
The convergence of the trajectory for any< 2’ to z* fol- policies are funcyons ofy, thg same constraints are sat|sf|eq,
: and thusu(t) are indeed feasible for both cases. Since the dis-
lows easily from (10). . ; o :
) ) . . . counted cost is only a function ef which is the same in both
Now consider a trajectory due to an optimal policy starting at . . . .
. o . - cases, it follows that the immediate rewarglare the same. This
an arbitrary initial state. Then the trajectory satisfies .
completes the proof of i).
o ) \; Part ii) follows directly from (12) and part i). [ |
z;(t) < 2;(0) — (1 —e ) <377:(0) - u_) . The above Lemma hints that we may aggregate the state and
‘ action spaces. Indeed, we note that at any tinae actionu(¢)
This means that after a finite time the trajectory is within a renay be changed to’(#) without affecting the future evolution
gion, as inii), for which accepting forever all sessions is optimadf the ys, and hence the future constraints«arOn the other
for which we already showed that the trajectory convergesto hand, the rewards do not depend:ouirectly, but only onu.
[ This motivates the following definition of an improvement of a
In Fig. 1 the set of states for whial) = 1 is optimal because policy.
of Theorem I11.5 is drawn fo®V = 2. The middle triangle gives  Definition 111.8: Consider a feasible policy. Define the im-
the possible values far' (in which (9) holds), the region below provementr’ of 7 as follows. Denote
it gives the possible values far. In fact, for one of the two N N
remaining tnangle_s (the one g:orrespondlng to an excess of fastgiw)d;f max Z ra\idlh, st Z Wby = w, 0<u<1.
customers); = 1 is also optimal. u = P
Thus we see that trunk reservation is not used within the set (13)
of states{x|z < 2/, \; < z}u;}. This is for the simple reason Define#t(w) = g(w).
that we can show that all traffic can be accepted, without anylf = usesu at timet, then=’ is defined to be the policy that
overflow. This is not the case for initial states outside of this setses at time the actioni (w(w)).

andz2’(0) € X by assumption.
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Lemma I11.9: For all = we haveJg(x,n') > Jg(x, 7). Next we show thatsup,y*(¢) = B. Suppose that
The reward corresponding te’ is given by Jg(z,7’) = sup,y*(t) = b < DB. Not all traffic is admitted, as this
I3 e Ptg(w,)dt, wherew, = w(u(t)). would lead to a trajectory witkup, y*(¢) > B. Thus we

Proof: Directly from Lemma lll.7, part ii). B can add additional traffic consuming up # — b units of

We are thus ready to introduce an equivalent simplified 1-8ervice capacity to the system at all times without crossing
model with the boundaryB. This increases the reward, and therefore

« State spacelY = [0, B], sup, ¥*(t) < B cannot be optimal. A similar argument can be

+ Action space:W = [0, Sy )\ibi:|a used to show thatm, .. y*(¢) = B.

We continue with showing thag*(¢) is increasing. Sup-
pose thaty*(¢) is decreasing on some intervth,t2]. As
lim; ... y*(¢) = B, y*(t) has to increase aftér to regain
y*(t1). If y*(¢) is decreasing (increasing) inthen the drift is
negative. Note also that the optimal policy, the solution to the

« Policies: These are measurable functions friiti to W,
satisfying the following state constraints for &l () <
wy (this is equivalent tely /dt < 0) if y = B. We denote
by D(y) the actions available at stage

* Rewards: Th1e3 mrr_:_cadrate relwa(;q Ig(y,wg = g(u(;) HBJ equatron is stationary. But we saw that the drift in states
gen |n ( ) B Bte totaldiscounted rewar 'S[y *(t2)] can be negative or positive, depending on the
Js(y, w IS e Pg(w,)dt where w is the policy

that A at i © Th iimal d time. ThIS is in contradiction with the stationarity.
a uses w( ) a |me e optimal reward is A simple more heuristic argument is as follows: due to the

Jaly ) = Supw Ty, w). ) discounting it is advantageous to move rewards forward in time.
Introduce the HJB equation Earlier arrivals mean also earlier departures, leaving room for
du(y) more admissions later on. This shows that it can never be op-
Bu(y) = Iélgz() g(w) + (w — py) duy } (14) timal to have a negative drift in some state. u
wED(y

In the Appendix we sketch a numerical approach for solving
As with Lemma I11.4, we have (14). We first note that the term in brackets in (14) is concave
Lemma 111.10: There is a unique solution € D (defined in and piecewise linear i r‘or eveny forwhir:h du(y)/dy exists.
Lemma ll] 3' or 14). andb(z) — 7 Th_erefore, for suchy’s, it attains its maximum on one of the
.3 ) of (14), () = Ja(u). ér}shmts of the formzf:1 A:b;, except for the boundary = B,

A(\js lforththtehgeneral cars],e we rr:al;e r’r]he ddl'St'TICt']?fn b((jattwe Vhere the argmax need not be achieved at an extreme point (and
models that have enough capacity o handie all offered fra ay typically be an interior point). We now use (14) to obtain

and models that do not have this capacity. . : .
) N L . an optimal stationary policy.
Theorem I11.11: If Z?=1 Ab; < B then it is optimal al- Theorem I11.13:
ways to accept all arriving calls. . ] ) )
Proof: This follows directly because the policy that al- i) The solutionw of (14) is concave decreasing.

ways accepts all calls has a negative drift on the bounglazy i) Let w* be a stationary policy that selects an action that
B. . achieves the argmax of the brackets in (14) at any

[0, B] for which dv(y)/dy exists. Then sucha* can be
chosen to be piecewise constanyjrand decreasing i;
any such choice is an optimal policy.

We shall thus consider from now on only the nontrivial case
Ef‘zl A;b; > pB. To simplify notation we assume (without
restricting generality) that = 1. We also assume that/b; > ! _
ra/bs > -+ > rn/by. Recall that a policy is callestationary The proof of the theorem is delayed to the Appendix.

if it uses at any; andt, the same actions, whenever the states VW& conclude that there is a Set= {yo, 41, ...} containing
att; andt, are the same. We characterize the optimal policy. &t MostV elements, such tha, € Y isa decreasrng sequence

Theorem 111.12: Assume3_~ | A;b; > uB. The sefll con- andw, = 3, A;b; achieves the argmax in (14) on the in-
sists of all policiesr = w(t) with u(¢) of the following form: terval I,,,‘l:ef(y,,,,y,,,+1).
for somel uy(¢) = --- = w(t) = 1, w41(t) € [0,1), and It follows from the definition off,, that the solutior of (14)
wig2(t) = -+ = un(t) = 0. Then satisfiessv(y) = g(wy,)+(wy, —py)duv(y) /dy. This differential
i) there is an optimal policyr* € II, (characterized by equation allows us to computeon the whole interval. We recall
w*(t) = wlu*(t))); that the differential equation of the fordv/dy — f(y)v(y) =

ii) with y*(¢) the state process generatediywe have that §(y) has the solution
y*(t) is increasing teup, y*(t) = B.
Proof: By Lemma I11.9 an arbitrary policyr can be im-
proved by applyingr’, that useg(w(¢)) at allt. We show that ¥ (y) = exp </ f(s )
7' € II. By a simple change of variables we see that (13) is

equivalent to X [v(y’) + /yy exp <_ /y’ f(s)ds> 9(7,)657} .

N
Inaxz b hi s8> hi=w, 0<h;<\b.  Thisyieldsfory € I,

Now it is obvious that this maximum is obtained by a policy in o) = ynpt — wy \ o) — g(wy,) n g(wy,)
II. This shows part i). v = YU — W Yn B g
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Class 2

5

¢

Q @‘@@ Class 1

20

Fig. 2. Example 1.

To initiate the computation, we use the fact thagat B, it '°f y ' T o)
is optimal to usev = pB which is the policyw that results in "
always staying on the boundary. This follows directly from (14 |}
and Lemma 111.10. Thus(B) = v(yo) = g(uB)/S. el |

y = Bisthe only point at which we need to considewhich
does not belong to the set of points of the foEj:1 Aibg;out- tof .
side the boundary, we do not need anymore to constrain the }
tions, so that one of the,,’s will be optimal in a neighborhood
of y = B.

s}

IV. EXPERIMENT RESULTS af

In this section we test the DP with some realistic data. In pe , |
ticular, we study numerically the structure of the optimal poli
cies validating the structural results obtained in Section I1-£ ¢
Our numerical study shows that the optimal policies are, in ge.. °
eral, not monotone in all components. We also compare NUMEE 3 74
ically the original problem with its fluid approximation.

The examples were coded in C and run on a SUN Sparc St=-

tion V. 5
¢
A. Bxample 1 POPOO
We study the model of Section II-A with two classes of cus PP-PPO
tomers(N = 2), 20 units of total resources3 = 20) and the S-O-D-DD

following parameters for each class: Class\l= 10, 1 = 1,
bp=1,7 =1, Class 2o = 2, o =1, by = 5, 70 = 10. 5 10 15
The computer program ends when the variation of the
. . . . Fig. 4. Example 2.
value function (V;,) between two iterations is less than
e = 0.00000001. The number of iterations was 928 for this
example. The discount factor for this exampleds= 0.99. Fig. 4 shows that only when there are 0 customers of class 1
Fig. 2 represents theptimal policyobtained. A black circle and 2, 3 or 4 of class 2, then it is optimal to accept customers
means acceptance of customers from any one of the two clas§@en both classes, otherwise customers of class 1 should be re-
A circle whose only left (right, respectively) half is black meanigcted, and it is optimal to accept class 2 customers as long as
that we accept customers of class one (of class two, respectiva¥g) do not reach the boundary.
and reject those of the other class. A white circle means that weFig. 5 shows the threshold levé{x) given by the Theorem
reject both types of arrivals. In the (y, respectively) axis we 1.5
represent the customers of class 1 (2, respectively).
Fig. 3 shows the threshold levél ) given by the Theorem C. Example 3

I.5. We use in this example three classes of customérs: 3,
the total amount of resources is s#ifl = 20, Class 1:\; = 10,
1 = 5,bi =2,11 =2, Class 2Xy = 12, po = 1,0 =2, =
In this example we still use two classes of customers, but cla&s<Class 3:A3 = 5, uz = 1, b3 = 2, r3 = 4, ¢ = 0.000000 1,
one has amuch larger reward. The total resources are still twefity= 0.99.
units (B = 20). Class 1:\y = 10, u; = 1,0, = 1,71 = 1, We obtained a convex acceptance region for the optimal
Class 2.2 = 1, uz = 0.5, b, = 5, 7, = 1000. ¢ = 0.000001, policy, which we describe graphically by specifying the accep-
£ = 0.95, N. of iterations=276. tance region for each class.

®
®
®
&
2 O

B. Example 2
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We next illustrate the fact that under assumption A1, intro-
Lix2) - duced in Section l1I-C, the value functidof(x) of the limit fluid
model (or in fact, already the rescaled model MDP (10)) de-
pends on the state only throughy(z) given in (11) (so the
limit problem is indeed 1-D).

Figs. 9 and 10 show the () averaged over all values ofs
that give the samg. For eachy, Fig. 9 presents in addition to

sl "\ | the average, also the discrepancy (i.e., the variations) from the
average, and Fig. 10 presents the standard deviations from that
el "\.‘ 4 average, both for the MDP (10) model. In both figurgg)
4 is given in the vertical axis ang (taking values between 0 and
4t { 200) is given in the horizontal one.
‘\\ The maximal discrepancy is always inferior to 1.34% of the
2 4 {1 average of th&/(z).
\ The standard deviation is always inferior to 1.4% of the av-
° 0 ] 5 1'0 1‘5 20 €rage OfV(a:)
We conclude that the MDP (10) model is already a good ap-
Fig. 5. L(z). proximation of the one dimensional limit fluid model.

V. CONCLUSION

We considered a discrete model for optimal call admission
control with multiple classes of customers without waiting
room. We have used DP techniques to solve this model, and
we obtained structural properties of the optimal policies. In
particular, in the case of two classes we showed that for each
of the two classes there exist a threshold such that a customer
of the other class is admitted only if the number of them in
the system is under the threshold. We further illustrated by
numerical examples that optimal policies are in general not
monotone.

We then considered an approximation of the discrete model
by a fluid model. We solved the new model and showed that,
under fairly general assumptions, the control problem can be
Fig. 6. Example 3. reduced to a 1-D state space model. We presented numerical
experimentation that validate our results.

The acceptance region for class 2, for example, is a function
of the number of customers of classes 1 and 3. In order to plot APPENDIX
it, we define the acceptance functigh : X — R; an arrival

of class 2 is accepted at state= (w1, x2,23) if and only if e is discretized to an interval of a small lendthThis gives

2 a2 in Fi .
w3 < g*(w1,x3). We present the functiog? in Fig. 6. rise to a discrete time MDP whose valté" satisfies [24, p. 81]
We did the same for all classes and the numerical results vali-
date the structural results obtained in Section II-A. However, in -, . —BhT
both examples 1 and 2, the optimal policy is not monotone in all Vi) = JQSE;) [hg(w) +em TV (Y + h(w - uy))} )

coordinates.

We use the approach and notation of [24] to solve (14). First,

We then discretize the state and obtain an MDP with the new
D. Example 4 finite state spaceY” = {0, h,2h,...,B}. Denote the corre-
H h H h h

We considered the following example for comparing thgPonding value by®. To obtainV™ aty € Y™, we replace
MDP with the fluid model. the argument iV (y + h{(w — py)) by the convex combination

The parameters are: Class X = 20, iy = 1, b = 1 of the values at points i ". This results in the following DP
o N ot T S T T equation [24, p. 92V (y) = TV (y) for all y € Y, where
r1 =10, Class 2\, = 10, o = 1, b, = 5,7, = 100. B =20, °©d P Y Y Y ,
£ =0.99, ¢ = 0.0000001. . der

We next define MDP (10) in which we rescale by 10 the pré-" f(¥) =
vious MDP: The parameters for the MDP (10) are: Class 1:
)\1 = 200, H1 = 1, bl =1,r =1, Class 2)\2 = 100, Ho = 1, +’7/¢Lyf(z - h) + (1 - ,V(w + Ny))f(z))] (15)
by = 5,79 = 10. B = 200, 5 = 0.99899547, ¢ = 0.000 000 1. def N 1 _ _

The Figs. 7 and 8 show the optimal policy for the originavherey= (Zi=1 Aibi + uB> . Equation (15) can be inter-
MDP and the rescaled one, respectively. preted as a DP corresponding tetachasticcontrol problem,

max [hg(w) + e (ywf(z + h)
weD(y)
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Class
5
CX
o
MDD N
(AN 3/
MDD
AN ZANY
MYy N N
NZANVAN VAN VAN V)
N AN AN N O
N AN N
Class 1
5 10 15
Fig. 7. Optimal policy for the MDP.
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Fig. 8. Optimal policy for the MDP (10).
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Fig. 9. Average value of (z) and the discrepancy. Fig. 10. Average value df (x) and the standard deviation.

and can thus be solved using standard value iteration. The cBHiltiplied by —1 and max should be changed into min before
vergence o "(y) to u(y) is established in [24, p. 83] (a linear2PP1Ying this lemma) by noting that

interpolation can be used to approximate) aty ¢ Y"). Note N on

however that in this referendg(y) is taken to be independent 1 /(W) = e (vuyf(z = h) + (1 = yu)) f(2))

of y. The proof for our case, in whicP(y) is different at the 4 max | hg(w) 4+ e PPy £z + h) — F(IN]. (16
boundaryy = B is handled in the same way using the two dis- wCD(y) a(w) (A )= 1)) 18)
cretization steps, see [25], and the convergence follows from ) _ _ )

Theorems 2.7 and 4.2 in [25] (or the Appendix of [22]). Using this forf = 0 together with value iteration we conclude

that V* = lim,_..(77)"f is also concave decreasing, and
hence also the limit a8 — 0, . This implies the required
A. Proof of Theorem I11.13 monotonicity ofw? (y).

i) If a function f : Y" — IR is concave decreasing then so ii) Thatw* is decreasing follows from the approximation and
is T" f. This follows from Lemma 3.1 in [13] (which is formu- i). To prove thatw* is piecewise constant we first note that the
lated in terms of minimizing costs, thus the rewards should lenctiong(-) is concave increasing and piecewise linear. For all
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y the maximum is obtained in one of the finite set of points[17] R. Nagarajan, R. Ramjee, and D. Towsley, “On optimal call admission

El \:b;, orin the point for which the drift i3 is 0. Thus control in cellular networks,” inEEE Infocom '96 1996, pp. 43-50.
*Z'=1d ' . dth . | fini " ibl | é:_LS] E. Altman, T. Jiménez, and G. M. Koole, “On the comparison of
w™ IS decreasing and there Is only a finite set of possible values: ™ ,eyeing systems with their fluid limits Probability in the Engi-

thereforew™ is piecewise constant. neering and Informational Sciengesl. 15, pp. 165-178, 2001.
The last statement would follow directly from [21 Thm [19] R. F. Serfozo, “An equivalence between continuous and discrete time

. . . . . markov decision processe$)perat. Res.vol. 27, pp. 616-620, 1979.
|||.9.1] if the value were Cont'nUOUSIY differentiable. Since [20] H. M. Soner, “Optimal control problem with state-space constraint,”

this is not guaranteed we modify that proof. Note that only at ~ SIAM J. Contr. Optimiz.vol. 24, pp. 552-562, 1986.

points inY” (other thany, andy v ), dv(u)/du need not exist. [21] W.H. Fleming and H. M. Sone€ontrolled Markov Processes and Vis-
N 1Y N N N cosity Solutions New York: Springer-Verlag, 1993.

One can thus proceed as follows to genetate(a) Aty ¢ Y, [22] M. Bardi and I. Capuzzo-Dolcett&ptimal Control and Viscosity So-

select an action that achieves the argmax of the brackets in lutions of Hamilton—Jacobi-Bellman EquationsSan Francisco, CA:

. . 5 Birkhauser, 1997.
(14). (b) Select optimally the actions @f,0 < n < |Y| The [23] H.Frankowska and S. Plaskacz, “Hamilton—-Jacobi equations for infinite

proof of [21, Thm 111.9.1] can still be used for each interval horizon control problems with state constraints,” Cahiers du Centre de
to show that thev™ is optimal. The question then remains of Recherche Viabilité, Univ. Paris Dauphine, Jeux, Contrdle, 9808, 1998.

e [24] H.J.Kushner and P. G. Dupuisumerical Methods for Stochastic Con-
how to perform (b) Sinc&” is finite, it follows from Lemma trol Problems in Continuous Time New York: Springer, 1992.

[11.12 that either it is optimal to accept arrivals at all states, of2s] F. Camilliand M. Falcone, “Approximation of optimal control problems
that any choice ofv*(y) (which has already been determined ~ Wwith Staée éonStfét‘iUtS'\iﬂefrt]i":jate,S aD”f: aPP'i_CatFiO”OSl\'i@"SPSOWt‘EQ”;"
5 : . . ysis and Geometric Methods in Deterministic Optimal Con .

for IS Y) that guarantees th@(t) IS monotone SmCtIy In- Mordukhovich and H. J. Susmann, Eds. New York: Springer, 1996.
creasing (fory < B) will guarantee thatv* is optimal; indeed,
all such policies give the same reward. One can choose in
particularw* (4, ) = lim, | w*(y), which results in a monotone
decreasing policy. ™ Eitan Altman received the B.Sc. degree in electrical
engineering, the B.A. degree in physics, and the
Ph.D. degree in electrical engineering, all from the
Technion-Israel Institute, Haifa, Israel, in 1984,
1984, and 1990, respectively. In 1990, he received
the B.Mus. degree in music composition from
Tel-Aviv University.
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