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Abstract

In this survey, we summarize different modeling and solution con-
cepts of networking games, as well as a number of different applications
in telecommunications that make use of or can make use of networking
games. We identify some of the mathematical challenges and method-
ologies that are involved in these problems. We include here work that
has relevance to networking games in telecommunications from other
areas, in particular from transportation planning.

Keywords: Game Theory, Telecommunication.

1 Introduction

With the deregulation of the telecommunication companies and the rapid
growth of the Internet, the research area of networking games has experi-
enced a remarkable development. The impetus to this surge of research is
the clear limitation in the telecom and internet industries of the pure op-
timization approach, with respect to routing, resource or quality of service
allocation and pricing. Indeed, the optimization approach assumes that the
goal of the routing strategy, allocation, or price choices can be defined inde-
pendently of the reactions of other actors, users, or players, in the industry.
At nearly all levels of the decision process, however, interaction across players
is non-negligible, where players may refer to other telecom firms, internet ser-
vice providers, or even users themselves, who vie for limited resources.When
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interactions are to be taken into account, because the choices of any one actor
influence the choices of the others, a natural modeling framework involves
seeking an equilibrium, or stable operating point, of the system. In this set-
ting, each actor seeks to optimize her or his own criterion, which includes
the influence of the decisions of the other actors upon his own, and all actors
perform this optimization simultaneously. The Nash equilibrium concept is
one example of this, which has been extended to networks. However, as we
shall see in this survey, it is not the only such concept. In particular, many
modeling aspects from the study of equilibrium in transportation networks
have been successfully applied to telecommunications.

Equilibrium models in transportation networks have been studied for 50
years, since their introduction in 1952 [203], and many extensions and vari-
ations of this concept exist; most, though, have yet to be carried over to
the telecommunication arena. We shall highlight some particularly promis-
ing extensions in this survey. At the same time, some very similar concepts
appear to have emerged in game theory in the past 10 years; these too will
be discussed here.

One clear need in the field of networking games in telecommunications is
therefore to make the most of research results of these different communities:
mathematics, economics, information sciences and transportation engineer-
ing. Another is to continue defining new problems and models from the point
of view of telecommunications technology, problems that may not before have
been posed for lack of an appropriate modeling paradigm, but that may lend
themselves to the network equilibrium framework.

In preparing this survey on networking games in telecommunications, we
attempted to summarize the different modeling and solution concepts, and
to highlight the different types of applications in which networking games
are useful in telecommunications, as well as to identify some of the math-
ematical challenges that are involved in these problems. With respect to
telecommunication applications, we have encountered a rich literature in flow
and congestion control [4], [5], [12], [13], [14], [17], [18], [19], [46], [60], [61],
[62], [54] [77], [78], [91], [116], [115], [145], network routing [7], [16], [15], [24],
[32], [36], [37], [40], [49], [50], [65], [103], [95], [109], [110], [111], [112], [119],
[160], [164], [174], [175], [203], file allocation [118], load balancing [97], [98],
[99], [100], [101], multi-commodity flow [204], [205], resource allocation [22],
[43], [85], [123], [210] and quality of service provisioning [210], [67], [185], see
also [6], [23], [25]. Some papers have considered the combination of flow and
routing in a non-cooperative setting, see [9], [20], [69], [84], [143], [164], [171]
and references therein. As shown in [164] in a compendium of transporta-
tion equilibrium models and algorithms, when the objective functions of the
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players are the sum of link costs plus a reward which is a function of the
throughput, then the underlying game can be transformed into one involving
only routing decisions.

A promising potential application of game theory is the area of network
security, see [133] and [153].

Intensive research effort has also been devoted to game models in wireless
networks. Some of the main issues there are

• power control [2], [3], [8], [72], [86], [93], [183], [184], [195]; in particular,
power control for MIMO channels have been studied in [162],

• pricing and incentive for cooperation between mobile terminals [31],
[53], [200],

• security issues [153],

• relaying packets in ad hoc networks [152, 126, 179],

• the access control to a common shared radio channel [10], [34], [94],
[134], [178] and

• auctions for resource reservation [63], [136], [193] and [194].

We shall not attempt to review the area of networking games in wireless
networks in this survey.

Some other related surveys are [201], as well as a whole special issue of
the journal Networks and Spatial Economics on Crossovers between Trans-
portation Planning and Telecommunications, March, 2004.

In this survey we focus primarily on non-cooperative games. We discuss
different equilibrium concepts, in terms both of their qualitative and quanti-
tative properties. In particular, we consider in depth the issue of uniqueness
of an equilibrium, the Braess paradox, controlling equilibria through design
parameters or pricing, as well as the Stackelberg framework for hierarchi-
cal, or leader-follower, equilibrium. We provide as well a brief summary of
some work on equilibria in cooperative games that are related to resource
allocation, pricing and to the Stackelberg framework.

The structure of the survey is as follows. We begin in Section 2 by pre-
senting basic notions of game theory related to this survey. We present there
the notions of multi-criteria and hierarchical equilibria as well as potential
games. We then describe in Section 3 the state of the art in non-cooperative
service provisioning and routing in networks. In Section 4 we discuss the
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work on non-cooperative flow control. In Section 5 we discuss the unique-
ness of equilibrium and in Section 6 we describe issues related to convergence
to equilibrium from initial non-equilibria strategies. Then we survey in Sec-
tion 7 issues related to some properties of equilibria and the way they can be
influenced by network architecting and administration, which includes the
discussion of the Braess paradox, hierarchical games and pricing issues. We
conclude with the topic of cooperative equilibria in telecommunications.

2 Basic game concepts

In this section we introduce the basic definitions and notation needed by the
equilibrium models that have been studied in communication networks.

As the primary focus of the survey is the non-cooperative framework, in
which each user optimizes her or his decision in an individual way, we begin
by presenting the non-cooperative Nash equilibrium.

2.1 Nash equilibrium and its variants

Let us consider a model with n users, each of whom attempts to maximize
his own particular utility function; denote the utility function of user i as J i.
Further, let ui denote the decision, or strategy, of user i and u−i the strategies
of all users other than user i. The utility function of user i is expressed as a
function both of the vector of strategies of all users, u = (u1, ..., un), and of

a vector of system, or control, parameters, x, that is, J i(u, x).

For x fixed, we say that u∗(x) = (u1∗, ..., un∗) is a Nash equilibrium if no
user can improve her or his utility by unilateral deviation. More precisely,
for each i ∈ {1, 2, . . . , n}, a Nash equilibrium satisfies

J i(u∗(x), x) = max
ui

J i(u1∗, ..., ui−1∗, ui, ui+1∗, ..., un∗, x) =

max
ui

J i(u−i∗, ui, x). (1)

In practice, a user may have constraints on her or his strategy, and this
gives rise to constrained Nash equilibria. One example is the so-called “cou-
pled constraint” set of [173]. Denote

Π(x) = {u : gl(u, x) ≥ 0, l = 1, ..., k}

the set of n-tuple actions of the n users that satisfy the k × k′ constraints,

where gl(., x) is a mapping of R
n → R

k′

, with each component of gl be-
ing a convex function. In the special case where the constraint sets are
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orthogonal we have Π(x) = Π1(x) × Π2(x) × .. × Πn(x), where Πi(x) =

{u : gi
l(u

i, x) ≥ 0, l = 2, ..., ki} is the set of actions that satisfy the ki con-
straints for user i. The number of orthogonal constraints imposed on each
decision problem may vary across users, where that number is referred to
as ki. The vector u∗ is then said to be a constrained Nash equilibrium if
u∗ ∈ Π(x), and, in addition,

J i(u∗(x), x) = max
ui

(

J i(u−i∗, ui, x) such that (u−i∗, ui) ∈ Π(x)
)

. (2)

As this survey is preoccupied with telecommunication applications, it is
of interest to define the network extension of the standard Nash equilibrium
paradigm. To do so, consider first a strongly connected network, G = (N, A),
where N is the set of nodes of the network and A the set of links. Consider
as well a set of users, or requests for connection, which are defined over node
pairs, so that now n ≤ |N×N |, since in the simplest case, a single connection

is established for each node pair. The strategy of a user, ui, is then vector-
valued, that is, ui = (ui

1, ..., u
i
mi

), for some mi. Similarly, the vector of control

parameters, x, is then a vector of vectors, each parameter type being defined
over every node, link, or route of the network.

A natural variant of the Nash network equilibrium as defined above is one
in which each node pair can accommodate several user classes, or differenti-
ated traffic types. Clearly, in terms of the model, this is just a reformulation
of the above with one more index to represent the user class or traffic type,
or through a superposition of networks, one for each user type and coupled
by constraints across user classes on the physical links. This multi-class or
multi-user generalization does, however, have important consequences for the
uniqueness of the equilibrium solution.

A final variant of the Nash equilibrium concept that we shall introduce
here is that of multi-criteria equilibrium. In this setting, each user may
have several criteria or utility functions to optimize. Let us denote the (now

vector-valued) utility function of user i as J i = (J i
1, ..., J

i
pi

). We say that a

vector y of dimension p dominates a vector z of the same dimension if, for
any j = 1, ..., p we have: yj ≥ zj, with strict inequality holding for at least
one j. In this case we write y dom z. Then, u∗ is called a multi-criteria, or
Pareto-Nash, equilibrium, if no user i can gain by unilaterally deviating (in
the sense of the order ” dom ”) from her or his strategy. In other words, for

each i, there is no ui such that

J i(u−i∗, ui, x) dom J i(u∗, x).
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Existence of Nash equilibrium is guaranteed under fairly mild conditions,
if one allows for mixed, rather than pure or 0-1, strategies; for example, a
Nash point can be shown to exist under the convexity and compactness of
the strategy space and the semi-continuity of the utility functions together
with some quasi-concavity properties, see e.g. [76].

2.2 Hierarchical optimizaion, Stackelberg equilibrium

We now extend the framework to the case that a decision maker (who may
represent, in telecommunication networks, the network administrator, the
network designer, or a service provider) has an objective, possibly a vector-
valued utility function, which she wishes to optimize. Among the components
of this optimization objective there may be elements that coincide with the
users’ utilities, when the manager wishes to satisfy the users, and, for ex-
ample, minimize their individual delays or loss probabilities. However, the
manager is typically concerned not only with the efficient use of resources
but also with purely economic considerations such as profit maximization.

The hierarchical relationship between the manager, on the one hand,
who sets the parameters so as to achieve some objective, and the users who
respond by seeking a new equilibrium, is modeled as a bilevel program, or a
Stackelberg leader-follower problem [192]. Denote by R(u(x), x) the utility,
or objective, of the manager. The function R depends on the parameters the
manager sets, which we denote by x, and on the users’ policy, strategy, or
response to those parameters, u(x).

When the equilibrium u∗(x) defined in Subsection 2.1 exists and is unique,
the objective of the network manager is to determine x that maximizes
the function R, assuming that the users react to the parameters chosen,
x, through their equilibrium actions u∗(x). In other words, the objective of
the manager is to find x∗ that satisfies

R(u∗(x∗), x∗) = max
x∈X

R(u∗(x), x), (3)

for some set of feasible actions, X. This problem class is tremendously useful,
in principle, since it models the optimization that the decision maker wishes
to perform simultaneously with the complex reactions of the users. However,
it is also notoriously difficult to solve. When the users’ equilibrium problem
has constraints, even in its simplest form, the Stackelberg, or hierarchical, or
bilevel, program, is fundamentally non-convex and non-differentiable. Show-
ing existence of a solution to the hierarchical problem is also trickier than
for the Nash equilibrium. See, for more details, [30], [166].
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Several extensions and variations of the Stackelberg theme can be formu-
lated as well. In the basic Stackelberg framework, the users and the manager
have utility functions, J i and R, respectively, that map from <n to < [192].

However, in telecommunications applications, J i and R may be vector-valued
functions. Reinterpreting (3) for this Pareto-Nash framework case means that
there does not exist a point x such that R(u∗(x), x) dom R(u∗(x∗), x∗).

Another extension arises when the equilibrium solution u∗(x) ∈ U∗(x)
is not unique for every x. In this case, the problem (3) is not well-defined,
since R(u(x), x) is no longer a function, but rather a point-to-set mapping.
In that case, it is unclear to which value in U ∗(x) the decision maker should
use in adjusting her or his control parameters, x. There are essentially two
ways to reformulate the problem in this case so that it becomes well-defined
[128]. In the first, the objective for the network may be to guarantee the
best performance for any possible equilibrium, i.e. the decision maker is
pessimistic (or assumes non-cooperative users) and therefore seeks an x∗

that satisfies

R(u∗(x∗), x∗) = max
x

min
u
∗(x)∈U∗(x)

R(u∗(x), x). (4)

On the other hand, if the decision maker is optimistic, (or is in a cooperative
setting), she may assume that the users will choose the equilibrium solution
that favors her objective, in this case, maximization of R, giving the following
problem: find x∗ such that

R(u∗(x∗), x∗) = max
x

max
u
∗(x)∈U∗(x)

R(u∗(x), x). (5)

Finally, one may consider the case of competition between several net-
works. This can give rise to a still more complex hierarchical game; tak-
ing into account the reactions u∗(x), of the n users to the decisions x =
(x1, x2, . . . xm) of m network managers, the solution concept becomes an ex-
tension of equation (3) of the form

Ri(u∗(x∗),x∗) = max
xi

Ri(u∗(x−i∗, xi),x−i∗, xi), (6)

where x−i∗ = (x1∗, . . . , xi−1∗, xi+1∗, . . . , xm∗), Ri represents the utility (scalar

or vector) of decision maker i, and xi her or his decisions.
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2.3 Potential games

In 1996, Monderer and Shapley [154] identified a class of games called “po-
tential games”. This class includes in particular several types of network
routing games, such as the congestion games introduced in [174] as well as
the routing games in [203] used heavily throughout transportation planning
(see in particular [180], [182]). A game is a potential game if there exists a
real-valued function on the decision space which measures exactly the dif-
ference in the utility that any user accrues if she or he is the only user to
deviate. Mathematically, a potential game with n users is characterized by
a potential function, Φ(u), such that for any user i, we have:

J i(ui, u−i) − J i(vi, u−i) = Φ(ui, u−i) − Φ(vi, u−i).

The definition was extended in [180, 182] to a finite number of classes, each
of which has an infinite population of users. It is this latter setting that
includes as a special case the equilibrium models in transportation, for which
the Wardrop equilibrium, defined below, is the solution concept.

Potential games have nice properties, such as uniqueness of equilibrium
and convergence of greedy algorithms to the equilibrium. This is discussed
later in the context of networks in more detail.

2.4 Wardrop Equilibrium

Network games have been studied in the context of road traffic since the
1950s, when Wardrop proposed his definition of a stable traffic flow on a
transportation network [203]. The definition proposed by Wardrop was the
following: ”The journey times on all the routes actually used are equal, and
less than those which would be experienced by a single vehicle on any unused

route” (see p. 345 of [203]).
This definition of equilibrium is different than the one proposed by Nash.

Expressing the Nash equilibrium in terms of network flows, one can say
that a network flow pattern is in Nash equilibrium if no individual decision
maker on the network can change to a less costly strategy, or, route. When
the decision makers in a game are finite in number, a Nash equilibrium
can be achieved without the costs of all used routes being equal, contrary to
Wardrop’s equilibrium principle. The Wardrop equilibrium assumes therefore
that the contribution to costs or delays by any individual user is zero; in other
words, the population of users is considered infinite. In some cases, Wardrop’s
principle represents a limiting case of the Nash equilibrium principle as the
number of users becomes very large [27], [84] (see also [180], [208]). There
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are other ways to draw a parallel between the Wardrop and Nash equilibrium
concepts, some of which define a ”user” to be an origin-destination pair [84].

The Wardrop equilibrium falls into the category of potential games with
an infinite number of users. Indeed, the Wardrop equilibrium condition can
be expressed mathematically to state that the flow on every route r serving a
commodity, or origin-destination (OD) pair, w, in the network is either zero,
or its cost is equal to the minimum cost on that OD pair. The following
system of equations is obtained from the following constraints (i) the cost
on any route serving an OD pair is at least as high as the minimum cost on
that OD pair (ii) a route serving an OD pair is not used if its cost is strictly
larger than the minimum cost between that OD pair, and (iii) the demand
for each OD pair is satisfied.

hwr(cwr − πw) = 0, r ∈ Rw, w ∈ W, (7)

cwr − πw ≥ 0, r ∈ Rw, w ∈ W, (8)
∑

r∈Rw

hwr = dw, w ∈ W, (9)

where hwr is the flow on route r ∈ Rw, Rw is the set of routes joining node
pair w ∈ W, and W is the set of origin-destination node-node pairs. The
cost or delay on that route, r, is cwr, and πw is the minimum cost on any
route joining node pair w. The demand for service between the node pair w
is denoted dw.

Then, adding non-negativity restrictions hwr ≥ 0 and πw ≥ 0, the result-
ing system of equalities and inequalities can be seen as the Karush-Kuhn-
Tucker (KKT) optimality conditions of the following optimization problem,
known as the Beckmann transformation:

min f(x) =
∑

l∈A

∫ xl

0

tl(xl)dx =
∑

l∈A

∫

∑

i∈I
xil

0

tl(xl)dx

subject to

∑

r∈Rw

hwr = dw, w ∈ W, (10)

∑

w∈W

∑

r∈Rw

hwrδ
l
wr = xl, l ∈ A, (11)

xl ≥ 0, l ∈ A, (12)
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where xl is the flow on link l, xil is the class-i flow on link l, I being the
set of classes, and δl

wr is a 0 − 1 indicator function that takes the value 1 if
and only if link l is present on route r ∈ Rw. In other words, contrary to
the Nash equilibrium, the Wardrop equilibrium can be expressed as a single
convex optimization program.

We may re-express the above classic definition of the Wardrop equilibrium
in a way related to the definition of Nash equilibrium, i.e. as a minimization
problem faced by each individual. All individuals belonging to population
(travelers, packets or sessions) that have a given origin s(i) and a given
destination d(i) face the same optimization problem. This population is

called class i. The strategy set S i of individuals in such a population is
identified with all the paths in the network available between s(i) and d(i).
The choice of a path is made by each one of the individuals. In the setting of
Wardrop equilibrium, instead of describing the strategy of a given individual
of a class (say class i), we define the amount of individuals within the class

that use each strategy. We thus refer to the (class-i) strategy ui as describing

the behavior of all individuals in class i, so that ui
j is the flow of individuals

of class i that choose a path j ∈ Si.
In the context of Wardrop equilibrium we refer typically to costs (delay)

rather than utilities. Denote by Dk(u), k ∈ {1, ..., m}, the delay (or cost) of

path k. Then, letting Si
∗
⊂ Si be the subset of paths actually used by user i,

i.e. the indices j such that ui
j > 0, u∗ is a Wardrop equilibrium if and only

if it satisfies
min
k∈Si

Dk(u
∗) = Dj(u

∗), ∀j ∈ Si
∗
, ∀i.

This type of model has been extended to a number of more general set-
tings. In [122] and other references by its authors, the Wardrop equilibrium
was extended to include link-level constraints, and in [24] to include different
traffic classes, where delays in nodes or in links may depend on the traffic
class.

Multiple user classes (in which the cost of using a link or a path depends
on the user type) complicate the Wardrop equilibrium as well, since when
cost functions depend upon more than one type of user flow, the set of
KKT conditions above, one for each user class, need no longer correspond to
the optimality conditions of a convex optimization problem (for special cases
where a convex optimization is still applicable, see [55], [56] and Theorem 3.4
in [164]). Rather, the multi-class KKT conditions can be stated compactly
as a variational inequality (see chapter 3 of [164]).

Another important variant of the Wardrop network equilibrium concept is
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the stochastic network equilibrium, which assumes that users make errors in
their perceptions of delays and those errors are distributed according to some
probability distribution around the true, mean delay (on each route). Ac-
cording to the probability distribution used, one obtains either the Gaussian
(probit) equilibrium model or the Weibull (logit) model. (See, for example,
[186] for a dated but still valuable introduction to the topic.) Unlike the basic
and multi-class extensions, the stochastic network equilibrium concept does
not appear to have been applied to date in communications applications.

On the importance of the concept of Wardrop equilibrium, we can learn
from the numerous times that it has been reinvented. The results on Wardrop
equilibrium were in fact obtained independently almost fifty years later in a
context of mobile telecommunications in [82] and in the context of potential
games in [180]. Wardrop-type principles were also obtained independently
around thirty years before Wardrop in an economics, rather than network,
context [167].

Nash equilibrium and Wardrop equilibrium are two extreme cases that can
be modeled in networks. But also the combination of these may occur: some
agents may have a large quantity of flow to ship (service providers that may
control the routing decisions of all their users) while others agents (individual
users who determine directly their routing) may have an infinitesimal amount
of flow to ship. This scenario, along with the corresponding equilibrium
notion, has been formalized and studied in [36], [83], [99], [206].

Finally, we note that the hierarchical, or Stackelberg, or bilevel framework
can encompass a Wardrop equilibrium governing the users’ behavior in the
same way as was defined in the Nash setting; the problem formulation (3)
remains valid.

2.5 Evolutionary games, population games

In the biological context, the amount of reward for an individual is related
to its reproduction capability. A higher reward to some behavior (which can
represent more food or more chances to mate) implies a higher growth rate
of individuals that adopt it [168].

To be more precise, we consider a very large population of players. We
assume that each individual needs occasionally to take some action (such as
power control decisions, or forwarding decision). We focus on some (arbi-
trary) tagged individual. Occasionally, the action of some (random number
of) other individuals interact with the action of that individual (e.g. other
neighboring nodes transmit at the same time).
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For simplicity, assume that each individual has only two available actions:
1 and 2.

We say that the whole population uses a mixed strategy q∗ if a fraction q∗

of the population playing one strategy and the remainder q̄∗ playing the other
(This can be realized for example if each individual randomizes between the
strategies.) We define by J(p, q) the expected payoff for our tagged individual
if it uses a mixed strategy p while the rest of the population (with which it
interacts) uses the mixed strategy q∗.

Suppose that the population uses a mixed strategy q∗ and that a small
fraction (called ”mutations”) adopts another distribution p over the two
strategies. If for all p 6= q∗,

J(q∗, q∗) > J(p, q∗) (13)

then the mutations fraction in the population will tend to decrease (as it
has a lower reward, meaning a lower growth rate). q∗ is then immune to
mutations.

If there are n pure strategies (n = 2 in our case) denoted by s1, . . . , sn,
then a sufficient condition for (13) is that

J(q∗, q∗) > J(si, q
∗), s = 1, . . . , n. (14)

In the special case that the following holds,

J(q∗, q∗) = J(p, q∗) and J(q∗, p) > J(p, p) ∀p 6= q∗, (15)

a population using q∗ are “weakly” immune against a mutation using p since if
the mutant’s population grows, then we shall frequently have individuals with
strategy q∗ competing with mutants; in such cases, the condition J(q∗, p) >
J(p, p) ensures that the growth rate of the original population exceed that of
the mutants. q∗ that satisfies (13) or (15) is called a an evolutionary stable
strategy (ESS).

ESS has first been defined in 1972 by M. Smith strategy in [188]. In
1982, Maynard Smith’s seminal text Evolution and the Theory of Games
[189]). appeared, followed shortly thereafter by Axelrod’s famous work [28].
Although ESS have been defined in the context of biological systems, it
is highly relevant to engineering as well (see [202]). In particular, in the
context of competition in the access to a common medium, we can expect
that a technology that provides better performance will gain more market
shares on the expense of less performant technologies. As an application
evolutionary game to congestion problems, we refer to [181].
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In addition to identifying ESS, the Evolutionary Game theory is often
interested also in the actual evolution dynamics, i.e. of the actual convergence
to an ESS (when it exists). Various models called ”replicator dynamics” have
been proposed for that, see e.g. [39] and [89].

We can learn and adopt notions from biology not only through the con-
cept of evolutionary game, but also in applications related to energy issues
that have a central role both in biology as well as in mobile networking. The
long term animal survival is directly related to its energy strategies (compe-
tition over food etc), and a population of animals that have good strategies
for avoiding starvation is more fit and is expected to survive [90, 147]. By
analogy, we may expect sensor networks whose components have efficient
energy strategies to live longer and to have more chances to survive [151].

3 Non-cooperative service provisioning and
network routing

In telecommunication networks, users can, in many cases, make decisions
concerning routing, as well as the type and amount of resources that they
wish to obtain. For example, in ATM architectures [196] used in high speed
networks, the users decide on their type of service, be it CBR (Constant Bit
Rate), VBR (Variable Bit Rate), or ABR (Available Bit Rate). ABR, in
contrast to CBR and VBR, is an elastic service, i.e. the user adapts her or
his transmission rate to the state of the network; ABR is used, for example,
in the present internet, through best-effort service.

In addition to choosing the type of service, the users may negotiate their
Quality of Service (QoS), or performance parameters, namely, whether their
quality guarantees are to be expressed in terms of PCR (Peak Cell Rate),
CLR (Cell Loss Ratio), maximum delay, etc.

Different sets of parameters may suit the service requirements of a user.
However, the performance measures (such as throughput, CLR, delay) de-
pend not only on the user’s choices in establishing the communication, but
also on the decisions of other connected users, where this dependence is often
described as a function of some network “state”. For example, the available
resources and the delay of a best-effort type connection, such as ABR, de-
pend not only on the user’s own choices, but clearly also upon the choices
made by other users. In this setting, the game paradigm becomes a natural
choice, at the user level.

Constrained Nash equilibrium is quite natural in the context of, for exam-
ple, ATM architectures, where users express their requirements for quality of
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service by bounds they wish to have on delays, CLR, etc. For interactive au-
dio applications, for example, the quality of the communication is insensitive
to delay, as long as it is below approximately 100msec. An audio application
could therefore seek to (selfishly) minimize losses, subject to a maximum
bound on the delay it experiences. Such constrained Nash equilibria have
been studied in telecommunications and internet provisioning applications
(e.g. [67], [70], [74], [79], [116], [127]).

Next, we present a basic structure that many network games have in
common, along with several examples.

3.1 Framework of a service provisioning game

Many games arising in networks may be modeled as follows. There are n
applications or users, and m service classes. Application, or user, i has a
traffic of rate Λi, and has to determine how to split it between a subset S i

of service classes available to that user (application). A strategy of user i is

given by an allocation vector ui = (ui
1, u

i
2, . . . , u

i
m) where ui

j is the amount of

traffic that user i assigns to service class j. The set of policies for application
i is given by the simplex {ui ∈ <m |

∑m

j=1 ui
j = Λi, ui

j ≥ 0, j = 1, ..., m}.

This framework has been used in particular in the contexts of service
provisioning [163] and routing games [84], [160].

In [163], there was no explicit use of the network. In that reference,

Si = {1, ..., m} for all users, and the utility function for using any service
class is binary valued and are defined as follows:

• There is a QoS (Quality of Service) qj defined for each service class, j,
which is a monotone function of the summation over all users (appli-

cations) of that service class:
∑n

i=1 ui
j.

• The utility for user i of assigning ui
j to class j is given by Ji(u

i
j, qj),

which is assumed to be monotone in both arguments. 1 The global
utility for class i is the sum over j of Ji(u

i
j, qj).

1More precisely, Ji(u
i
j , qj) is monotone increasing in its first argument, and if qj rep-

resents a ”desirable” feature then Ji(u
i
j , qj) is monotone increasing in qj as well; also in

that case qj is monotone decreasing in
∑n

i=1
ui

j . Note however that in [163], qj stood for

loss probabilities, which stands for a ”negative” feature, so in fact Ji(u
i
j , qj) was taken to

be monotone decreasing in qj and qj was monotone increasing in
∑n

i=1
ui

j .
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This corresponds to a distinction between acceptable versus unacceptable
QoS. The goal of a user in [163] was to maximize the fraction of the traffic
that receives acceptable QoS. This gives rise to non-concave utilities and
hence to cases of nonexistence of an equilibrium. Sufficient conditions are
given in that reference for the existence of equilibria, and an extension to
multidimensional QoS for each user was presented. Moreover, there are some
results on the convergence of greedy update policies to the equilibrium.

3.2 Routing games

A problem somewhat related to [163], yet with significantly more complex
utility functions, occurs when the network itself is incorporated into the
model. In this case, each user has a given amount of flow to ship and has
several paths through which he may split that flow. Such a routing game
may be handled by models similar to [163] in the special case of a topology
of parallel links. This type of topology is studied in detail in the first part of
[160] as well as in [24]. However, the model of [163] does not extend directly
to other topologies. Indeed, in more general topologies, the delay over a path
depends on how much traffic is sent by other users on any other path that
shares common links.

Routing games with general topologies have been studied, for example, in
[84], in the second part of [160], as well as in [24]. A related model was studied
thirty years ago in [174], [175] in a discrete setting. Rosenthal proposed a
discrete approach to the network equilibrium model; in his setting, there are
n players, where each has one unit to ship from an origin to a destination
and wants to minimize her transport cost (which is the sum of the link costs
used). It is shown that in such a model there always exists a pure strategy
Nash equilibrium. He introduces a kind of discrete potential function for
computing the equilibrium. Nevertheless, if a player has more than one unit
to ship, such an equilibrium does not always exist.

The paper [123] considers a multi-user network shared by non-cooperative
users, in which each user reserves some resource in order to establish a virtual
path. Users are non-cooperative: each user seeks to optimize her or his own
selfish utility, which includes the guaranteed quality of service, as well as the
cost incurred for reserving the resource. For the case of a shared resource
(the total resource available to users modeled by a single link), existence
and uniqueness of the Nash equilibrium is proved. The authors establish
the convergence to this unique equilibrium under Gauss-Seidel and Jacobi
schemes. For a general network, users may be sharing more than one resource
and each user would have preferences among several links; the authors extend
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the results of the one-resource model to various general network topologies.
The formal results are tested by simulating the schemes on an experimental
network.

In the transportation sector, this is the classic fixed demand equilibrium
routing model, described above and formulated initially by [203]. See [164]
for an extensive list of references using this paradigm in the transportation
literature.

4 Non cooperative flow control games

Flow control problems have been considered in different settings, both in
dynamic as well as static contexts. By “dynamic” we mean that the decisions
of users depend on some observed state of the network, which may vary
dynamically. Flow control can often appear as part of a routing game where
both routes as well as quantity (or rates) to be shipped should be determined.

4.1 Static flow control

The static flow control problem is related to the question of what should be
the average transmission rate of a user. It is known that this type of problem
can often be handled as part of routing problems in which one wishes to
determine how much traffic should be sent over each path in the network; if
we do not impose a demand constraint (stating that the sum of flows sent
over all paths should be a given constant) then the solution to this routing
problem clearly provides at the same time the solution of the flow control
problem. Thus routing and flow control decisions can be done simultaneously,
and in the same framework as discussed before, i.e. of routing games.

Indeed, in the context of transportation equilibrium models, the demand
level of users between node pairs is given by a function that depends upon the
state of the network, which in turn depends upon the routing decisions. In
this manner, the amount of flow to route on the network becomes a variable
whose value is set optimally, simultaneously with the routes, as a function
of the network characteristics and the demand function. This is referred to
as the elastic demand equilibrium model; for references, see [84], [164] and
references therein. Another example of that approach can be found in [143].

An important feature in all of the above references is that costs are given
in terms of the sum of link costs; that is, route costs are additive functions
of the constituent links’ costs. This assumption simplifies considerably the
resolution of the routing and flow control-routing models by allowing the use
of highly efficient shortest-path algorithms to solve the subproblems. Indeed,
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when interactions across users or applications are held fixed, the resulting
routing and flow control-routing problems can be expressed as pure shortest
path problems.

There are models, however, in which this additivity of the route costs is
not an acceptable assumption. For example, in cases where the basic building
blocks of the overall utilities are not link delays (or link costs), but instead
the ratio between overall throughput (or some power of it) to overall delay.
This is the well known power criterion, and it has been frequently used in
flow control problems [46],[60],[61],[62],[145]. In the non-cooperative context,
some variant of the power criterion has been used in [171], in which the utility
is related to the sum of powers over the links. The part of the utility in [171]
that corresponds to the delay is given by the sum of all link capacities minus
all link flows, multiplied by some entropy function. While this utility does not
directly reflect the actual expected delay, it has the advantage of giving rise
to computable Nash equilibria in the case of parallel links for the combined
flow-routing game.

In [20] the actual power criterion is considered, i.e. the ratio between
(some increasing function of) the total throughput of a user and the average
delay experienced by traffic of that user. The equilibrium for the flow-routing
game is obtained for the limiting case as the number of users becomes very
large. The limit is obtained explicitly; there are cases, however, where two
equilibria are obtained.

4.2 Dynamic models

Several non-cooperative flow control models have been proposed and ana-
lyzed in a dynamic context. Important references are [91] and [116], which
consider a network with a general topology where each source has a win-
dow end-to-end flow control. The available information for a user is thus
the number of packets within the network not yet acknowledged. Each user
wishes to maximize the throughput for her or his own flow, and also would
like her delay to be bounded by some given value. Thus each user faces a
constrained optimization problem. The equilibrium obtained is decentral-
ized since each user has only local information on her own unacknowledged
packets. Hsiao and Lazar [91] obtained threshold equilibrium policies for
this problem using the product form of the network as well as the Northon’s
equivalence approach that allows one to reduce a network to an equivalent
single queue. The threshold policy is then obtained through coupled linear
programming problems. The existence of an equilibrium is established in
[116]. A more general theoretical framework for equilibria with constraints
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in stochastic games is proposed in [26].
In [13], rate-based flow control is considered in which each user can dy-

namically vary her or his transmission rate. The available information is
assumed to be the queue length (or equivalently, the delay) at the bottleneck
queue. The total available bandwidth to all controlled sources at this node is
assumed to be the node capacity minus the bandwidth used by higher prior-
ity traffic. Typical performance measures are throughput, to be maximized,
and overflow, to be minimized. Note that we may lose in throughput if the
queue is empty, and lose packets if it is full. A good trade-off between these
can be obtained by setting an appropriate target queue length and trying to
track it.

Another possible performance measure may be related to how well the
input rate of a connection tracks its share of the available bandwidth. By
considering an immediate cost per user, the problem is cast into the frame-
work of linear quadratic dynamic games. One such cost is obtained by taking
a weighted sum of two objectives: the square of the difference between the
queue size and its target value, and the square of the difference between the
input rate of a connection and its available bandwidth. In [13], an equi-
librium policy is shown to exist and to be unique; moreover it is explicitly
computed along with the resulting performance measures.

Another type of dynamic flow control (combined with routing) is con-
sidered in [206]. The players have to ship a given amount of flow within a
certain period, and can decide dynamically at what rate to ship at each in-
stant. A dynamic mixed equilibrium is computed, where mixed refers to the
combination of both infinitesimal, as in the Wardrop paradigm, and “large”
users, the latter being modeled through the Nash setting. In the transporta-
tion context, many other dynamic routing models have been developed, most
using the Wardrop equilibrium context. One textbook on the subject is [170].

5 Uniqueness of the equilibrium

The two first questions that arise in networking games are those of the ex-
istence and the uniqueness of equilibria. We focus in this section on the
uniqueness problem as the existence is usually much easier to establish using
standard fixed point theorems. Ffor example, in [160] the existence of equi-
libria in routing games is established for general cost functions and general
topology, whereas its uniqueness is obtained for very special cases.

The uniqueness of an equilibrium is quite a desirable property, if we wish
to predict what will be the network behavior. This is particularly important
in the context of network administration and management, where we are
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interested in optimally setting the network design parameters, taking into
account their impact on the performance in equilibrium.

For routing games in networks, in the context of the Wardrop assumption
of an infinite population of users, the uniqueness of the equilibrium [203] has
long been known in some weak sense. Indeed, since the model can, in its
simplest setting, be cast as a single convex optimization problem, optimiza-
tion theory tells that when the objective is strictly convex and the feasible
region convex, the solution exists and is unique. Even when the under-
lying Wardrop equilibrium model is more complex, for example, modeling
multiple user classes, so that the equivalent convex optimization transfor-
mation no longer applies, variational inequality theory still tells us that the
solution is unique when the cost mapping is globally strongly monotone. Un-
fortunately, that latter assumption is rarely satisfied for general multi-class
problems. Indeed, it is no longer sufficient in the multi-class case for each
class’ delay function to be increasing (or each users’ utility to be decreas-
ing); rather it is necessary for the overall delay vector or utility vector to be
strongly monotone (a formal definition will be given in eq. (16)) which is a
much stronger assumption, and one related to the diagonal dominance of the
Jacobian matrix of the delay or utility function mapping.

The uniqueness of Wardrop equilibrium holds in a weak sense: it is the
total link utilization that is unique, rather than the flow of each user on each
link. Only in special cases is the flow on each path also uniquely determined,
such as is the case for the stochastic Wardrop equilibrium model, see first
paragraph of page 64 in [164]. Uniqueness of the Wardrop equilibrium was
shown to hold for particular multi-class networks (i.e. networks in which
there are several classes of users and the delay in a node or a link may
depend on the class) in [24], [103].

As shown in [180], [182], the setting of Wardrop turns out to be a potential
game. The uniqueness of equilibrium in potential games was established
in [158]; further, the equilibrium is shown to be unique not only for Nash
equilibria but also in the larger class of correlated equilibria. Note however,
that in [158] only models with finitely many users were considered, and thus
it does not directly cover the framework of Wardrop.

Uniqueness of Wardrop-type equilibrium has been obtained in some other
related problems. Cominetti and Correa [51] considered a transportation net-
work with an origin, a destination and n bus lines between them. They ana-
lyze this model with an infinite population of users and hence are interested
in the Wardrop equilibrium. In their model, a bus line is characterized by two
parameters, its in-vehicle travel time and its frequency. Passengers choose
not a single route, but rather a set of lines, and board the first available
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bus in that set. Due to congestion, the decision of each passenger depends
upon the decisions of the other passengers. Under general assumptions, the
authors obtain the existence and uniqueness of the equilibrium.

As mentioned above, realistic models for which we have uniqueness of the
equilibrium are quite unusual. In fact, a simple counter-example of a network
with four nodes is given in [160], and a two-node two-class Wardrop network
example is discussed in [142]). It is thus not surprising that much effort has
been given to understand the conditions under which there is uniqueness of
the equilibrium.

A quite powerful tool for establishing uniqueness is the framework of [173]
who introduced the concept of DSC (Diagonal Strict Concavity); this is a
weak version of concavity which is defined for a multi-user setting each with
its own utility. DSC states that the weighted utility function gradient, given
by the vector whose elements are gi = ζi∂J i(u, x)/∂ui, for some vector ζ > 0,
satisfies

(û − ũ)T [g(û, ζ) − g(ũ, ζ)] > 0, (16)

which is the strict monotonicity of the scaled mapping g. Note that if J i did
not depend on i then (16) would imply the standard notion of concavity of

J i. The diagonal dominance of the Jacobian, or matrix of partial gradients,
of g is a sufficient condition for the strict monotonicity of g. As we mentioned
previously, this condition typically does not hold in routing games. However,
there are a few cases in which it has been shown to hold: (i) the problem
of two users routing into two parallel queues for which the DSC conditions
are shown in [160] to hold in the case of light traffic, and (ii) a network with
general topology with certain polynomial costs [16].

In the absence of other general tools for establishing uniqueness, and in
view of counterexamples that show that there are cases in which it fails, the
study of uniqueness has become a complex case-by-case study. For some
topologies, uniqueness has been obtained for quite general cost functions;
notably, for the case of parallel links [160] and for topologies arising from dis-
tributed computing with communication lines, see [97] and references therein.
Uniqueness has also been established for symmetric users [160].

Another interesting result related to uniqueness is the following. Assume
that there are two equilibria with each having the following property: a user
sends positive flow over some link if and only if all other users also send
positive flow over that link. Then the two equilibria coincide. This has been
established in [160] and further extended in [24].

Although the study of equilibria is more involved in the case of a finite
number of users than in the infinite, Wardrop, setting, the uniqueness results
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obtained (in all of the above references) for the finite case are stronger than
for the infinite case. In particular, the uniqueness is in the sense of the
amount of flow that is sent by each user through each path, rather than in
terms of the total link utilization.

Finally, some recent uniqueness results have been established in [36], for
a general topology, and in [99], for some particular topology, for the mixed
equilibrium case, that is the setting of both Nash and Wardrop equilibrium
paradigms jointly coexisting on a network.

6 Convergence to the equilibrium

The equilibrium has a meaning in practice only if one can assume that it is
actually reached from non-equilibria states, since there is no reason to expect
a system to be initially at equilibrium. Several approaches have been pro-
posed in the literature to obtain convergence. Some rely on update policies
that have centralized characteristics (in terms of synchronization between
the order of update); an example is the round robin update order. Other
approaches establish convergence under asynchronous best response mecha-
nisms. It appears that the latter are more appropriate for describing a real
decentralized non-cooperative system.

[173], who considered the case of a finite number of players, established
the convergence of a dynamic scheme in which the policies are updated con-
tinuously (in time) by all users so as to move in the direction of the gradient
of the performance measure. In the case of a unique Nash equilibrium, this
scheme is shown to converge to that equilibrium. In the case of multiple
equilibria, this procedure converges to one of the equilibria, and it is possible
to predict to which equilibrium it will converge. As already mentioned, the
conditions under which Rosen’s setting holds in networks are quite restrictive.

An alternative approach for the dynamic convergence of greedy policies to
an equilibrium (even in the absence of a unique equilibrium) is in the class of
submodular games and supermodular games [197], [211]. In [37], the authors
study a load balancing problem where it is shown that, depending on the
parameters, the costs are either submodular or supermodular. In both cases
greedy algorithms are shown to converge to the unique equilibrium. Exam-
ples of convergence in both a submodular setting as well as in supermodular
games (and their combination) in simple queuing problems are presented in
[211].

We note that, in the field of transportation equilibrium, supermodular-
ity is not the concept used for proving uniqueness or convergence. Rather,
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monotonicity and its variants are the preferred concepts. While the two no-
tions are related, it may be possible to develop stronger results by making
use of one or the other, in particular through the use of some weaker forms of
monotonicity such as pseudo-monotonicity or nested monotonicity [48], [142].
See [164] for a comprehensive description of the basic definitions and [165]
for a more advanced compendium of the role of and forms of monotonicity.

In [187], Shenker considers a non-cooperative model with a single server
(exponential) and several sources (the users, who are Poisson). The utility of
a user is a function of the amount of service received and the queue length (i.e.
congestion). The author concludes that no service discipline can guarantee
optimal efficiency, and that a service discipline called Fair Share guarantees
fairness, uniqueness of Nash equilibrium and robust convergence.

For routing games with an infinite population of players, it has been
shown that greedy updates converge for quite general costs and for general
topology; this was shown in fact for the larger class of potential games [180,
182].

In [15] a very simple case of convergence is considered: that of n users
routing to two parallel links. The link costs considered are linear. Both
random (asynchronous) greedy as well as round-robin policies are shown to
converge to the equilibrium. However, it is also shown that if more than three
players update simultaneously their routing strategies, then this results in
diverging oscillations. To avoid such oscillations in the case of simultaneous
updates, one has to use relaxation, or smoothing, i.e. each user should apply
at each update some linear combination between the previous strategy and
the best response one.

Greedy updates have been shown in [37] to converge in a simple setting of
distributed computing: a network represented by three nodes and three links
(two sources of arrival of tasks, and one destination node; the links between
sources and destination represent computers, whereas the links between the
sources represent a communication line).

We also mention here the paper [118], that considers the problem of
how to split a file between several computers; the decisions are taken in a
distributed way by the computers themselves (this involves processing and
communication delays). Although there is one global objective that is op-
timized, this problem has some interesting features of a game (or a team)
problem since decisions are distributed. The algorithms compared belong
to the class of resource-directive approaches, where at each iteration the
marginal value of the resource is computed using the current allocation, by
each computer in parallel, then an exchange of this computed value is made
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between all the computers.

7 Braess paradox, pricing, and Stackelberg
Equilibrium

7.1 The Braess paradox

The service providers or the network administrator may often be faced with
decisions related to upgrading of the network. For example, where should
one add capacity? Where should one add new links?

A frequently-used heuristic approach for upgrading a network is through
bottleneck analysis, where a system bottleneck is defined as “a resource or
service facility whose capacity seriously limits the performance of the en-
tire system” (see p. 13 of [108]). Bottleneck analysis consists of adding
capacity to identified bottlenecks until they cease to be bottlenecks. In a
non-cooperative framework, however, this heuristic approach may have dev-
astating effects; adding capacity to a link (and in particular, to a bottleneck
link) may cause delays of all users to increase; in an economic context in
which users pay the service provider, this may further cause a decrease in
the revenues of the provider. This problem was identified by Braess [38] in
the transportation context, and has become known as the Braess paradox.
See also [57], [190]. The Braess paradox has been studied as well in the
context of queuing networks [32], [40], [49], [50], [96].

In the latter references both queuing delay as well as rejection proba-
bilities were considered as performance measures. The impact of the Braess
paradox on the bottleneck link in a queuing context as well as the paradoxical
impact on the service provider have been studied in [143]. In all the above
references, the paradoxical behavior occurs in models in which the number
of users is infinitely large and the equilibrium concept is that of Wardrop
equilibrium, see [203].

It has been shown, however, in [109], [112], that the problem may occur
also in models involving a finite number of players (e.g. service providers)
for which the Nash framework is used. The Braess paradox has further been
identified and studied in the context of distributed computing [97], [98], [102]
where arrivals of jobs may be routed and performed on different processors.
Interestingly, in those applications, the paradox often does not occur in the
context of Wardrop equilibria; see [97].

In [176] (see also [117]), it was shown that the decrease in performance
due to the Braess paradox can be arbitrarily larger than the best possible

23



network performance, but the authors showed also that the performance
decrease is no more than that which occurs if twice as much traffic is routed.
The result was extended and elaborated upon in more recent papers by the
same authors. In [75], a comment on the results of [176] was made in which
it is shown that if TCP or other congestion control is used, rather than
agents choosing their own transmission rates, then the Braess phenomenon
is reduced considerably. Indeed, this conclusion can be reached intuitively by
considering (as is well known in the study of transportation equilibria) that
the system optimal equilibrium model (in which the sum of all delays are
minimized) does not exhibit the Braess paradox; congestion control serves to
force transmission rates to such a system optimal operating point.

An updated list of references on the Braess paradox is kept in Braess’
home page at http://homepage.ruhr-uni-bochum.de/Dietrich.Braess/#paradox

7.2 Architecting equilibria and network upgrade

The Braess paradox illustrates that the network designer, the service provider,
or, more generally, whoever is responsible for setting the network topology
and link capacities, should take into consideration the reaction of (non-
cooperative) users to her or his decisions. Some guidelines for upgrading
networks in light of this have been proposed in [11], [68], [109], [111], [112],
so as to avoid the Braess paradox, or so as to obtain a better performance.
Another approach to dealing with the Braess paradox is to answer the ques-
tion of which link in a network should be upgraded; see, for example, [143]
who computes the gradient of the performance with respect to link capacities.

A more ambitious aim is to drive the equilibrium to a socially optimal
solution. In [109] this is carried out under the assumption that a central
manager of the network has some small amount of his or her own flow to
be shipped in the network. It is then shown that the manager’s routing
decision concerning his own flow can be taken in a way so that the equilibrium
corresponding to the remaining flows attain a socially optimal solution.

7.3 Pricing

An alternative approach to obtaining efficient operating solutions is through
pricing.

A naive approach for pricing could be to compute an optimal policy for the
network as a whole and simply impose a high fine on any user that deviates
from it. This approach would require, however, centralized computation and
signaling that would be difficult to implement. Therefore, research on pricing
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schemes in recent years has focused on methods to charge locally (at each
link or node) for the resources used, under the assumption that such local
data are easy to measure and impose.

It is well known, in the setting of Wardrop equilibria, that adding a fee
equivalent to the marginal cost of the delay function to the user delay on
each link renders the solution of the Wardrop equilibrium problem equal to
that of the system optimal problem. A similar approach was taken in [105],
[144] in telecommunications, using the context of Wardrop-type equilibria.
Similarly, it was shown in [114], in the context of a finite number of users,
that if the price at each link is chosen to be proportional to the congestion
level at the link, then efficient equilibria are obtained.

The next few references seek a vector of prices that achieves an objective
similar to that of the system optimal solution, described above for Wardrop
equilibria.

Orda and Shimkin [161] study the case of many selfish users, each one
wishing to ship her traffic through some service class. It is then assumed that
the intent of the service provider is to have a unique allocation of each traffic
type to one of the service classes; such an allocation is called the nominal
flow allocation. Pricing is used to induce users to choose the service class
which is adapted to their needs (QoS) and moreover which corresponds to
the intent of the network service provider. Orda and Shimkin establish a
necessary and sufficient condition for the existence of prices such that the
user-optimal flow allocation is unique and coincides with the nominal flow
allocation.

Low and Lapsley [132] consider a model where S sources share a network.
Each source (i.e. user) s has a path and a utility function; the source s
chooses its transmission rate in order to maximize its own utility. The goal
is to propose a set of prices that induces the maximization of the global
utility. Again, this is similar in spirit to the idea of marginal cost pricing
discussed above with respect to Wardrop equilibrium and also similar to the
model of [104]. In [209], it is shown that the link prices of schemes such
as those proposed in [104] and [132] are in general not unique in networks.
The theoretical justification for this result and an example are provided in
which particular prices may be easily obtained, and those prices appropriately
defined can be unique. In [35], certain choices of pricing objectives in this
context, such as revenue-maximizing prices are presented and analyzed.

Low [131] considers a single node with an allocation scheme that provides
each user with a fixed minimum and a random extra amount of bandwidth
and buffer capacity; the network then sets prices on the resources. Two
models are proposed: in the first one, each user has an initial allocation and
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seeks a new allocation maximizing his own utility under the constraint that
the new allocation’s price is the same as the initial allocation’s price; in the
second one, the above constraint is absent. It is shown, for the first model,
that at equilibrium all users have positive variable allocation in bandwidth
and buffer capacity. For the second model, some properties of the equilibrium
are exhibited.

A related problem is studied by Chen and Park [45]. They assume that
a routing is given and the network provides service classes at each switch;
with each service class is associated a price. Users have to choose a service
class in order to satisfy (at the lowest price) their QoS requirement. In this
context, the authors propose an architecture for non-cooperative multi-class
QoS provision.

Pricing has also been used as a tool for obtaining efficient equilibria when
demand is controlled, rather than in pure routing, in [59], [149], [156]. With
the rapid growth of the Internet and its evolution from a heavily subsidized
network to a commercial enterprise, much attention has been given to pricing
the demand, see for example, [66], [106], [120], [127], [129], [130], [135].

Pricing schemes for attaining efficient equilibria, where both demand and
routing are controlled, have been considered in [143], [150].

Pricing is used in another context in [129], where the authors model an
ATM network using a microeconomic paradigm. The network offers band-
width and buffers for rent. The users have to ask, and pay, for the amount of
these resources that can provide them the QoS they require. The authors as-
sume that each user knows a bound on the burstiness of her or his connection
and also knows the minimum bandwidth µ required for the connection. The
authors propose an algorithm that converges to a unique, optimal allocation
and service provisioning procedure that prevents cell loss.

Some other references on pricing in networks are [1], [21], [33], [44], [47],
[52], [58], [71], [87], [92], [113], [125], [139], [140], [141], [172], [191], [199],
[207].

7.4 Hierarchical, or Stackelberg, equilibrium in telecom-
munications

One further step in the interaction between the manager (who represents the
network designer or operator) and the users, is to assume that the former is
interested not just in attaining an efficient equilibria for the latter, but may
have her own objectives (such as maximizing revenue).

In the telecommunication context, this framework has been studied in
[29], [60], [61], [110], [119], [143], [145], [210].
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When the equilibrium problem involves a constrained routing, or control-
routing, problem, the user level solution of the hierarchical, or Stackelberg,
equilibrium problem cannot be expressed analytically in closed form. In
that case, the optimization of the network manager’s problem is implicit and
further nonconvex; in other words, it does not posses a unique optimum, and
its algorithmic solution is quite time consuming.

A different approach was proposed in [121] for transportation networks
and studied within the context of internet-type networks in [35]. The idea
is to solve a resource allocation, or routing, problem in which link capac-
ity constraints are Lagrangian relaxed, for a unique optimal solution. The
uniqueness of the optimal routing holds under conditions discussed above.
Then, taking prices to be the Lagrange multiplier values, those prices are op-
timized from the point of view of the network manager. This pair of coupled
problems has a unique solution when the equilibrium routing problem does,
and can be computed in time proportional to solving the original routing
problem.

7.5 Auctions

An area of research related to pricing is auctions. These have been proposed
in telecommunication networks as mechanisms to compete over resources.
Some references on autcions are [136], [137], [138], [198], [193], [194].

8 Cooperative games and resource sharing

Questions of how to share common resources, or how to share the cost of
constructing a network, typically fall into the realm of cooperative games;
see e.g. [80], [81], [88], [124], [148], [169], [212].

In [22], [210] the problem of bandwidth sharing between different users is
considered. A general network topology is studied, and the question is how
much bandwidth, or extra capacity, should be allocated by the network to
each user at each link. These papers propose the Nash Bargaining concept
[155], [157] for assigning this capacity. This concept is characterized by
the following properties: 1. it is Pareto-optimal, 2. it is scale invariant,
i.e. the bargaining solution is unchanged if the performance objectives are
linearly scaled, 3. the solution is not affected by enlarging the domain if
agreement can be found on a restricted domain, and 4. the bargaining point
is symmetric, i.e. does not depend on the specific labels: users with the same
lower bounds and objectives receive the same share. It is shown that this
sharing of the bandwidth has the proportional fairness property introduced
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in [107], and is unique. Pricing was also considered in [210]; the proposed
scheme is such that a user is never charged more than her or his declared
budget but could be charged less if the amount of congestion in the network
links used by the connection is low.

he idea of using the Nash bargaining solution in the context of telecom-
municatoin networks was first presented in the context of flow control in
[145]. The Nash bargaining concept has been recently used in [43] for pricing
purposes, where the solution concept is used to identify a pricing strategy in
which the two players are the service provider and the set of all users. In [43],
only simple network topologies are considered. However, the analysis in [43]
considers also the case of several user priorities which models the possibil-
ity for the service provider to offer different qualities of services at different
prices. Another application of the Nash bargaining concept in networking
can be found in [177].

The third property of the Nash bargaining solution has received criticism
since it implies that a player does not care how much other players have
given up. (This is related to the fact that the Nash bargaining concept
takes into account required lower bounds but not how far the solution is
from any upper bound). Two alternative notions of fair sharing have thus
been introduced with properties 1, 2 and 4 of the Nash bargaining solution,
but with a variation of the third property, namely, the modified Thomson
solution and the Raffia-Kalai-Smorodinsky solution. A unified treatment of
the Nash solution as well as of these two has been introduced in [41] for two
players and extended in [64] for the multi-person case. These concepts have
been applied to Internet pricing in [42].

Another concept in cooperative games for sharing resources is the Aumann-
Shapley pricing, which has desirable properties such as Pareto optimality.
Haviv [85] proposes this approach to allocating congestion costs in a single
node under various queuing disciplines.

Finally, we cite recent work in non-cooperative resource allocation which
uses marginal cost and Shapley values without the assumption that choices
will be in equilibrium. Instead, it is assumed that sometimes equilibrium
will not be reachable, so authors have looked into ensuring that users always
choose efficient allocations by making those choices dominant irrespective of
other users’ choices. This has been referred to as strategy proof or incentive-

compatible mechanisms. See, for example, [73] and [159].
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9 Synthesis and Conclusions

As stated in the introduction, numerous results have been invented and re-
invented in different communities, under different names, and with varying
degrees of generality. This survey attempts to provide some synthesis across
communities of some of these results. Certainly, more synthesis and unifica-
tion would be a positive stimulus to this branch of science.

Examples of similar models and results across communities include, among
others, the areas of potential and congestion games in game theory and the
traffic equilibrium model of transportation science. While the former field
has made great strides in generalizing this form of a game, the form of the po-
tential, and developing the sophisticated notion of supermodularity to study
it, the latter field has generalized rather in a different sense, eliminating the
potential and tending toward variational inequalities, and hence the notion of
monotonicity (and its variants) for its analysis. It seems desirable to merge
some of these complementary developments and apply them as well to the
communications arena.

In terms of stochastics, telecommunication applications and game theory
have included random variables in their models in quite a different way from
applications in transportation. In the former cases, random arrival rates or
usage levels are modeled through exponential or other distributions and ex-
pected values are generally used or derived in such a way that often limits the
size of the networks that can be handled. In the transportation literature,
stochastic models based on the logit (Weibull), in particular, and also probit
(Gaussian) distributions have been extended to the network setting and ex-
act and approximate algorithms devised, even for large-scale networks. This
appears to be a promising avenue for future development in the telecommu-
nications arena.
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