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Abstract— In this paper we analyse a feedback system consist-
ing of a finite buffer fluid queue and a responsive source. The
source alternates between silence periods and active periods. At
random epochs of times the source becomes ready to send a burst
of fluid. The length of the bursts (length of the active periods)
are independent and identically distributed with some general
distribution. The queue employs a threshold discarding policy
in the sense that only those bursts at whose commencement
epoch (the instant at which the source is ready to send), the
workload (i.e., the amount of fluid in the buffer) is less than some
preset threshold are accepted. If the burst is rejected then the
source backs off from sending. Using techniques from Volterra
Integral Equations we obtain an explicit characterization of the
queue length distribution at commencement epochs of bursts
from which we obtain an explicit characterization of the goodput
ratio associated with such a feedback system. For the particular
case of exponential distribution of on-periods we are able to
obtain explicit closed form expression for the goodput ratio. Our
explicit characterizations shall be quite helpful in studying the
sensitivity of goodput ratio to different parameters, in selecting
optimal discarding threshold etc. which will further provide
useful “engineering” guidelines for better network designing.

Index Terms— on-off fluid, finite buffer, level-crossing argu-
ments, Volterra integral equations, workload distribution, good-
put ratio, numerical examples.

I. INTRODUCTION

In this paper we analyse a feedback system consisting
of a finite buffer fluid queue and a responsive source. The
source alternates between silence periods and active periods.
At random epochs of times the source becomes ready to
send a burst of fluid. The length of the bursts (length of
the active periods) are independent and identically distributed
with some general distribution. The queue employs a threshold
discarding policy in the sense that only those bursts at whose
commencement epoch 1, the workload (i.e., the amount of fluid
in the buffer) is less than some preset threshold are accepted. If
the burst is rejected then the source backs off instantaneously
from sending and goes into a silence (back-off) period. The
input to the queue can be modeled as an on-off source
which generalized distribution of the on time. The off period
distribution is characterized as follows. After an exponentially
distributed silence time, a new batch arrives; if it is accepted
(i.e. the amount of fluid is below the threshold) then the off
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1By commencement epoch of a burst we mean the time instant when the
modulating process goes from off to on state.

period ends. Otherwise a new exponentially distributed silence
time is taken and so on. The off period is then the sum of the
consecutive silence periods.

One particular motivation for our model is the performance
analysis of selective message discarding policies with re-
sponsive sources. Selective message discarding policies have
been proposed [2] and implemented in routers (e.g., in Cisco
BP 8600 series, Fujitsu ATM switches) to prevent network
congestion. This is particularly the case with the router sup-
porting UBR (Unspecified bit rate) service class of ATM where
message (i.e., a frame) discarding is employed to achieve
the twin goals of reduced network congestion and increased
goodput [7]. In ATM context, message discarding is based on
the idea that loss of a single packet results in the corruption
of the entire message (to which it belongs) and hence it is
advantageous to discard the entire remaining message.

The explicit closed form expressions which we seek in this
paper helps in studying the sensitivity of the goodput2 to differ-
ent source and network parameters, in buffer dimensioning, in
selecting optimal discarding threshold (say for the optimality
criterion being the maximization of goodput) etc. The solutions
can then serve in providing useful “engineering” guidelines for
designing networks.

Two discarding mechanisms have frequently been used: the
partial discarding, in which packets that belongs to an already
corrupted message is discarded, and the early discarding, in
which in addition to partial discarding, an admission control
is applied to reject an entire message if upon arrival of its first
packet, the queue exceeds some threshold value K (threshold
discarding) [7]. We have focused both on the discrete as well
as on the fluid analysis (back-to-back message arrival with ex-
ponentially distributed message lengths) of the first mechanism
in [12] and of the second in [10], [9] with the goal of obtaining
explicit closed form expressions of the performance metrics
in particular the goodput ratio. In all the models analysed in
[12], [10], [9] the system was open loop in the sense that
the source was nonresponsive. The discarding policies worked
independently without any cooperation from the source (the
source continues sending even if its data is being rejected by
the network node). Also in the fluid models in [12], [9] we
have back-to-back messages with exponential distribution of
length and thus the fluid arrival rate was deterministic. In this
scenario goodput ratio for packet (fluid) models associated
with a message discarding policy is defined as the ratio of
good packets (fluid corresponding to good messages 3, i.e.,

2In the paper we shall also be using the term goodput and goodput ratio
interchangeably

3In the paper we shall be using the term message and burst interchangeably



messages which do not suffer any packet (fluid) loss due to
threshold discarding or buffer overflow) exiting the node to
the total packets (fluid) arriving at its input.

In view of the rich recent research on improving the
performance by some sort of congestion notification [4], [14]
to sources, it becomes interesting to study the performance of
message discarding policies with responsive sources. Thus we
need to model the feedback system consisting of a network
node with selective burst (the burst can be seen as a mes-
sage) discarding and a source which responds to congestion
signals (in our case the congestion signal being positive if
the queue length at the network node is higher than some
preset threshold and is negative if the queue length is less
than some preset threshold). This will help us in understanding
the improvement in performance achievable with combining
selective burst discarding with congestion feedback to sources
and responsiveness on the part of sources to backoff from
sending.

A first step in this direction was made in [11] where we
analysed a responsive bursty source and (i) a variant of the
early discarding in which there is only threshold discarding
(ii) a combination of both threshold discarding and partial
discarding with an on-off source (an on period corresponds
to a message). In the model in [11] the burst lengths were ex-
ponentially distributed and the analysis was based on working
with Poisson Counter Driven Stochastic Differential Equations
[13] describing the workload dynamics. We obtained closed
form expressions for the distribution of the workload process
by first finding the Laplace-Stieltjes Transform (LST) of the
stationary workload process and then inverting it to get the
density of the workload process.

In this paper we go way beyond the results of our previous
work in [11] not only in extending the model to generally
distributed burst sizes, but also in obtaining closed form
expressions for the goodput ratio. We note that the approach
used in [11] turned out to be quite useful for computing the
stationary workload distribution (for the case of exponentially
distributed on periods) but it did not provide an expression for
the goodput ratio. In this paper we propose two notions of the
goodput ratio: one from the source point of view and one from
the overall system point of view. Using a completely different
analytical approach that employs Volterra Integral Equations
methodology we are able to obtain explicit characterization
of the goodput ratios for general distribution of burst sizes. In
particular, we express the distribution of a Markov chain (asso-
ciated with workload) embedded at arrival epochs of messages
by Volterra Integral Equations from which we characterize the
goodput ratio. By the arrival epoch of a message we mean
the epoch at which the source changes/wants to change from
silence period to active period (the source gets ready to send
a burst, whether it is accepted or not).

As a special case of our model (with no discarding) we can
obtain the probability density function of the workload process
at arrival epochs of bursts/messages in an finite buffer fluid
queue with on-off fluid source with general distribution of on
periods and exponential distribution of off periods. Modeling
of PCM (pulse code modulation) coded voice sources as a
two state Markov Modulated Poisson Process (MMPP) is a

standard acceptable practice and also there have been works
on modeling the aggregate arrival due to the superposition of
ATM traffic as a two state MMPP (see [3],[5]). In such scenar-
ios our model will be handy in fluid analysis of corresponding
queues.

The paper is organised as follows. In Sec. II we formally
define our model and define two notions of goodput ratios
and obtain expressions for them. The model is analysed in
Sec. III and a characterization of the workload process at
arrival epochs of bursts is obtained. Explicit calculations for
the distribution of the workload process and closed form
expressions for the goodput ratios are also provided for
exponential distribution of active periods. Numerical examples
are provided in Sec. IV. In Sec. V we analyse a policy which
has partial discarding of bursts in addition to threshold burst
discarding (like in our model)4. We finally conclude in Sec. VI.

II. MODEL: FORMAL DEFINITION

The fluid arrival rate is h when the source (actually) sends
a burst and 0 when the source is silent (which models either
the thinking time of the source or forced backoff by the source
due to positive congestion feedback); the server has a constant
capacity c. Let the buffer size be B (maximum amount of fluid)
and the threshold be K, K < B. Let the message lengths
have distribution F1(.) and the silence-period (off-period)
between messages have distribution as characterized in Sec. I.
The discarding policy is such that if at the commencement
epoch of a message the workload process v(t) is less than
K, the message is admitted, otherwise not. We assume that
c < h 5. Fig 1 explains the model (the source behavior and
the workload process in the queue). We shall first define and
characterize two notions of the goodput ratio.

A. Goodput Ratio: From Source and System Point of View

We call a message as good if during its period of arrival to
the queue the process v(t) always remain below B. The fluid
associated with good message is called good fluid. We next
define:

• Goodput ratio perceived by the source GS : The ratio of
“good fluid” to the “total fluid” that could have been sent
by the source if there was no backoff by the source (due
to congestion feedback) and no fluid loss at the queue.
Thus total fluid is the fluid sent by the source in a system
with infinite buffer and no burst discarding.

• Goodput ratio of the feedback system GFS : The ratio
of “good fluid” to the “actual total fluid” sent by the
source. Thus actual total fluid is the fluid actually sent
by the source (and hence it does not include the fluid
corresponding to bursts that were not sent due to source
backoff).

Thus GS can be viewed as the Quality of Service (QoS)
perceived by the source and GFS reflects the efficiency of
the overall feedback system. We next evaluate expressions for
GS and GFS .

4Recall that under partial discarding once the buffer starts overflowing the
source backs off instantaneously and goes into silence period.

5For the case c ≥ h the workload will always be 0 w.p. 1
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Fig. 1. The dynamics of the arrival process and the workload in our model.
Tan and Tsn denote the nth active and silence periods respectively.

Let Vf be a random variable representing the success of
a message, Vf = 1 for a good message, and Vf = 0 for a
message which has lost some fluid. Let W be the random
variable denoting the length of a message. We next define
the sub-distribution function H(w, 1) as the probability that a
message is of length ≤ w and is good, i.e.,

H(w, 1) = P (W ≤ w, Vf = 1).

Then we can write the goodput ratio GS as

GS =

∫∞
0 wdH(w, 1)∫∞
0 wdF1(w)

. (1)

And since a source backoff if the queue length is greater than
K we have:

GFS =

∫∞
0 wdH(w, 1)

F (K)
∫∞
0 wdF1(w)

. (2)

where F (.) is the distribution of the queue length at arrival
epochs of messages. Observe that:

H(w, 1) = (3)

P (Vf = 1|W ≤ w)P (W ≤ w)

=
∫ B

0
P (Vf = 1|W ≤ w,V = v)dF (v)

∫ w

0
f1(u)du (4)

where f1 is the message length density and V is the queue
length at the arrival epoch of a message with ρ being the
queue length density at the arrival epoch of the message. Let
M be the mean message length.

Lemma 1: For K > 0, the goodput ratios can be expressed
as:

GS = M−1
∫ B

h−c

0
wdH(w, 1)

GFS =
GS

F (K)

and for K = 0, GS = GFS = 0.
Proof: For K = 0, no burst will be accepted at any time and
ρ(0) = 1. Thus H(w, 1) = 0 for all w and hence GS = GFS =
0. We will next look at K > 0 case. Observe that in (3), the
integral can be taken up-to K and not B as,

P (Vf = 1|W ≤ w,V = v) = 0 for v ≥ K

Observe that, for v < K,

P (Vf = 1|W ≤ w,V = v) =




1 if w ∈ [0, B−v
h−c ]

P (W < B−v
h−c |W < w) if w > B−v

h−c .

Or in other words, for w ∈ [0, B−K
h−c ], P (Vf = 1|W ≤ w,V =

v) is

=
{

1 if v < K
0 if v ≥ K

for w ∈ (B−K
h−c , B

h−c ], P (Vf = 1|W ≤ w,V = v) is

=






1 if v ∈ [0, B − w(h − c)]

P (W< B−v
h−c )

P (W<w) if v ∈ (B − w(h − c),K)

0 if v ≥ K.

And for w > B
h−c , P (Vf = 1|W ≤ w,V = v) is

=






P (W< B−v
h−c )

P (W<w) if v ∈ [0,K)

0 if v ≥ K

Thus we write, for w ∈ [0, B−K
h−c ],

H(w, 1) = F1(w)
∫ K

0
ρ(v)dv, (5)

for w ∈ (B−K
h−c , B

h−c ], H(w, 1) = Ha(w) + Hb(w), where,

Ha(w) = F1(w)
∫ B−w(h−c)

0
ρ(v)dv (6)

And,

Hb(w) =
∫ K

B−w(h−c)+
F1

(
B − v

h − c

)
ρ(v)dv (7)

and for w > B
h−c

H(w) =
∫ K

0
F1

(
B − v

h − c

)
ρ(v)dv (8)

Observe that for w > B
h−c , from (8)

dH(w, 1) = 0



Thus GS from (1) can be written as in Lemma 1 and also
GFS from (2) .

Observe that from Lemma 1 the expression for GS and GFS

requires an expression for H(w, 1) and F (K). From (3) an
expression for H(w, 1) requires the distribution F of V , the
workload at arrival epochs of messages. In the next section we
shall provide an approach for finding the distribution function
F .

III. MODEL ANALYSIS

Let Vn be the random variable denoting the workload at
the instant when the source is ready to send the burst at the
nth time. Let Ta be the random variable for the length of an
active period. Observe that F (.) is the stationary distribution
of Vn. We shall next find the distribution function F . We
first establish an interesting equivalence between the stationary
distribution F of Vn and the stationary distribution of the
workload at arrival epochs, Va, in a “pseudo” M/G/1 type
queue with constrained workload (the maximum amount of
unfinished work is bounded by B) defined below.

Consider a (pseudo) M/G/1 queue with:

• The arrival process of packets is Poisson with parameter
λ (same as the parameter for the exponential distribution
of a backoff period. A silence period can have one or
more backoff periods.)

• The packet sizes (X) have general distribution G which
is related to distribution F1 of the active periods in the
(original) fluid model as:

G(x) = P (X ≤ x) = P (Ta ≤ x

h − c
) = F1

(
x

h − c

)

Recall that F1 is distribution function for the active
periods in the on-off fluid arrival process whereas G is the
distribution of the jumps (packet sizes) for the M/G/1
queue.

• Only those packets which sees the workload in the queue
less or equal to K are accepted. Also if the packet size
is greater than the vacant place in the queue (as the
maximum workload is bounded by B) the excess data
of the packet is lost. Fig. (2) makes this view point clear.

We thus have the following Lemma.
Lemma 2: The stationary distributions of Vn is same as the

distribution of Va.
By Poisson Arrivals See Time Averages (PASTA) we have

that the stationary distribution of Va is same as the (time)
stationary distribution of the workload process in the pseudo
M/G/1 system. Thus we have the following Proposition

Proposition 1: The stationary distribution of Vn is same as
the (time) stationary distribution of the workload process V
in the pseudo M/G/1 queue described above.

A. Characterisation of the Distribution Function of V

From Proposition 1 the stationary distribution of Vn is same
as the distribution of V in the pseudo M/G/1 queue. We next
obtain the distribution of V . Since the distribution is same we

Ts10
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Ts11

Ts2

Ts2

Ta1

Ta1

Ta2

Ta2

(h−c)
(h−c)

(h−c)

active period active period

silence period

Ta3

packet discarded

burst not accepted
source backsoff

Fig. 2. Our view point of looking at the on-off fluid queue as a M/G/1
queue. Ts10 , Ts11 are exponential backoff periods, Ts1 = Ts10 + Ts11 is
a silence period, Ts2 is a silence period with a single backoff and hence
its length is exponentially distributed. Ta1 , Ta2 , Ta3 are active periods with
distribution F1(.).

use the same notation F for the distribution function of V and
stationary distribution of Vn.

We derive differential equations for F (v) for v < K and
v ≥ K. We use the classical up and down crossing argument.
Fix a time interval of length ∆ > 0 (assuming the process
is in equilibrium). Whenever the workload increases from a
level less than or equal to v to a level more than v we say
that an up-crossing of the level v has occurred. Similarly, if
the workload size decreases from more than v to less than
or equal to v we say that a down crossing of the level v has
occurred. Thus for v ∈ [0,K) we have

λ∆
∫ ∞

0
P{v − (h − c)g < V ≤ v}dF1(g) =

(1 − λ∆)P (v < V ≤ v + ∆c) + o(∆) (9)

and for v ∈ [K,B), we have P (v < V ≤ v + ∆c) + o(∆) =

λ∆
∫ ∞

0
P{v − (h − c)g < V < K}dF1(g)

= λ∆
∫

(( v−K
h−c ),∞)

P{v − (h − c)g < V < K}

×dF1(g) (10)

(9) can be interpreted as follows: the left hand side is the “up-
crossing” probability of the level v within a short period of
length ∆: the probability of having an arrival in the equivalent
M/G/1 queue within a time interval [t, t+∆] is approximately
λ∆ for very small ∆. The distribution of the amount of
workload brought by the arrival is F1(x/(h − c)). If (at
stationary regime) the amount of workload at the queue is
within the interval (v − (h − c)g, v] and an arrival containing
an amount g of workload arrives within time [t, t + ∆] (with
∆ very small) then the workload at the queue will exceed the
level v during this time interval; this is called an up-crossing.
The right hand sie of the equation has a similar interpretation
of a “downcrossing” of level v; the equality represents the
fact that at steady state, the upcrossing and downcrossing



probabilities should be the same (these crossing arguments
are quite standard in queueing theory, see e.g. [16]). (10) has
a similar interpretation.

Dividing (9) and (10) by ∆, we get for v < K:

λ

∫ ∞

0
P{v − (h − c)g < V ≤ v}dF1(g) =

lim
∆→0

(
P (v < V ≤ v + ∆c)

∆
− λP (v < V ≤ v + ∆c)

)

and for v ∈ [K,B),

lim
∆→0

P (v < V ≤ v + ∆c)
∆

=

λ

∫

(( v−K
h−c ),∞)

P{v − (h − c)g < V < K}dF1(g)

Assuming the existence of derivative of F (v) for v ∈ (0,K)
and [K,B) we have dF (v)

dv =






λ
c

∫∞
0 P{v − (h − c)g < V ≤ v}

×dF1(g) v ∈ (0,K)

λ
c

∫
(( v−K

h−c ),∞) P{v − (h − c)g < V < K}
×dF1(g) v ∈ [K,B)

which gives dF (v)
dv =






λ
c (F (v)−∫∞
0 P (V ≤ v − (h − c)g)dF1(g)

)
v ∈ (0,K)

λ
c

(
F (K−)(1 − F1

(
v−K
h−c

)
)

−
∫
(( v−K

h−c ),∞) P (V ≤ v − (h − c)g)
dF1(g)) v ∈ [K,B)

We shall first solve for v ∈ [K,B). We have dF (v)
dv =

λ

c
F (K−)F̄1

(
v − K

h − c

)

−λ

c

∫

(( v−K
h−c ),(v/(h−c))]

P (V ≤ v − (h − c)g)dF1(g)

=
λ

c
F (K−)F̄1

(
v − K

h − c

)

−λ

c

∫

[0,K)
F1

(
v − z

h − c

)
dF (z)

=
λ

c
(F (K−) − F1

(
v

h − c

)
ρ(0))

−λ

c

∫

[0,K)
F1

(
v − z

h − c

)
dF (z) (11)

Observe that in (11) we have expressed the density for v ∈
[K,B) in terms of the density for v ∈ (0,K). We next solve

for density for v ∈ (0,K). With ρ(0) ≡ F (0), we have dF (v)
dv

=
λ

c
(F (v) − F1

(
v

h − c

)
ρ(0)) (12)

−λ

c

∫ v

0
F1

(
v − z

h − c

)
dF (z)

=
λ

c
ρ(0)

(
1 − F1

(
v

h − c

))

+
λ

c

∫ v

0

(
1 − F1

(
v − z

h − c

))
dF (z)

=
λ

c
ρ(0)F̄1

(
v

h − c

)

+
λ

c

∫ v

0
F̄1

(
v − z

h − c

)
dF (z) (13)

From (12) and (11) we see that F is continuous at K and thus
there is no probability mass at v = K.

Remark 1: If there was no threshold discarding, i.e., K =
∞ then (13) is the standard Takacs Integro-differential equa-
tion (see for e.g., [1], [6]).
This is a standard Volterra Integral Equation [15] whose
solution is given as 6:

dF (v)
dv

=
[ ∞∑

i=1

(
λ

c

)i+1 ∫ v

0
Mi(v, u)ρ(0)F̄1

u

h − c
)du

]

+
λ

c
ρ(0)F̄1(

v

h − c
) (14)

where the iterated kernels Mi are given as

M1(v, g) = F̄1(
v − g

h − c
)

M2(v, g) =
∫ v

0
F̄1(

v − t

h − c
)M1(t, g)dt

...

Mn(v, g) =
∫ v

0
F̄1(

v − t

h − c
)Mn−1(t, g)dt

...

Substituting the expression for dF (v)
dv from (14) in (11) we get

dF (v)
dv :

=
λ

c
(F (K) − F1

(
v

h − c

)
ρ(0))

−λ

c

∫ K

0
F1

(
v − z

h − c

)
×

([ ∞∑

i=1

(
λ

c

)i+1 ∫ z

0
Mi(z, u)ρ(0)F̄1(

u

h − c
)du

]

+
λ

c
ρ(0)F̄1(

z

h − c
)
)
dz (15)

Observe that there is no probability mass at v = B, the
workload hits B at isolated points of time (at jumps) and never
stays there. Recall that we are working with the stationary

6See Appendix A for related theory



distribution of Vn. Thus integrating (15) from K to B we
shall have

1 − F (K) =

+
λ

c

(
F (K)

∫ B

K

dv − ρ(0)
∫ B

K

F1

(
v

h − c

)
dv

)

−λ

c

∫ B

K

∫ K

0
F1

(
v − z

h − c

)([ ∞∑

i=1

(
λ

c

)i+1

∫ z

0
Mi(z, u)ρ(0)F̄1(

u

h − c
)du

]

+
λ

c
ρ(0)F̄1(

z

h − c
)
)
dzdv (16)

Secondly, integrating (14) from 0 to K we get:

F (K) − ρ(0) =

λ

c
ρ(0)

∫ K

0
F̄1

(
v

h − c

)
dv + ρ(0)

[ ∞∑

i=1

(
λ

c

)i+1

×
∫ K

0

∫ v

0
Mi(v, u)F̄1(

u

h − c
)dudv

]
(17)

Solving (17) and (16) we get expression for ρ(0):
[(

1 +
λ

c

∫ K

0
F̄1

(
v

h − c

)
dv +

∞∑

i=1

(
λ

c

)i+1

×

∫ K

0

∫ v

0
Mi(v, u)F̄1

(
u

h − c
)dudv

)
×

(
1 +

λ

c

∫ B

K

F̄1

(
v − K

h − c

)
dv

)

−λ

c

(∫ B

K

F1

(
v

h − c

)
dv

+
λ

c

∫ B

K

∫ K

0
F1

(
v − z

h − c

)([ ∞∑

i=1

(
λ

c

)i ∫ z

0
Mi(z, u)

F̄1

(
u

h − c

)
du

]
+ F̄1

(
z

h − c

))
dzdv

)]−1

(18)

which when substituted in (18) will give an expression for
F (K). Having obtained this we can get explicit expressions
for density for v ∈ (0,K) and v ∈ [K,B) from (14) and (15)
respectively.

Remark 2: For some distributions we get closed form ex-
pression for

∑∞
i=1

(
λ
c

)i+1
Mi(v, g). We shall call this sum as

the resolvent and denote it by Γ
(
v, g; λ

c

)
.

Having obtained a characterization of the density function of
the workload process at the instant when a source is ready to
send the burst, we can obtain an explicit expression for GS and
GFS from Lemma 1. In the next section we provide explicit
closed form expressions for distribution F of V (or V ) and
hence of GS for exponential distribution of burst sizes.

B. Explicit Calculations for Exponential Distribution of On
Periods

We have the following:

Proposition 2: For F1(x) = 1 − e−µx we have dF (v)
dv =






λ
c ρ(0)e

−µv
h−c

(
1 + λ

c ve
vλ
c

)
v ∈ (0,K)

λ
c (F (K) − (1 − e−µ( v

h−c ))ρ(0))
−ρ(0)

(
λ
c

)2 [−e−µK/(h−c)
(

h−c
µ

)

+e−K( µ
h−c − λ

c ) (K − c
λ

)

−e−µv/(h−c)
(
K +

(
K − c

λ

)
eλK/c

)

−
µ

(h−c)
µ

h−c − λ
c

e−K( µ
h−c − λ

c )
(
K +

2λ
c − µ

h−c

( µ
h−c − λ

c )λ
c

)

+
(

h−c
µ

)
+ c

λ (1 − e−µv/h−c)

+( µ
h−c )( 2λ

c − µ
h−c )

( µ
h−c − λ

c )2 λ
c

]
v ∈ [K,B)

(19)

where ρ(0) = 1
A1A2+A3

and F (K) = A3
A1A2+A3

, with:

A1 = 1 + (B − K)
λ

c
(20)

A2 =

(
e

−µK
h−c − e

−µB
h−c

µ
h−c

)(
2λ
c

+
(
λ

c

)2

(
K +

(
K − c

λ

)
e

λK
c

))

−(B − K)
λ

c

(
1 +

λ

c

(
−e

−µK
h−c

(
h − c

µ

)

+e−K( µ
h−c − λ

c )
(
K − c

λ

)

−
µ

h−c(
µ

h−c − λ
c

)e−K( µ
h−c − λ

c )



K +
2λ
c − µ

h−c(
µ

h−c − λ
c

)
λ
c



+
(
h − c

µ

)
+

c

λ

+

(
µ

h−c

)(
2λ
c − µ

h−c

)

(
µ

h−c − λ
c

)2
λ
c







 , (21)

A3 = 1 +
λ

c

((
h − c

µ

)
(1 − e−µK/h−c)

+
λ
c

µ
h−c − λ

c

(
1

µ
h−c − λ

c

− e−K( µ
h−c − λ

c )

(
K +

1
µ

h−c − λ
c

)))
(22)

Proof: Refer to Appendix B.
And further:

Proposition 3: For F1(x) = 1 − e−µx, GS is given by:

= µ2ρ(0)
[
I0

(
1 +

λ(h − c)
cµ

(1 − e
−µK
h−c )

−
(

λ
c

)2
(

µ
h−c − λ

c

) ×

(
e−K( µ

h−c − λ
c )
(
K +

1
µ

h−c − λ
c

)
− 1

µ
h−c − λ

c

))



+I3 −
(

λ
c

)2
µ

h−c − λ
c

(
e−B( µ

h−c − λ
c )×

((
B +

1
µ

h−c − λ
c

)
I1 − (h − c)I2

)
− 1

µ
h−c − λ

c

I3

)

+
λ(h − c)

µc
(I3 − I4)

]
(23)

where I0, I1, I2, I3 are defined as:

I0 =
∫ B−K

h−c

0
we−µwdw I1 =

∫ B
h−c

B−K
h−c

we−w
(h−c)λ

c dw

I2 =
∫ B

h−c

B−K
h−c

w2e−w
(h−c)λ

c dw I3 =
∫ B

h−c
B−K
h−c

we−µwdw

I4 =
∫ B

h−c

B−K
h−c

wdw

and ρ(0) is obtained by solving (33) and (34).
Proof: Refer to Appendix C.

Remark 3: From (23) we observe that the GS is not defined
when the load λ(h−c)

µc at the queue is equal to 1.

C. A Bound for General Distribution of On Periods

Observe that from (14) the expression for dF (v)
dv requires

the calculation of Mi for all i ≥ 1. Thus a natural interest is
in bounding the error if the summation in (14) is truncated to
some finite number, say n of terms. Let us denote by Si =(

λ
c

)i+1 ∫ v

0 Mi(v, u)ρ(0)F̄1

(
u

h−c

)
du. We have the following

result:
Lemma 3: The absolute value of the general term Si in (14)

is less than:
(
λ

c

)i
Ki−1

(i − 1)!

∫ K

0

(
λ

c

)
ρ(0)F̄1

(
s

h − c

)
ds

And thus if in the series in (14) only those terms are included
which contain powers of

(
λ
c

)
up-to the n+ 1th-term then the

magnitude of error will not exceed
(
λ

c

)2 ∫ K

0
ρ(0)F̄1

(
s

h − c

)
ds

n∑

i=1

(
λ

c

)i−1
Ki−1

(i − 1)!
. (24)

Also as F̄1(.) ≤ 1 the error magnitude from (24) will be less
than:

(
λ

c

)2

Kρ(0)
n∑

i=1

(
λ

c

)i−1
Ki−1

(i − 1)!
. (25)

Proof: Follows from the theory of Volterra Integral Equations
in [15].

IV. NUMERICAL EXAMPLES

We shall next plot the stationary density of the workload
process V at arrival epochs of bursts and the goodput ratios
GS ,GFS using our analytical expressions for an example with
exponential distribution of burst sizes. We take h = 30, c =
10, λ = 20, µ = 30, B = 20,K = 10. We observe in Fig. 3
that density has a peak at the discarding threshold K. We next
plot GS as a function of K in Fig. 4. We observe that with
appropriate choice of K GS as high as 0.73 can be obtained.
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Fig. 3. The density function of the stationary workload process for the
example with ρ(0) = 7.5321 × 10−5. Observe that there is a peak at
discarding threshold K = 10.
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Fig. 4. The goodput ratio GS as a function of K with h = 30, c = 10. For
K = 15, the goodput is maximum at 0.7281.

We next plot GFS as a function of K in Fig. 5. We observe
that the optimum value of K is anything from 1 to 15 as GFS

is almost 1 for these values of K. Further GFS decreases with
K for K > 15. For this example we find that K = 15 is
the optimum as it maximizes both GS and GFS . Also, in the
absence of any threshold discarding, K = B, both GS and
GFS are low and hence having a selective discarding policy
improves both the performance as perceived by the source and
the overall performance. For this particular example in Fig. 4
it seems that the choice of the threshold K scarcely influence
the performance. However we will demonstrate that it may be
not be true for other values of parameters. Let us now take
h = 100 while keeping all other parameters the same and plot
GS as a function of K in Fig. 6. We observe that for this
example GS is very sensitive to the choice of K calling for
the need of optimal discarding threshold for such a system.

Remark 4: From the explicit closed form expressions for
GS (and hence GFS) from Proposition 3 for the exponential
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Fig. 5. The goodput ratio GFS as a function of K. For K = 1 to 15 the
goodput is very close to 1.
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Fig. 6. The goodput ratio GS as a function of K with h = 100, c = 10.
For K = 4, the goodput is maximum at 0.1590.

case, the optimal discarding threshold can be obtained by
solving dGS

dK = 0.

V. AN IMPROVED FEEDBACK SYSTEM: A COMBINATION

OF THRESHOLD AND PARTIAL DISCARDING WITH

RESPONSIVE SOURCES

In our model we have considered the case where a feedback
to the source to stop sending data is sent only at the arrival
epochs of bursts. However observe from Fig. 1 that there
is a positive probability that some (accepted) messages will
become bad if during their arrival period the buffer overflows
and then the fluid queue stays at B. Next consider a feedback
system where apart from threshold discarding (like in our
model) there is also partial discarding of messages. Thus
whenever the buffer level becomes B a feedback signal is sent
to the source to stop the current burst transfer and the source
backs off (responsive source) and enters a silence period. Thus
the probability mass that we have in Fig. 1 disappears. This
policy will certainly improve the overall system performance

or in other words GFS for this policy will be higher than
that for our model. We shall next show how one can obtain
the performance metrics for this policy from our analysis.
We shall denote the previous policy that we analysed by
TMDF (Threshold Message Discarding with Feedback) and
this improved policy by PTMDF (Partial and Threshold
Message Discarding with Feedback). A little thinking clears
that the workload process at arrival epochs for both TMDF
and PTMDF has the same distribution. Thus we have:

Lemma 4: The stationary distribution of the workload pro-
cess at arrival epochs of messages in PTMDF is given by
(14) and (11) for v ∈ (0,K) and [K,B) respectively.
Having obtained this we now proceed to obtain the two
goodput ratios for this system. Observe that GS will be the
same for both TMDF and PTMDF . However GFS will be
different as here the source also backs off once the queue hits
B. We have:

Proposition 4: For PTMDF we have:

GS = M−1
∫ B

h−c

0
wdH(w, 1)

GFS =
∫ B

h−c

0 wdH(w, 1)
E[Z]

where M is the mean length of the message and Z is a random
variable defined as:

Z =






W if V < K,W < B−V
h−c

B−V
h−c if V < K,W ≥ B−V

h−c

0 o.w.,
(26)

with E as the expectation.
Proof: Under PTMDF the actual amount of fluid for a
message sent by the source, depends on both V and the
(potential) length of the message. Thus if V < K and the
potential length of the message W can be completely accepted
then Z = W , if V < K and the message cannot be completely
accepted then Z = B−V

h−c and if V ≥ K, Z = 0.
Corollary 1: For PTMDF with F1(x) = 1 − e−µx, we

have GS given by (23) and GFS = GS

E[Z] where

E[Z] = ρ(0)
[

1 − e
−µB
h−c +

λ

c

(
h − c

µ
(1 − e

−µK
h−c )

−e
−µB
h−c

( c

λ
+ e

Kλ
c

(
K − c

λ

))
− Ke

−µB
h−c

+
λ

c




1

(
µ

h−c − λ
c

)2 − e−K( µ
h−c − λ

c )
(

µ
h−c − λ

c

)



K +
1(

µ
h−c − λ

c

)















 . (27)

Proof: We have from (26),

Z = WI

(
V < K,W <

B − V
h − c

)

+
(
B − V
h − c

)
I

(
V < K,W ≥ B − V

h − c

)
. (28)
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Fig. 7. The goodput ratio GFS for TMDF and PTMDF as a function
of K with h = 100, c = 20. Observe the improvement in GFS achievable
by combining partial with threshold discarding.

We have W ∼ µe−µw. Thus

E[Z] =
∫ K

0

[∫ B−v
h−c

0
µe−µwwdw

+
∫ ∞

B−v
h−c

(
B − v

h − c

)
µe−µwdw

]
dF (v)

=
∫ K

0

[
1
µ

− e−µ(B−v
h−c )

(
B − v

h − c
+

1
µ

)

+
(
B − v

h − c

)
e−µ(B−v

h−c )
]
dF (v)

=
1
µ

∫ K

0

(
1 − e−µ(B−v

h−c )
)
dF (v).

From Prop. 4, distribution of V is given by (14) and (11). Thus
substituting the expression for dF (v) we get

E[Z] =
ρ(0)
µ

[
(1 − e− µB

h−c ) +
λ

c

∫ K

0

(
1 − e−µ(B−v

h−c )
)

×

e
−µv
h−c

(
1 +

λ

c
ve

vλ
c

)
dv

]

=
ρ(0)
µ

[
(1 − e− µB

h−c ) +
λ

c

(
e

−µv
h−c

+
λ

c
ve−v( µ

h−c − λ
c ) − e− µB

h−c

(
1 +

λ

c
ve

vλ
c

))
dv

]
,

from which we have (27).
Fig. 7 shows the improvement in GFS for TMDF and

PTMDF for the same example source with h = 100.

VI. CONCLUSION AND SCOPE FOR FURTHER RESEARCH

We analyse a feedback system with a fluid queue having a
selective burst discarding policy and a responsive source that
backs off when the burst is not accepted by the queue. Using
techniques from Volterra Integral Equations we characterize
the distribution of the queue length at arrival epochs of bursts

(at times when the source gets ready to transmit). For general
distribution of active periods we propose an approach for
calculating the queue length distribution and for the special
case of exponential distribution we obtain explicit closed form
expressions for the distribution of the workload at arrival
epochs of bursts and the goodput ratios. Our analytical expres-
sions are useful in studying the sensitivity of the performance
to different parameters of the source and network (if we
model the bottleneck as the fluid queue), in selecting optimal
discarding threshold and also in buffer dimensioning. As we
saw in our numerical investigations, there are parameters for
which almost optimal goodput is obtained for a large range of
choices of the discarding threshold (Fig. 5), whereas for other
parameters, the performance is quite sensitive to the choice of
threshold (Fig. 6 and Fig. 7).

In our analysis we have assumed that there is a zero
feedback delay from the queue to the source and the source
backs off instantaneously. This can be a good approximation
for controlling access networks [8], since distances between
users/clients and network access points are relatively short,
feedback delay due to propagation is negligible. A further
extension of our work can be to analyse active queue man-
agement policies with probabilistic discarding of bursts. For
e.g., we can have two thresholds K1 and K2 such that if the
workload is below K1, a burst is not discarded, if its above
K2, the burst is always discarded and between K1 and K2,
the discarding can be probabilistic.

APPENDIX A

We state the following theorem for the existence and unique-
ness of the solution to a general integral equation of Volterra
type from [15].

Theorem 1: Consider an integral equation

φ(x) − β

∫ v

a

D(x, s)φ(s)ds = f(x), (29)

whose solution by the method of successive approximations
be given by (the nth approximate)

φn(x) = f(x) +
n∑

m=1

βm

∫ v

a

Dm(x, s)f(s)ds (30)

where Dm(x, s) is determined by the recurrence relationship

D1(x, s) = D(x, s); Dm(x, s) =
∫ v

a

D(x, t)Dm−1(t, s)dt.

Then if D(x, s) is bounded and f(x) is absolutely integrable,
i.e., ∫ v

a

| f(s)ds |< ∞

then successive approximations of the form φn(x) (30) con-
verge uniformly for all values of β and limit of successive
approximations is the solution of (29), and this solution is
unique.



APPENDIX B

We will next calculate the kernels Mi(v, g) and provide
a general expression for i = n. Observe that M1(v, g) =
e−µ(v−g)/(h−c) and

M2(v, g) =
∫ v

0
e−µ(v−t)/(h−c)e−µ(t−g)/(h−c)dt

= ve−µ(v−g)/(h−c)

M3(v, g) =
∫ v

0
e−µ(v−t)/(h−c)te−µ(t−g)/(h−c)dt

=
v2

2!
e−µ(v−g)/(h−c)

...

and, in general

Mn(v, g) =
vn−1

(n − 1)!
e−µ(v−g)/(h−c)

Hence the resolvent

Γ
(
v, g;

λ

c

)
= e−µ(v−g)/(h−c)

∞∑

m=1

(
λ

c

)m+1
vm−1

(m − 1)!

= e−µ(v−g)/(h−c)eλv/c

(
λ

c

)2

=
(
λ

c

)2

ev(λ
c − µ

h−c )e
µg

h−c .

Thus we get for v ∈ (0,K):

dF (v)
dv

=
λ

c
ρ(0)e

−µv
h−c

(
1 +

λ

c
ve

vλ
c

)
(31)

And from (15) for v ∈ [K,B):

dF (v)
dv

= (32)

λ

c
(F (K) − F1

(
v

h − c

)
ρ(0))

−λ

c

∫ K

0
F1

(
v − z

h − c

)
ρ(0)

λ

c
×

[
e−µz/(h−c) + ez(λ

c − µ
h−c )λz

c

]
dz

=
λ

c
(F (K) − (1 − e−µ( v

h−c ))ρ(0)) − ρ(0)
(
λ

c

)2

[
(e−µz/(h−c) − e−µv/(h−c))

(
z +

(
z − c

λ

)
eλz/c

)

+
µ

h − c

∫
e−zµ/(h−c)

(
z +

(
z − c

λ

)
e

λz
c

)
dz

]K

0

=
λ

c
(F (K) − (1 − e−µ( v

h−c ))ρ(0)) − ρ(0)
(
λ

c

)2

[
−e−µz/(h−c)

(
h − c

µ

)
+ e−z( µ

h−c − λ
c )
(
z − c

λ

)

−e−µv/(h−c)
(
z +

(
z − c

λ

)
eλz/c

)

−
µ

(h−c)
µ

h−c − λ
c

e−z(µ/h−c−λ/c)



z +
2λ
c − µ

h−c(
µ

h−c − λ
c

)
λ
c








K

0

From which we get (19). Integrating both sides of the last
equation from K to B we get:

A1F (K) + A2ρ(0) = 1 (33)

with A1 and A2 as defined in Prop. 2. Further integrating (31)
from 0 to K we have :

F (K) = ρ(0)A3 (34)

with A3 as defined in Prop. 2. Solving (33) and (34) we
get F (K) = A3

A1A3+A2
and ρ(0) = 1

A1A3+A2
which when

substituted in (31) and (32) gives explicit expressions for
density for (0,K) and [K,B] respectively.

APPENDIX C

Proof of Corollary 3 We have F1(x) = 1 − e−µx. From (5)
and (31) we have for w ∈ [0, B−K

h−c ]

H(w, 1) =

(1 − e−µw)ρ(0)

[
1 +

λ

c

∫ K

0
e

−µv
h−c

(
1 +

λ

c
ve

vλ
c

)
dv

]
,

from which we get dH(w,1)
dw

= µe−µwρ(0)
[
1 +

λ(h − c)
cµ

(1 − e
−µK
h−c )

+
(
λ

c

)2 ∫ K

0
ve−v( µ

h−c − λ
c )dv

]

= µe−µwρ(0)



1 +
λ(h − c)

cµ
(1 − e

−µK
h−c ) −

(
λ
c

)2
(

µ
h−c − λ

c

)

(
e−K( µ

h−c − λ
c )
(
K +

1
µ

h−c − λ
c

)
− 1

µ
h−c − λ

c

)]
,(35)

from (6) we have Ha(w) =

(1 − e−µw)ρ(0)

[
1 +

λ

c

∫ B−w(h−c)

0
e

−µv
h−c

(
1 +

λ

c
ve

vλ
c

)
dv

]
,

from which we get dHa(w,1)
dw

= ρ(0)

(
µe−µw

(
1 +

λ

c

(
1 − e

−µ
h−c (B−w(h−c))

µ
h−c

+
λ

c




1

(
µ

h−c − λ
c

)2 − e−(B−w(h−c))( µ
h−c − λ

c )
(

µ
h−c − λ

c

)

×



B − w(h − c) +
1(

µ
h−c − λ

c

)

















−(1 − e−µw)
λ

c
(h − c)e

−µ
h−c (B−w(h−c))

(
1 +

λ

c
(B − w(h − c))e(B−w(h−c)) λ

c

))
(36)



and from (7) we have Hb(w) =

λ

c
ρ(0)

∫ K

(B−w(h−c))+
(1 − e−µ(B−v

h−c ))

e−µv/h−c

(
1 +

λ

c
vevλ/c

)
dv,

which gives dHb(w)
dw :

=
λ

c
ρ(0)(h − c)(1 − e−µw)e− µ

h−c (B−w(h−c)) ×
(

1 +
λ

c
(B − w(h − c))e(B−w(h−c))λ/c

)
(37)

Thus from Eqs. (36) and (37) we have for w ∈ (B−K
h−c , B

h−c ],
dH(w,1)

dw = dHa(w)
dw + dHb(w)

dw and thus

dH(w, 1)
dw

= (38)

ρ(0)µe−µw

(
1 +

λ

c

(
1 − e

−µ
h−c (B−w(h−c))

µ
h−c

+
λ

c




1

(
µ

h−c − λ
c

)2 − e−(B−w(h−c))( µ
h−c − λ

c )
(

µ
h−c − λ

c

)

×



B − w(h − c) +
1(

µ
h−c − λ

c

)

















Now from Lemma 1 we can write

G = µ

(∫ B−K
h−c

0
wdH(w, 1) +

∫ B
h−c

B−K
h−c

wdH(w, 1)

)
(39)

Thus we get (23) from (35), (38) and (39).

REFERENCES

[1] J. W. Cohen. The Single Server Queue. North-Holland Publishing
Company, 1982.

[2] S. Floyd and A. Romanow. Dynamics of TCP traffic over ATM
networks. ACM SIGCOMM’94, pages 79–88, September 1994.

[3] H. Heffes, D. M. Lucantoni. A Markov Modulated Characterization
of Packetized Voice and Data Traffic and Related Statistical Multiplexer
Performance. IEEE Journal on Selected Areas in Communications, pages
856–867, 1986.

[4] K. K. Ramakrishnan, S. Floyd, D. Black. The Addition of Explicit
congestion Notification (ECN) to IP. RFC 3168, Proposed Standard,
available at ftp://ftp.isi.edu/in-notes/rfc3168.txt, September 2001.

[5] K. S. Lee, M. Kim. Matching Technique for MMPP Modeling of
Heterogeneous ON-OFF Sources. IEEE GLOBECOM, 1994.

[6] L. Kleinrock. Queueing Systems, Vol. I: Theory. John Wiley & Sons,
1975.

[7] Y. Lapid, R. Rom, and M. Sidi. Analysis of Discarding Policies in
High-Speed Networks. IEEE JSAC, 16:764–777, 1998.

[8] W. Scheinhardt M. Mandjes, D. Mitra. Simple models of network access,
with applications to design of joint rate and admission control. proc. of
Infocom 2002, June 2002.

[9] P. Dube, E. Altman. Fluid Analysis of Early Message Discarding Policy
Under Heavy Traffic. proc. of IEEE INFOCOM 2002, June 2002.

[10] P. Dube, E. Altman. Queueing Analysis of Early Message Discard
Policy. proc. of IEEE ICC 2002, April/May 2002.

[11] P. Dube, E. Altman. On the Workload Process in a Fluid Queue
with Bursty Input and Selective Discarding. In Proc.of Seventeenth
International Teletraffic Congress ITC 17, Salvador de Bahia, Brazil,
Dec. 2001. A longer version submitted to Probability in the Engineering
and Informational Sciences, Jan 2002.

[12] P. Dube, E.Altman. Queueing and Fluid Analysis of Partial Message
Discard Policy. proc. of 9th IFIP Working Conference on Performance
Modeling and Evaluation of ATM and IP Networks, longer version
submitted to Queueing Systems, June 2001.

[13] R. W. Brockett, W. B. Gong, Y. Guo. New analytical methods for
queueuing systems. IEEE Conference on Decision and Control, 1999.

[14] S. Floyd. TCP and Explicit Congestion Notification. ACM Computer
Communication Review, 24(5):10–23, October 1994.

[15] S.G.Mikhlin. Integral Equations, International Series of Monographs on
Pure and Applied Mathematics, Vol. 4. Pergamon Press, 1964.

[16] M. Shalmon. The GI/GI/1 queue and its variations via the lcvs
preemptive resume discipline. Prob. Engng. Inform. Sc. 2, pages 215–
230, 1988.


