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On Optimal Call Admission Control in a
Resource-Sharing System

Eitan Altman, Tania Jiménez, and Ger Koole

Abstract—In this paper, we consider call admission control
of multiple classes without waiting room. We use event-based
dynamic programming for our model. We show that sometimes
the customer classes can be ordered: if it is optimal to accept a
class, then to accept a more profitable class is optimal too. We
demonstrate submodularity of the minimum cost for the 2-classes
problem and establish some properties of optimal policies. Then
we formulate a fluid model that allows us to study the optimal
control for the large-capacity case. We show that in the case
of same service time distributions, the control problem can be
reduced to a model with a one-dimensional (1-D) state space,
and a trunk reservation policy is optimal. We present numerical
examples that validate our results.

Index Terms—Fluid model, stochastic knapsack, submodularity,
trunk reservation.

I. INTRODUCTION

T HE advent of ATM has renewed the interest in resource-
sharing models with different resource requirements. For

example, in the ATM context a video connection will demand
more (effective) bandwidth (i.e., more resources) than a regular
voice connection. Traditionally these models are called trunk
reservation models, due to the most often used policy for admit-
ting new customers, based on thresholds depending only on the
currently available resources (where the resources are the trunk
lines in a telecommunication network). In this paper, we study
such a resource sharing model: we derive structural properties
for the optimal policy for the actual model, and we fully deter-
mine the optimal policy for the approximating fluid model.

This model is defined as follows. Traffic from classes
share resources. Traffic of class arrives according to a
Poisson process with parameter. Each customer demands

resources, with integer. All the resources taken by a class
customer are released simultaneously after an exponentially

distributed service time with parameter. States are denoted
with , where signifies the number of class

customers in the system. We assume that ,
i.e., there is no waiting room, customers who do not find suf-
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ficient resources are automatically blocked. There is a central
controller who can reject arriving customers based on full state
information. Each classcustomer who enters the system gives
rise to a reward of . In this paper, we will study admission
policies for this model for the discounted reward criteria.

This problem is also known as thestochastic knapsack(Ross
and Tsang [1], Gavious and Rosberg [2]). In [1], the optimal
coordinate convexpolicy is determined. This class of policies
(to which the optimal policy does not belong in general) is of
particular interest as it leads to product-form solutions of the
steady state probabilities (the influence of changing the param-
eters for coordinate convex policies are studied by Ross and Yao
[3] and Nain [4]). In [2] a good policy is found based on an ap-
proximation of the value function. The special case where the
service rates and the reward per acceptance do not depend on
the customer’s class was studied in Feinberg and Reiman [5]
(under some constraints), and the optimality of a trunk reserva-
tion policy is established (see Miller [6], [7] for early results on
trunk reservation).

We study the optimal policy for the unconstrained case. For
the model with different we derive several monotonicity re-
sults, the strongest for the model with and .
We illustrate with numerical results the nonmonotonicity of the
optimal policies (see also [8]).

Although these results give insight in the structure of the op-
timal policy, it does not help us much in finding a good policy.
Therefore we considered also an approximation of the model
for which we could find the optimal policy, namely the fluid
model. We computed the optimal policy for several parameter
values, both for the original model and its fluid approximation.
For other related fluid models, see also [9]–[12].

II. STRUCTURAL RESULTSWITH DYNAMIC PROGRAMMING

A. Dynamic Programming

Our results are derived by inductively proving properties of
the dynamic programming (DP) value function. To formulate
the DP equation we will make use ofevent-based DP, as intro-
duced in [13]. This greatly simplifies the proofs and also enables
us to consider several systems at the same time.

To every possible event in the system corresponds a DPevent
operatorwhich maps the set of all real-valued functions of
the state variable into itself. For arrivals of a class

customer we have (with the th unity vector) the
corresponding arrival operator defined by

(1)
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for . The function may be interpreted as the op-
timal value function for a one-stage problem in which one must
decide to accept or reject a class-arrival, after which a terminal
state-dependent revenue is earned according to the function.

For the departures the situation is more complicated. Here
we have event operators for class, namely for

if
otherwise.

(2)

Denote by the costs associated with state. These costs
are only used to prevent the system from leaving the state space,
i.e., we take

if
otherwise.

Using the above the DP operator for the continuous time
model as defined in the introduction becomes (using the well-
known uniformization technique, see for example Lippman [7])

(3)
Here we have assumed without loss of generality that

; is the discount factor (when an-
alyzing the discounted reward criterion). One may also analyze
the average reward criterion by taking . In [13] it is shown
how to generalize this to general (but state-independent) arrival
streams, by adding an environment state. We will not deal with
that generalization here, but the results of this section hold also
for general arrivals.

The operator is a linear combination of event operators.
This is typical for continuous time models; only one event can
happen at a time. Using the same event operators we can also
model discrete time models, by taking convolutions of event
operators, representing events happening simultaneously. Note
however that not all the results that follow are valid for dis-
crete-time models. We discuss this issue when appropriate.

In the following we prove certain properties of thevalue func-
tion , defined by and .
As these properties hold for all, they hold also for the lim-
iting optimal policy (for discounted or average reward), as fol-
lows from standard results in Markov decision theory, see e.g.,
Puterman [14]. Note that no additional assumptions are needed
because our model has a finite state space.

B. Ordering Classes

Sometimes two or more of the customer classes can be or-
dered, in the sense that if it is optimal to accept the less prof-
itable one in a certain state, then an arriving customer of the
more profitable class should also be accepted.

This idea is formalized in the following lemmas. First we
show that is decreasing (we use increasing and decreasing
in the nonstrict sense) in all of its components.

Lemma II.1: For all , and , we have .
Proof: It is easily seen that (i.e., ) satisfies the

above inequality. We show that if satisfies the above

inequality, then so does for all event operators. As the
inequality is maintained under linear combinations, the lemma
follows directly by induction on .

Consider first for some . Suppose that is decreasing in
all components. Then ,

, for all , , and . This shows that
is decreasing in all components for all.

The terms concerning the are even easier. Note that

.
For ease of notation we consider classes 1 and 2; as we can

renumber, this does not restrict generality.
Lemma II.2: Consider the -class problem with . If

and , then for all and we have
.

Proof: The cost function and thus satisfy the above
inequality because .

We show that if is decreasing in all its components and
satisfies the above inequality, then so does for all event
operators. As the inequality is closed under linear combinations,
the lemma follows directly by induction on (using Lemma
II.1).

Suppose that satisfies and is mono-
tone decreasing.

Consider first for some . Then clearly
,

so satisfies the inequality if does.
The terms concerning the are easy, except and

. For the value function (3) we need that

which is equivalent to
This holds because , and

. The Lemma is now established via induction.

Note that we used explicitly the form of (3) in the proof. Now
we formulate the first result of this section concerning the form
of an optimal policy.

Theorem II.3: If , and , and in a
state it is optimal to accept class 2 customers, then it is also
optimal to accept class 1 customers.

Proof: By Lemma II.2 and we have that
. Thus if

, i.e., admission of a class 2 customer is optimal, then
, i.e., admission of a class 1 customer

is also optimal.

C. Submodularity for

Assume that .
Lemma II.4: For all and

(4)

Proof: It is clear that (i.e., ) satisfies the above in-
equality. We show that if satisfies the above inequality,
then so does for all event operators. As the inequality is
closed under linear combinations, the lemma follows directly.
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The proof for the operators is easily given, using the in-
ductive assumption; let us therefore consider in detail the op-
erator ( is similar). Denote by the maximizing
action in for , where action 0 (1)
refers to rejecting (accepting) a customer. If , then the
result follows easily. If and , then

If and , then

the second inequality follows by using (4) twice.
Inequality (4) is known assubmodularity. The following

monotonicity result is a direct consequence of it (see, e.g.,
Altman and Koole [15]):

Theorem II.5: For every fixed value of , , there is a
threshold level such that in state a customer
of type is admitted if and only if where .

In [16]and [15], a theory is developed around submodularity.
This was done in the setting of costs instead of rewards; a
general theory around supermodularity could not be developed.
Translating the current model to costs would change sub– to
supermodularity. This makes our model interesting from a
theoretical point of view, and explains as well the restriction to

.
Unfortunately, for every fixed value of there does not

exist in general a threshold level such that in state
a customer oftype 2 is admitted if and only if

. To prove that such a threshold exists typically
requires that concavity be established, which, in general, does
not hold in our case. In fact, it is easy to establish counter
examples for the case that , where the monotonicity is
reversed due to the boundaries, see Section IV.

D. The One-Dimensional (1-D) Case

So far we have derived two partial results: one for the case
that customer classes can be ordered in some special way, and
one for . A special case for which the optimal policy is
fully characterized is the one where all are the same (equal
to , say), and for all . then depends only on the
total number of customers present, so we assume here that the
argument of is 1-D.

Theorem II.6: (Miller [6], Lippman [7]):

i) For all and we have that
, i.e., is concave.

ii) For each class the optimal policy is of threshold form,
i.e., for each customer class there is a critical level above
which no customers are admitted.

This theorem shows that the optimal policy uses the idea of
trunk reservation: the thresholds assure that some of the servers
(called trunk lines in the telephone network) are kept free (are

reserved) for other traffic classes. Of course capacity is only
kept free for traffic classes that give a higher profit. This can be
shown as follows. Let be the threshold for classtraffic, and
assume that . Using Theorem II.3 we conclude
that also . Thus we can say that trunks
are reserved for traffic of the classes , of which

trunks are reserved for traffic of the classes ,
etc.

A similar model, with two types of traffic and in the context
of cellular communications, has been studied in [17].

III. FLUID MODEL

In this section, we present a fluid model that approximates the
original model when the number of resourcesas well as the
rate of call arrivals are large. Explicit solutions are obtained
for the fluid model, which can be used to construct almost-op-
timal policies for the original problem.

Let us make some general observations before specifying the
model. A fluid model is characterized by the absence of ran-
domness in the system. This makes a fluid model usually per-
form better than the originating queueing system. (In [18] this
general observation is proven for a specific model.) Indeed, in a
queueing system with two classes, trunk reservation will always
be optimal if the reward of customer class 1 is high enough, even
if there is enough capacity to accommodate the average total
traffic load. This is because capacity is reserved in case, due to
the random behavior, a burst of class 1 customers arrives. This
phenomenon does not play a role in the fluid model. But still, as
we will see, trunk reservation can be optimal, even if the total
traffic load does not exceed the service capacity.

A. The Model

• The states:The discrete state space is replaced with a con-
tinuous one ,
representing the amount of sessions in the system.

• The arrivals:We replace the discrete arrivals by a contin-
uous stream; the amount of classtraffic that arrives per
time unit is assumed to be deterministic with rate.

• The departure rate:The departure rate of one unit of ses-
sion of type is . Hence, if there are sessions of type

in the system, then the departures of typesessions is
.

• Control and policies:The arrivals are controlled; , the
admission control for class, represents the fraction of the
arrivals that are accepted to the system. The evolution of
the system is given by

where (5)

The control actions are admission vectors which are ele-
ments of . We consider policies that are mea-
surable functions of the time of the form ,
with the following state constraints. If at timethe state is

and action is used, then

if (6)
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A policy satisfying (6) is called feasible. Define to
be the set of actions that can be used at state.

• The reward: is a reward per unit of typesessions
admitted to the system. With being
the immediate reward, we consider the total discounted
cost , where is the action
at time , obtained when a policy is used. (Note that,
although the immediate reward is related only to the ac-
tion and not the state of the system, the state of the system
plays an important role since the feasible admission ac-
tions are constrained once the boundary
is attained.)

Our aim is to find a policy that achieves

.

Remark III.1: The constant used in is not the same as
the one used in the previous section for the discretized model.
Writing the discounting as an exponent is usual in continuous
time models. However, there is an easy formula relating both
forms of discounting (see, e.g., [19] for this and other details
concerning uniformization).

The above model can be interpreted as a limit of a sequence
MDP of MDPs of the form of the original one, in which
the parameters are chosen appropriately. This is done by scaling
both the intensities and the states by the same factor. We shall
add below the superscriptto denote the parameters of the con-
tinuous queueing model, i.e., the one appearing in (5).

• 1) , (due
to the next item, this will mean that all rates aretimes
faster in the th model).

• 2) ; this is the rescaling in space by.
The state space now contains fractions instead of integers,
and the basic unit corresponding to a single session in the

th model is . The arrival and departure operators
and have to be redefined accordingly in (1) and (2) by
letting correspond to times the (original) th unity
vector. Thus, keeping the initial state constant in

means that we multiply the number of ongoing sessions
by .

• 3) and the s are kept unchanged; due to the transfor-
mation of the state space, this means that the constraint on
the total number of calls, weighted by thes, increases
linearly with .

• 4) The discount factor of the th model is given as
.

• 5) The reward: .

Remark III.2: The above scaling allows for the convergence
of not only the rewards, but also of the state process. In practice,
if we only want to compute the rewards using DP, we may use a
simpler scaling. i) We need not rescale the state, so we may take

in step 2) above. In that case, the vectorused
in (1) and (2) is just as originally defined: theth unit vector.
But then, ii) we need to rescale to in step 3). The other
parameters are the same as in the previous scaling.

The motivation for the above scaling is the following. The
number of arrivals in a time unit in the th model is of the
order of . Assume that is small, large, and that the
policy is constant during . Then we can approximate the

incurred reward during a time as (where
depends on ), since a reward of is earned by each ar-
rival and there are approximately arrivals. The dis-
counting in the original model was related to events: each time
an event occurred we multiplied by the discount factor. The
total number of events that occur during the periodin the th
model is of the order of of which the number of arrivals is
of order of (recall that in the original model, the sum of ar-
rival rates plus maximum service rate was taken to be one unit).
The total discounting during the period of is thus .
The overall reward for classis thus approximated by

This gives us the above scalings. We do not include a mathemat-
ical study of the convergence of the discrete model to the fluid
model, this is beyond the scope of this paper.

Next we derive certain useful properties of our fluid model.
First note that the model is indeed totally deterministic. This
means that the trajectory can be calculated for each policy and
initial state. These trajectories are the solutions of the linear dif-
ferential (5), which are given by

Lemma III.3: (Trajectories):The state trajectories under any
policy are given by

(7)

where is the action used at time.
We will also need the equivalent of the DP value function

of the previous section for the current continuous time and
state space model. It is the following Hamilton-Jacobi-Bellman
(HJB) equation:

(8)

where

Define to be the set of functions which are uni-
formly continuous over . We have the following ([20] The-
orem. 3.3, see also [21] Sections III.8–9, [22] and [23]).

Lemma III.4: There is a unique viscosity solution of
(8) and .

B. Optimality Results

In this subsection we study the general model. We derive
some results for the special case of light load. We obtain
the structure for arbitrary load in the following subsection,
restricting to the special case of equal service rates.

Theorem III.5: Assume that . Then

i) Any optimal policy starting from any initial state
results in a trajectory that converges to the point, given
by for all ;

ii) There exist such that

for all (9)
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Fig. 1. Illustration of Theorem III.5.

and for any initial state with componentwise it is
optimal for all time to accept all arriving customers.

Proof: Note that the point exists if and only if
. We start with proving ii). The set of

possible consists of all with . It is easy
to see that it is optimal to accept all customers if, by doing
so, the boundary is not crossed. Any policy not doing so is
sub-optimal, as for all . We prove that it is optimal to
accept all traffic for as specified in the theorem. Because the
trajectories for are upperbounded by those for, the result
for follows then directly. Indeed, from (7) we have

(10)

and by assumption.
The convergence of the trajectory for any to fol-

lows easily from (10).
Now consider a trajectory due to an optimal policy starting at

an arbitrary initial state. Then the trajectory satisfies

This means that after a finite time the trajectory is within a re-
gion, as in ii), for which accepting forever all sessions is optimal,
for which we already showed that the trajectory converges to.

In Fig. 1 the set of states for which is optimal because
of Theorem III.5 is drawn for . The middle triangle gives
the possible values for (in which (9) holds), the region below
it gives the possible values for. In fact, for one of the two
remaining triangles (the one corresponding to an excess of faster
customers) is also optimal.

Thus we see that trunk reservation is not used within the set
of states . This is for the simple reason
that we can show that all traffic can be accepted, without any
overflow. This is not the case for initial states outside of this set.

It can well be the case that the trajectory belonging to
for all and goes outside of . We study this case in the next
subsection.

C. A Simpler Equivalent Model

We make in this subsection the following assumption:
Assumption III.6: (A1) The service rates do not depend on,

.
As we will see below this assumption suffices to treat the

system as a 1-D system. To do the same in the discrete model
we needed the to be equal as well.

Define

(11)

Lemma III.7: Consider two models with initial states
and , respectively, such that

Then

i) Any policy that uses at time that is feasible for
initial state is also feasible for initial state , and

in the two cases;
ii) For any two policies and satisfying

for all the trajectories and
are the same, and if is a feasible

policy, then so is .
Proof: It follows from (5) that satisfies

(12)

with the constraint if . The evolution of
is then the same in the two cases. Since the constraints on the
policies are functions of , the same constraints are satisfied,
and thus are indeed feasible for both cases. Since the dis-
counted cost is only a function of, which is the same in both
cases, it follows that the immediate rewardsare the same. This
completes the proof of i).

Part ii) follows directly from (12) and part i).
The above Lemma hints that we may aggregate the state and

action spaces. Indeed, we note that at any time, an action
may be changed to without affecting the future evolution
of the s, and hence the future constraints on. On the other
hand, the rewards do not depend ondirectly, but only on .
This motivates the following definition of an improvement of a
policy.

Definition III.8: Consider a feasible policy. Define the im-
provement of as follows. Denote

(13)
Define .

If uses at time , then is defined to be the policy that
uses at time the action .
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Lemma III.9: For all we have .
The reward corresponding to is given by

, where .
Proof: Directly from Lemma III.7, part ii).

We are thus ready to introduce an equivalent simplified 1-D
model with

• State space: ,

• Action space: ,

• Policies:These are measurable functions from to ,
satisfying the following state constraints for all

(this is equivalent to ) if . We denote
by the actions available at state.

• Rewards: The immediate reward is
given in (13). The total discounted reward is

where is the policy
that uses at time . The optimal reward is

.
Introduce the HJB equation

(14)

As with Lemma III.4, we have
Lemma III.10: There is a unique solution (defined in

Lemma III.3 ) of (14), and .
As for the general case we make the distinction between

models that have enough capacity to handle all offered traffic
and models that do not have this capacity.

Theorem III.11: If then it is optimal al-
ways to accept all arriving calls.

Proof: This follows directly because the policy that al-
ways accepts all calls has a negative drift on the boundary

.
We shall thus consider from now on only the nontrivial case

. To simplify notation we assume (without
restricting generality) that . We also assume that

. Recall that a policy is calledstationary
if it uses at any and the same actions, whenever the states
at and are the same. We characterize the optimal policy.

Theorem III.12: Assume . The set con-
sists of all policies with of the following form:
for some , , and

. Then

i) there is an optimal policy , (characterized by
);

ii) with the state process generated by, we have that
is increasing to .

Proof: By Lemma III.9 an arbitrary policy can be im-
proved by applying , that uses at all . We show that

. By a simple change of variables we see that (13) is
equivalent to

Now it is obvious that this maximum is obtained by a policy in
. This shows part i).

Next we show that . Suppose that
. Not all traffic is admitted, as this

would lead to a trajectory with . Thus we
can add additional traffic consuming up to units of
service capacity to the system at all times without crossing
the boundary . This increases the reward, and therefore

cannot be optimal. A similar argument can be
used to show that .

We continue with showing that is increasing. Sup-
pose that is decreasing on some interval . As

, has to increase after to regain
. If is decreasing (increasing) inthen the drift is

negative. Note also that the optimal policy, the solution to the
HBJ equation, is stationary. But we saw that the drift in states

can be negative or positive, depending on the
time. This is in contradiction with the stationarity.

A simple more heuristic argument is as follows: due to the
discounting it is advantageous to move rewards forward in time.
Earlier arrivals mean also earlier departures, leaving room for
more admissions later on. This shows that it can never be op-
timal to have a negative drift in some state.

In the Appendix we sketch a numerical approach for solving
(14). We first note that the term in brackets in (14) is concave
and piecewise linear in for every for which exists.
Therefore, for such ’s, it attains its maximum on one of the
points of the form , except for the boundary ,
where the argmax need not be achieved at an extreme point (and
may typically be an interior point). We now use (14) to obtain
an optimal stationary policy.

Theorem III.13:

i) The solution of (14) is concave decreasing.
ii) Let be a stationary policy that selects an action that

achieves the argmax of the brackets in (14) at any
for which exists. Then such a can be

chosen to be piecewise constant in, and decreasing in;
any such choice is an optimal policy.

The proof of the theorem is delayed to the Appendix.
We conclude that there is a set containing

at most elements, such that is a decreasing sequence
and achieves the argmax in (14) on the in-

terval .
It follows from the definition of that the solution of (14)

satisfies . This differential
equation allows us to computeon the whole interval. We recall
that the differential equation of the form

has the solution

This yields for
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Fig. 2. Example 1.

To initiate the computation, we use the fact that at , it
is optimal to use which is the policy that results in
always staying on the boundary. This follows directly from (14)
and Lemma III.10. Thus .

is the only point at which we need to considerwhich
does not belong to the set of points of the form ; out-
side the boundary, we do not need anymore to constrain the ac-
tions, so that one of the ’s will be optimal in a neighborhood
of .

IV. EXPERIMENT RESULTS

In this section we test the DP with some realistic data. In par-
ticular, we study numerically the structure of the optimal poli-
cies validating the structural results obtained in Section II-A.
Our numerical study shows that the optimal policies are, in gen-
eral, not monotone in all components. We also compare numer-
ically the original problem with its fluid approximation.

The examples were coded in C and run on a SUN Sparc Sta-
tion V.

A. Example 1

We study the model of Section II-A with two classes of cus-
tomers , 20 units of total resources and the
following parameters for each class: Class 1: , ,

, , Class 2: , , , .
The computer program ends when the variation of the

value function between two iterations is less than
. The number of iterations was 928 for this

example. The discount factor for this example is: .
Fig. 2 represents theoptimal policyobtained. A black circle

means acceptance of customers from any one of the two classes.
A circle whose only left (right, respectively) half is black means
that we accept customers of class one (of class two, respectively)
and reject those of the other class. A white circle means that we
reject both types of arrivals. In the( , respectively) axis we
represent the customers of class 1 (2, respectively).

Fig. 3 shows the threshold level given by the Theorem
II.5.

B. Example 2

In this example we still use two classes of customers, but class
one has a much larger reward. The total resources are still twenty
units . Class 1: , , , ,
Class 2: , , , . ,

, N. of iterations 276.

Fig. 3. L(x).

Fig. 4. Example 2.

Fig. 4 shows that only when there are 0 customers of class 1
and 2, 3 or 4 of class 2, then it is optimal to accept customers
from both classes, otherwise customers of class 1 should be re-
jected, and it is optimal to accept class 2 customers as long as
we do not reach the boundary.

Fig. 5 shows the threshold level given by the Theorem
II.5.

C. Example 3

We use in this example three classes of customers ,
the total amount of resources is still , Class 1: ,

, , , Class 2: , , ,
, Class 3: , , , , ,

.
We obtained a convex acceptance region for the optimal

policy, which we describe graphically by specifying the accep-
tance region for each class.
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Fig. 5. L(x).

Fig. 6. Example 3.

The acceptance region for class 2, for example, is a function
of the number of customers of classes 1 and 3. In order to plot
it, we define the acceptance function ; an arrival
of class 2 is accepted at state if and only if

. We present the function in Fig. 6.
We did the same for all classes and the numerical results vali-

date the structural results obtained in Section II-A. However, in
both examples 1 and 2, the optimal policy is not monotone in all
coordinates.

D. Example 4

We considered the following example for comparing the
MDP with the fluid model.

The parameters are: Class 1: , , ,
, Class 2: , , , . ,

, .
We next define MDP (10) in which we rescale by 10 the pre-

vious MDP: The parameters for the MDP (10) are: Class 1:
, , , , Class 2: , ,

, . , , .
The Figs. 7 and 8 show the optimal policy for the original

MDP and the rescaled one, respectively.

We next illustrate the fact that under assumption A1, intro-
duced in Section III-C, the value function of the limit fluid
model (or in fact, already the rescaled model MDP (10)) de-
pends on the state only through given in (11) (so the
limit problem is indeed 1-D).

Figs. 9 and 10 show the averaged over all values of’s
that give the same. For each , Fig. 9 presents in addition to
the average, also the discrepancy (i.e., the variations) from the
average, and Fig. 10 presents the standard deviations from that
average, both for the MDP (10) model. In both figures,
is given in the vertical axis and(taking values between 0 and
200) is given in the horizontal one.

The maximal discrepancy is always inferior to 1.34% of the
average of the .

The standard deviation is always inferior to 1.4% of the av-
erage of .

We conclude that the MDP (10) model is already a good ap-
proximation of the one dimensional limit fluid model.

V. CONCLUSION

We considered a discrete model for optimal call admission
control with multiple classes of customers without waiting
room. We have used DP techniques to solve this model, and
we obtained structural properties of the optimal policies. In
particular, in the case of two classes we showed that for each
of the two classes there exist a threshold such that a customer
of the other class is admitted only if the number of them in
the system is under the threshold. We further illustrated by
numerical examples that optimal policies are in general not
monotone.

We then considered an approximation of the discrete model
by a fluid model. We solved the new model and showed that,
under fairly general assumptions, the control problem can be
reduced to a 1-D state space model. We presented numerical
experimentation that validate our results.

APPENDIX

We use the approach and notation of [24] to solve (14). First,
time is discretized to an interval of a small length. This gives
rise to a discrete time MDP whose value, satisfies [24, p. 81]

We then discretize the state and obtain an MDP with the new
finite state space: . Denote the corre-
sponding value by . To obtain at , we replace
the argument in by the convex combination
of the values at points in . This results in the following DP
equation [24, p. 92]: for all , where

(15)

where . Equation (15) can be inter-
preted as a DP corresponding to astochasticcontrol problem,
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Fig. 7. Optimal policy for the MDP.

Fig. 8. Optimal policy for the MDP (10).

Fig. 9. Average value ofV (x) and the discrepancy.

and can thus be solved using standard value iteration. The con-
vergence of to is established in [24, p. 83] (a linear
interpolation can be used to approximate at ). Note
however that in this reference is taken to be independent
of . The proof for our case, in which is different at the
boundary is handled in the same way using the two dis-
cretization steps, see [25], and the convergence follows from
Theorems 2.7 and 4.2 in [25] (or the Appendix of [22]).

A. Proof of Theorem III.13

i) If a function is concave decreasing then so
is . This follows from Lemma 3.1 in [13] (which is formu-
lated in terms of minimizing costs, thus the rewards should be

Fig. 10. Average value ofV (x) and the standard deviation.

multiplied by and max should be changed into min before
applying this lemma) by noting that

(16)

Using this for together with value iteration we conclude
that is also concave decreasing, and
hence also the limit as , . This implies the required
monotonicity of .

ii) That is decreasing follows from the approximation and
i). To prove that is piecewise constant we first note that the
function is concave increasing and piecewise linear. For all



1668 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 49, NO. 9, SEPTEMBER 2001

the maximum is obtained in one of the finite set of points
, or in the point for which the drift in is 0. Thus

is decreasing and there is only a finite set of possible values:
therefore is piecewise constant.

The last statement would follow directly from [21, Thm
III.9.1] if the value were continuously differentiable. Since
this is not guaranteed we modify that proof. Note that only at
points in (other than and ), need not exist.

One can thus proceed as follows to generate. (a) At ,
select an action that achieves the argmax of the brackets in
(14). (b) Select optimally the actions at . The
proof of [21, Thm III.9.1] can still be used for each interval
to show that the is optimal. The question then remains of
how to perform (b). Since is finite, it follows from Lemma
III.12 that either it is optimal to accept arrivals at all states, or
that any choice of (which has already been determined
for ) that guarantees that is monotone strictly in-
creasing (for ) will guarantee that is optimal; indeed,
all such policies give the same reward. One can choose in
particular , which results in a monotone
decreasing policy.
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